ADVERTISEMENT

i7822___el5211_fn7119_207.pdf

Samsung LE32C530 - Schemat logiki F60MB4C2LV0.6

( BKP , BKX) - BKX to MAX9650 - BKP to MAX15032ATA iML7822 Link i7822 = iML7822 2-ch VCOM; Supply Voltage: 5V~20V; Ipeak= 400mA, Irms=45mA, SR=20V/us czyli dwa operacyjne i7822 = LM8262 =HX8902 = EL5211 iML7975 (iML7975 7bit DVR with I2C interface; logic voltage: 2.25V(R)/2.6V(W)~4V; Analog voltage: 4.5V~18V; 10-TDFN) http://obrazki.elektroda.pl/3894807800_1485995874_thumb.jpg Tcon MODEL: SYNC60C4LV0.3 for Toshiba 40LV655PR Main Board - PE0772 / V28A001020A1 (Cpu - MST 6B885GL-LF ) PSU DPS - 276AP A ICT1 - THF930I LMU4142TI ICM1 - W9864G2GH-6 OP1,PO2 - I7814HS ICE - 24C64WP ICV1 - I7975 IC20 - XC95144XL TQG100AWN0925 D3648512A ICT4 - KECYWB66 ICC1 - MAX9591 ICS1 - +1181L ICD2 - KA1718 ICD1 - TPS65167 VIN +12.05V AVDD +15.1V TEMP +1.79V VON +19.45V VOFF -7.49V 3.3V - OK VON_P +22.7V 1.8V - OK DEO +2.32V T_RD +3.32V SSCLK0 +1.43V SSCLK1 +1.55V KB +2.2V RST +3.2V DSW +2.21V VREF_L-L +0.31V VREF_L-H +6.12V VREF_U-L +8.91V VREF_U-H +14.77V CLKM +1.48V VSTL +6.04V VCOM_L +6.53V VCOMG2L +6.35V VCOMG1 +6.41V VDDQ +3.31V WP1 0V VR +8.27V DRN +11.12V CV0 +8.25V TD0 +2.3V TD1 +3.3V TMS +3.3V TCK +2.4V DQM 0V WE +3.3V CAS +3.3V RAS +3.3V CS +3.28V CLKM +1.47V T-CON Samsung S100FAPC2LV0-3 (BN98-03131A ) IC590 S524A40X20-RC70 IC1 LPFC041T0A-Q1 IC2 INAISL24835IRTZ-T13 IC4 SM4109 IC6 IML7975 ICD2 FDC658AP http://obrazki.elektroda.pl/3747119000_1485996650_thumb.jpg SM T-con t370xw02-vf-bn07-00642a Link


Download file - link to post

EL5111, EL5211, EL5411

®

Data Sheet

May 7, 2007

FN7119.7

60MHz Rail-to-Rail Input-Output Op Amps

Features

The EL5111, EL5211, and EL5411 are low power, high
voltage rail-to-rail input-output amplifiers. The EL5111
represents a single amplifier, the EL5211 contains two
amplifiers, and the EL5411 contains four amplifiers.
Operating on supplies ranging from 5V to 15V, while
consuming only 2.5mA per amplifier, the EL5111, EL5211,
and EL5411 have a bandwidth of 60MHz (-3dB). They also
provide common mode input ability beyond the supply rails,
as well as rail-to-rail output capability. This enables these
amplifiers to offer maximum dynamic range at any supply
voltage.

• Pb-free plus anneal available (RoHS compliant)

The EL5111, EL5211, and EL5411 also feature fast slewing
and settling times, as well as a high output drive capability of
65mA (sink and source). These features make these
amplifiers ideal for high speed filtering and signal
conditioning application. Other applications include battery
power, portable devices, and anywhere low power
consumption is important.

• ±180mA output short current

The EL5111 is available in 5 Ld TSOT and 8 Ld HMSOP
packages. The EL5211 is available in the 8 Ld HMSOP
package. The EL5411 is available in space-saving 14 Ld
HTSSOP packages. All feature a standard operational
amplifier pinout. These amplifiers operate over a temperature
range of -40°C to +85°C.

• Data acquisition

• 60MHz (-3dB) bandwidth
• Supply voltage = 4.5V to 16.5V
• Low supply current (per amplifier) = 2.5mA
• High slew rate = 75V/µs
• Unity-gain stable
• Beyond the rails input capability
• Rail-to-rail output swing

Applications
• TFT-LCD panels
• VCOM amplifiers
• Drivers for A/D converters

• Video processing
• Audio processing
• Active filters
• Test equipment
• Battery-powered applications
• Portable equipment

Pinouts
EL5111
(8 LD HMSOP)
TOP VIEW
NC 1
VIN- 2
VIN+ 3
VS- 4

EL5111
(5 LD TSOT)
TOP VIEW
8 NC

+

VOUT 1

7 VS+

VS- 2

6 VOUT

VIN+ 3

5 NC

EL5211
(8 LD HMSOP)
TOP VIEW
5 VS+

VOUTA 1
VINA- 2

+ 4 VIN-

VINA+ 3
VS- 4

EL5411
(14 LD HTSSOP)
TOP VIEW
8 VS+
7 VOUTB

+
+

VOUTA 1

14 VOUTD

VINA- 2

6 VINB-

VINA+ 3

5 VINB+

13 VIND+

+

VS+ 4

11 VS-

VINB+ 5
VINB- 6
VOUTB 7

1

12 VIND+

10 VINC+
+
-

+
-

9 VINC8 VOUTC

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.
Copyright Intersil Americas Inc. 2004, 2007. All Rights Reserved
All other trademarks mentioned are the property of their respective owners.

EL5111, EL5211, EL5411
Ordering Information
PART NUMBER

PART MARKING

TAPE & REEL

PACKAGE

PKG. DWG. #

EL5111IWT-T7

8

7” (3k pcs)

5 Ld TSOT

MDP0049

EL5111IWT-T7A

8

7” (250 pcs)

5 Ld TSOT

MDP0049

EL5111IWTZ-T7 (Note)

BAAG

7” (3k pcs)

5 Ld TSOT (Pb-free)

MDP0049

EL5111IWTZ-T7A (Note)

BAAG

7” (250 pcs)

5 Ld TSOT (Pb-free)

MDP0049

EL5111IYE

7

-

8 Ld HMSOP (3.0mm)

MDP0050

EL5111IYE-T7

7

7”

8 Ld HMSOP (3.0mm)

MDP0050

EL5111IYE-T13

7

13”

8 Ld HMSOP (3.0mm)

MDP0050

EL5111IYEZ (Note)

BAAJA

-

8 Ld HMSOP (Pb-free) (3.0mm)

MDP0050

EL5111IYEZ-T7 (Note)

BAAJA

7”

8 Ld HMSOP (Pb-free) (3.0mm)

MDP0050

EL5111IYEZ-T13 (Note)

BAAJA

13”

8 Ld HMSOP (Pb-free) (3.0mm)

MDP0050

EL5111AIYEZ (Note)

BBLAA

-

8 Ld HMSOP (Pb-free) (3.0mm)

MDP0050

EL5111AIYEZ-T13 (Note)

BBLAA

13”

8 Ld HMSOP (Pb-free) (3.0mm)

MDP0050

EL5111AIYEZ-T7 (Note)

BBLAA

7”

8 Ld HMSOP (Pb-free) (3.0mm)

MDP0050

EL5211IYE

9

-

8 Ld HMSOP (3.0mm)

MDP0050

EL5211IYE-T7

9

7”

8 Ld HMSOP (3.0mm)

MDP0050

EL5211IYE-T13

9

13”

8 Ld HMSOP (3.0mm)

MDP0050

EL5211IYEZ (Note)

BAATA

-

8 Ld HMSOP (Pb-free) (3.0mm)

MDP0050

EL5211IYEZ-T7 (Note)

BAATA

7”

8 Ld HMSOP (Pb-free) (3.0mm)

MDP0050

EL5211IYEZ-T13 (Note)

BAATA

13”

8 Ld HMSOP (Pb-free) (3.0mm)

MDP0050

EL5411IRE

5411IRE

-

14 Ld HTSSOP (4.4mm)

MDP0048

EL5411IRE-T7

5411IRE

7”

14 Ld HTSSOP (4.4mm)

MDP0048

EL5411IRE-T13

5411IRE

13”

14 Ld HTSSOP (4.4mm)

MDP0048

EL5411IREZ (Note)

5411IREZ

-

14 Ld HTSSOP (Pb-free) (4.4mm) MDP0048

EL5411IREZ-T7 (Note)

5411IREZ

7”

14 Ld HTSSOP (Pb-free) (4.4mm) MDP0048

EL5411IREZ-T13 (Note)

5411IREZ

13”

14 Ld HTSSOP (Pb-free) (4.4mm) MDP0048

EL5411IR

5411IR

-

14 Ld TSSOP (4.4mm)

MDP0044

EL5411IR-T7

5411IR

7”

14 Ld TSSOP (4.4mm)

MDP0044

EL5411IR-T13

5411IR

13”

14 Ld TSSOP (4.4mm)

MDP0044

EL5411IRZ (Note)

5411IRZ

-

14 Ld TSSOP (Pb-free) (4.4mm)

M14.173

EL5411IRZ-T7 (Note)

5411IRZ

7”

14 Ld TSSOP (Pb-free) (4.4mm)

M14.173

EL5411IRZ-T13 (Note)

5411IRZ

13”

14 Ld TSSOP (Pb-free) (4.4mm)

M14.173

NOTE: Intersil Pb-free plus anneal products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate
termination finish, which are RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL
classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.

2

FN7119.7
May 7, 2007

EL5111, EL5211, EL5411
Absolute Maximum Ratings (TA = +25°C)

Thermal Information

Supply Voltage between VS+ and VS- . . . . . . . . . . . . . . . . . . . .+18V
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . VS- - 0.5V, VS +0.5V
Maximum Continuous Output Current . . . . . . . . . . . . . . . . . . . 65mA
Maximum Die Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . +150°C

Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C
Ambient Operating Temperature . . . . . . . . . . . . . . . .-40°C to +85°C
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Curves
Pb-free reflow profile . . . . . . . . . . . . . . . . . . . . . . . . . .see link below
http://www.intersil.com/pbfree/Pb-FreeReflow.asp

CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typ values are for information purposes only. Unless otherwise noted, all tests are
at the specified temperature and are pulsed tests, therefore: TJ = TC = TA

Electrical Specifications
PARAMETER

VS+ = +5V, VS- = -5V, RL = 1kΩ to 0V, TA = +25°C, Unless Otherwise Specified

DESCRIPTION

CONDITIONS

MIN

TYP

MAX

UNIT

3

15

mV

INPUT CHARACTERISTICS
VOS

Input Offset Voltage

VCM = 0V

TCVOS

Average Offset Voltage Drift (Note 1)

IB

Input Bias Current

RIN

Input Impedance

1



CIN

Input Capacitance

2

pF

CMIR

Common-Mode Input Range

CMRR

Common-Mode Rejection Ratio

for VIN from -5.5V to 5.5V

50

70

dB

AVOL

Open-Loop Gain

-4.5V ≤ VOUT ≤ 4.5V

62

70

dB

7
VCM = 0V

2

-5.5

µV/°C
60

+5.5

nA

V

OUTPUT CHARACTERISTICS
VOL

Output Swing Low

IL = -5mA

VOH

Output Swing High

IL = 5mA

ISC
IOUT

-4.92
4.85

-4.85

V

4.92

V

Short-Circuit Current

±180

mA

Output Current

±65

mA

80

dB

POWER SUPPLY PERFORMANCE
PSRR

Power Supply Rejection Ratio

VS is moved from ±2.25V to ±7.75V

60

IS

Supply Current

No load (EL5111)

2.5

4.5

mA

No load (EL5211)

5

7.5

mA

No load (EL5411)

10

15

mA

DYNAMIC PERFORMANCE
SR

Slew Rate (Note 2)

-4.0V ≤ VOUT ≤ 4.0V, 20% to 80%

75

V/µs

tS

Settling to +0.1% (AV = +1)

(AV = +1), VO = 2V step

80

ns

BW

-3dB Bandwidth

60

MHz

GBWP

Gain-Bandwidth Product

32

MHz

PM

Phase Margin

50

°

CS

Channel Separation

f = 5MHz (EL5211 and EL5411 only)

110

dB

dG

Differential Gain (Note 3)

RF = RG = 1kΩ and VOUT = 1.4V

0.17

%

dP

Differential Phase (Note 3)

RF = RG = 1kΩ and VOUT = 1.4V

0.24

°

NOTES:
1. Measured over operating temperature range.
2. Slew rate is measured on rising and falling edges.
3. NTSC signal generator used.

3

FN7119.7
May 7, 2007

EL5111, EL5211, EL5411
Electrical Specifications
PARAMETER

VS+ = +5V, VS- = 0V, RL = 1kΩ to 2.5V, TA = +25°C, Unless Otherwise Specified

DESCRIPTION

CONDITION

MIN

TYP

MAX

UNIT

3

15

mV

INPUT CHARACTERISTICS
VOS

Input Offset Voltage

VCM = 2.5V

TCVOS

Average Offset Voltage Drift (Note 4)

IB

Input Bias Current

RIN

Input Impedance

1



CIN

Input Capacitance

2

pF

CMIR

Common-Mode Input Range

CMRR

Common-Mode Rejection Ratio

for VIN from -0.5V to 5.5V

45

66

dB

AVOL

Open-Loop Gain

0.5V ≤ VOUT ≤ 4.5V

62

70

dB

7
VCM = 2.5V

2

-0.5

µV/°C
60

+5.5

nA

V

OUTPUT CHARACTERISTICS
VOL

Output Swing Low

IL = -5mA

VOH

Output Swing High

IL = 5mA

ISC
IOUT

80
4.85

150

mV

4.92

V

Short-circuit Current

±180

mA

Output Current

±65

mA

80

dB

POWER SUPPLY PERFORMANCE
PSRR

Power Supply Rejection Ratio

VS is moved from 4.5V to 15.5V

60

IS

Supply Current

No load (EL5111)

2.5

4.5

mA

No load (EL5211)

5

7.5

mA

No load (EL5411)

10

15

mA

DYNAMIC PERFORMANCE
SR

Slew Rate (Note 5)

1V ≤ VOUT ≤ 4V, 20% to 80%

75

V/µs

tS

Settling to +0.1% (AV = +1)

(AV = +1), VO = 2V step

80

ns

BW

-3dB Bandwidth

60

MHz

GBWP

Gain-Bandwidth Product

32

MHz

PM

Phase Margin

50

°

CS

Channel Separation

f = 5MHz (EL5211 and EL5411 only)

110

dB

dG

Differential Gain (Note 6)

RF = RG = 1kΩ and VOUT = 1.4V

0.17

%

dP

Differential Phase (Note 6)

RF = RG = 1kΩ and VOUT = 1.4V

0.24

°

NOTES:
4. Measured over operating temperature range.
5. Slew rate is measured on rising and falling edges.
6. NTSC signal generator used.

4

FN7119.7
May 7, 2007

EL5111, EL5211, EL5411
Electrical Specifications
PARAMETER

VS+ = +15V, VS- = 0V, RL = 1kΩ to 7.5V, TA = +25°C, Unless Otherwise Specified

DESCRIPTION

CONDITION

MIN

TYP

MAX

UNIT

3

15

mV

INPUT CHARACTERISTICS
VOS

Input Offset Voltage

VCM = 7.5V

TCVOS

Average Offset Voltage Drift (Note 7)

IB

Input Bias Current

RIN

Input Impedance

1



CIN

Input Capacitance

2

pF

CMIR

Common-Mode Input Range

CMRR

Common-Mode Rejection Ratio

for VIN from -0.5V to 15.5V

53

72

dB

AVOL

Open-Loop Gain

0.5V ≤ VOUT ≤ 14.5V

62

70

dB

7
VCM = 7.5V

2

-0.5

µV/°C
60

+15.5

nA

V

OUTPUT CHARACTERISTICS
VOL

Output Swing Low

IL = -5mA

VOH

Output Swing High

IL = 5mA

ISC
IOUT

80
14.85

150

mV

14.92

V

Short-circuit Current

±180

mA

Output Current

±65

mA

80

dB

POWER SUPPLY PERFORMANCE
PSRR

Power Supply Rejection Ratio

VS is moved from 4.5V to 15.5V

60

IS

Supply Current

No load (EL5111)

2.5

4.5

mA

No load (EL5211)

5

7.5

mA

No load (EL5411)

10

15

mA

DYNAMIC PERFORMANCE
SR

Slew Rate (Note 8)

1V ≤ VOUT ≤ 14V, 20% to 80%

75

V/µs

tS

Settling to +0.1% (AV = +1)

(AV = +1), VO = 2V step

80

ns

BW

-3dB Bandwidth

60

MHz

GBWP

Gain-Bandwidth Product

32

MHz

PM

Phase Margin

50

°

CS

Channel Separation

f = 5MHz (EL5211 and EL5411 only)

110

dB

dG

Differential Gain (Note 9)

RF = RG = 1kΩ and VOUT = 1.4V

0.16

%

dP

Differential Phase (Note 9)

RF = RG = 1kΩ and VOUT = 1.4V

0.22

°

NOTES:
7. Measured over operating temperature range
8. Slew rate is measured on rising and falling edges
9. NTSC signal generator used

5

FN7119.7
May 7, 2007

EL5111, EL5211, EL5411
Typical Performance Curves
25
VS = ±5V
TA = +25°C

TYPICAL
PRODUCTION
DISTRIBUTION

400
300
200
100

VS = ±5V
QUANTITY (AMPLIFIERS)

15
10
5

21

19

17

15

11

13

9

INPUT OFFSET VOLTAGE DRIFT, TCVOS (µV/°C)

FIGURE 1. INPUT OFFSET VOLTAGE DISTRIBUTION

FIGURE 2. INPUT OFFSET VOLTAGE DRIFT

0.008

2.0

VS = ±5V
INPUT BIAS CURRENT (µA)

INPUT OFFSET VOLTAGE (mV)

7

1

12

8

10

6

4

2

-0

-2

-4

-6

-8

-10

-12

INPUT OFFSET VOLTAGE (mV)

5

0

0

1.5
1.0
0.5
0.0
-0.5
-50

-10

30

70

110

0.004
0.000
-0.004
-0.008
-0.012
-50

150

-10

TEMPERATURE (°C)

70

110

150

FIGURE 4. INPUT BIAS CURRENT vs TEMPERATURE

4.96

4.94
4.92
4.90
4.88

-10

30

70

110

150

TEMPERATURE (°C)

FIGURE 5. OUTPUT HIGH VOLTAGE vs TEMPERATURE

6

OUTPUT LOW VOLTAGE (V)

-4.85
VS = ±5V
IOUT = 5mA

4.86
-50

30

TEMPERATURE (°C)

FIGURE 3. INPUT OFFSET VOLTAGE vs TEMPERATURE

OUTPUT HIGH VOLTAGE (V)

TYPICAL
PRODUCTION
DISTRIBUTION

20

3

QUANTITY (AMPLIFIERS)

500

VS = ±5V
IOUT = 5mA
-4.87
-4.89
-4.91
-4.93
-4.95
-50

-10

30

70

110

150

TEMPERATURE (°C)

FIGURE 6. OUTPUT LOW VOLTAGE vs TEMPERATURE

FN7119.7
May 7, 2007

EL5111, EL5211, EL5411
Typical Performance Curves (Continued)
78

75

VS = ±5V
77
SLEW RATE (V/µs)

OPEN-LOOP GAIN (dB)

VS = ±5V
RL = 1kΩ
70

65

76
75
74
73

60
-50

-10

30

70

110

72
-50

150

-10

TEMPERATURE (°C)

110

150

FIGURE 8. SLEW RATE vs TEMPERATURE

2.70

2.9
TA = +25°C

VS = ±5V

2.7

SUPPLY CURRENT (mA)

SUPPLY CURRENT (mA)

70

TEMPERATURE (°C)

FIGURE 7. OPEN-LOOP GAIN vs TEMPERATURE

2.5
2.3
2.1
1.9
1.7

4

8

12

16

2.65
2.60
2.55
2.50
2.45
2.40
-50

1.5
20

SUPPLY VOLTAGE (V)

-10

30

70

110

150

TEMPERATURE (°C)

FIGURE 9. SUPPLY CURRENT PER AMPLIFIER vs SUPPLY
VOLTAGE

FIGURE 10. SUPPLY CURRENT PER AMPLIFIER vs
TEMPERATURE

0.00

0.30
DIFFERENTIAL PHASE (°)

-0.02
DIFFERENTIAL GAIN (%)

30

-0.04
-0.06
-0.08
-0.10
-0.12
VS = ±5V
AV = 2
RL = 1kΩ

-0.14
-0.16
-0.18

0.25
0.20
0.15
0.10
0.05
0.00

0

100
IRE

FIGURE 11. DIFFERENTIAL GAIN

7

200

0

100

200

IRE

FIGURE 12. DIFFERENTIAL PHASE

FN7119.7
May 7, 2007

EL5111, EL5211, EL5411
Typical Performance Curves (Continued)
-30

80
VS = ±5V
AV = 2
RL = 1kΩ
FREQ = 1MHz

-60
2nd HD
-70
-80

40
PHASE

4

8

6

10

-20
1k

10

10k

100k

VOP-P (V)

VS = ±5V
AV = 1
CLOAD = 0pF

1kΩ

1

560Ω

-3

150Ω

-5
100k

1M

10M

1000pF

15

47pF
10pF

-5
-15

VS = ±5V
AV = 1
RL = 1kΩ
1M

100M

FIGURE 16. FREQUENCY RESPONSE FOR VARIOUS CL

MAXIMUM OUTPUT SWING (VP-P)

OUTPUT IMPEDANCE (Ω)

350
300
250
200
150
100
50
10M

100M

FREQUENCY (Hz)

FIGURE 17. CLOSED LOOP OUTPUT IMPEDANCE

8

10M

FREQUENCY (Hz)

400

1M

100pF

5

FREQUENCY (Hz)

100k

-50
100M

25

-25
100k

100M

FIGURE 15. FREQUENCY RESPONSE FOR VARIOUS RL

0
10k

10M

FIGURE 14. OPEN LOOP GAIN AND PHASE

MAGNITUDE (NORMALIZED) (dB)

MAGNITUDE (NORMALIZED) (dB)

5

-1

1M

FREQUENCY (Hz)

FIGURE 13. HARMONIC DISTORTION vs VOP-P

3

70

0

-90
2

130

20

3rd HD

0

190
GAIN
PHASE (°)

-50

60
GAIN (dB)

DISTORTION (dB)

-40

250

12
10
8
6
4
2

VS = ±5V
AV = 1
RL = 1kΩ
DISTORTION & lt; 1%

0
10k

100k

1M

10M

100M

FREQUENCY (kHz)

FIGURE 18. MAXIMUM OUTPUT SWING vs FREQUENCY

FN7119.7
May 7, 2007

EL5111, EL5211, EL5411
Typical Performance Curves (Continued)
-15

-80
PSRR+

-25

PSRR-

PSRR (dB)

CMRR (dB)

-60
-35
-45

-40

-20

-55

VS = ±5V
TA = +25°C
-65
1k

10k

100k

1M

10M

0
100

100M

1k

FREQUENCY (Hz)

100

XTALK (dB)

VOLTAGE NOISE (nV/√Hz)

10M

-60
DUAL MEASURED CH A TO B
QUAD MEASURED CH A TO D OR B TO C
OTHER COMBINATIONS YIELD
IMPROVED REJECTION

-80

10

-100

-120
VS = ±5V
RL = 1kΩ
AV = 1
VIN = 110mVRMS

-140

1k

10k

100k

1M

10M

-160
1k

100M

10k

100k

1M

10M 30M

FREQUENCY (Hz)

FREQUENCY (Hz)

FIGURE 21. INPUT VOLTAGE NOISE SPECTRAL DENSITY

FIGURE 22. CHANNEL SEPARATION

5

100
VS = ±5V
AV = 1
RL = 1kΩ
VIN = ±50mV
TA = +25°C

4
3
STEP SIZE (V)

80

1M

FIGURE 20. PSRR

1K

1
100

100k

FREQUENCY (Hz)

FIGURE 19. CMRR

OVERSHOOT (%)

10k

60

40

VS = ±5V
AV = 1
RL = 1kΩ

0.1%

2
1
0
-1
-2
0.1%

-3

20

-4
0
10

100
LOAD CAPACITANCE (pF)

FIGURE 23. SMALL-SIGNAL OVERSHOOT vs LOAD
CAPACITANCE

9

1k

-5
55

65

75

85

95

105

SETTLING TIME (ns)

FIGURE 24. SETTLING TIME vs STEP SIZE

FN7119.7
May 7, 2007

EL5111, EL5211, EL5411
Typical Performance Curves (Continued)
VS = ±5V
TA = +25°C
AV = 1
RL = 1kΩ

VS = ±5V
TA = +25°C
AV = 1
RL = 1kΩ

100mV STEP

1V STEP
50ns/DIV

50ns/DIV

FIGURE 25. LARGE SIGNAL TRANSIENT RESPONSE

FIGURE 26. SMALL SIGNAL TRANSIENT RESPONSE

Pin Descriptions
EL5111
(TSOT-5)

EL5111
(HMSOP8)

EL5211
(HMSOP8)

EL5411
(HTSSOP14)

NAME

1

6

1

1

VOUTA

FUNCTION

EQUIVALENT CIRCUIT

Amplifier A output

VS+

GND

VS-

CIRCUIT 1
4

2

2

2

VINA-

Amplifier A inverting input

VS+

VS-

CIRCUIT 2
3

3

3

3

VINA+

5

7

8

4

VS+

5

5

VINB+

Amplifier B non-inverting input

(Reference Circuit 2)

6

6

VINB-

Amplifier B inverting input

(Reference Circuit 2)

7

7

VOUTB

Amplifier B output

(Reference Circuit 1)

8

VOUTC

Amplifier C output

(Reference Circuit 1)

9

VINC-

Amplifier C inverting input

(Reference Circuit 2)

10

VINC+

Amplifier C non-inverting input

(Reference Circuit 2)

11

VS-

12

VIND+

Amplifier D non-inverting input

(Reference Circuit 2)

13

VIND-

Amplifier D inverting input

(Reference Circuit 2)

14

VOUTD

Amplifier D output

(Reference Circuit 1)

2

4

4

1, 5, 8

NC

10

Amplifier A non-inverting input

(Reference Circuit 2)

Positive power supply

Negative power supply

Not connected

FN7119.7
May 7, 2007

EL5111, EL5211, EL5411
Applications Information

Short Circuit Current Limit

Product Description
The EL5111, EL5211, and EL5411 voltage feedback
amplifiers are fabricated using a high voltage CMOS
process. They exhibit rail-to-rail input and output capability,
are unity gain stable and have low power consumption
(2.5mA per amplifier). These features make the EL5111,
EL5211, and EL5411 ideal for a wide range of generalpurpose applications. Connected in voltage follower mode
and driving a load of 1kΩ, the EL5111, EL5211, and EL5411
have a -3dB bandwidth of 60MHz while maintaining a 75V/µs
slew rate. The EL5111 is a single amplifier, the EL5211 a
dual amplifier, and the EL5411 a quad amplifier.

Operating Voltage, Input, and Output
The EL5111, EL5211, and EL5411 are specified with a single
nominal supply voltage from 5V to 15V or a split supply with
its total range from 5V to 15V. Correct operation is
guaranteed for a supply range of 4.5V to 16.5V. Most
EL5111, EL5211, and EL5411 specifications are stable over
both the full supply range and operating temperatures of
-40°C to +85°C. Parameter variations with operating voltage
and/or temperature are shown in the typical performance
curves.
The input common-mode voltage range of the EL5111,
EL5211, and EL5411 extends 500mV beyond the supply
rails. The output swings of the EL5111, EL5211, and EL5411
typically extend to within 100mV of positive and negative
supply rails with load currents of 5mA. Decreasing load
currents will extend the output voltage range even closer to
the supply rails. Figure 27 shows the input and output
waveforms for the device in the unity-gain configuration.
Operation is from ±5V supply with a 1kΩ load connected to
GND. The input is a 10VP-P sinusoid. The output voltage is
approximately 9.8VP-P.
VS = ±5V, TA = +25°C, AV = 1, VIN = 10VP-P
10µs

OUTPUT

INPUT

5V

5V

FIGURE 27. OPERATION WITH RAIL-TO-RAIL INPUT AND
OUTPUT

The EL5111, EL5211, and EL5411 will limit the short circuit
current to ±180mA if the output is directly shorted to the
positive or the negative supply. If an output is shorted
indefinitely, the power dissipation could easily increase such
that the device may be damaged. Maximum reliability is
maintained if the output continuous current never exceeds
±65mA. This limit is set by the design of the internal metal
interconnects.

Output Phase Reversal
The EL5111, EL5211, and EL5411 are immune to phase
reversal as long as the input voltage is limited from VS- -0.5V
to VS+ +0.5V. Figure 28 shows a photo of the output of the
device with the input voltage driven beyond the supply rails.
Although the device's output will not change phase, the
input's overvoltage should be avoided. If an input voltage
exceeds supply voltage by more than 0.6V, electrostatic
protection diodes placed in the input stage of the device
begin to conduct and overvoltage damage could occur.
VS = ±2.5V, TA = +25°C, AV = 1, VIN = 6VP-P
1V

10µs

1V

FIGURE 28. OPERATION WITH BEYOND-THE-RAILS INPUT

Power Dissipation
With the high-output drive capability of the EL5111, EL5211,
and EL5411 amplifiers, it is possible to exceed the +125°C
'absolute-maximum junction temperature' under certain load
current conditions. Therefore, it is important to calculate the
maximum junction temperature for the application to
determine if load conditions need to be modified for the
amplifier to remain in the safe operating area.
The maximum power dissipation allowed in a package is
determined according to:
T JMAX – T AMAX
P DMAX = -------------------------------------------θ JA

(EQ. 1)

where:
• TJMAX = Maximum junction temperature
• TAMAX = Maximum ambient temperature
• ΘJA = Thermal resistance of the package
• PDMAX = Maximum power dissipation in the package

11

FN7119.7
May 7, 2007

EL5111, EL5211, EL5411
The maximum power dissipation actually produced by an IC
is the total quiescent supply current times the total power
supply voltage, plus the power in the IC due to the loads, or:
P DMAX = Σi [ V S × I SMAX + ( V S + – V OUT i ) × I LOAD i ]

JEDEC JESD51-7 HIGH EFFECTIVE THERMAL
CONDUCTIVITY (4-LAYER) TEST BOARD HTSSOP EXPOSED DIEPAD SOLDERED TO
PCB PER JESD51-5

(EQ. 2)

when sourcing, and:
P DMAX = Σi [ V S × I SMAX + ( V OUT i – V S - ) × I LOAD i ]

(EQ. 3)

when sinking,
where:

POWER DISSIPATION (W)

3.5

• i = 1 to 2 for dual and 1 to 4 for quad

3.0

2.632W

2.5

HTSSOP14
θJA = +38°C/W

2.0
1.5
1.0
0.5
0.0
0

• VS = Total supply voltage

25

50

75 85

100

125

AMBIENT TEMPERATURE (°C)

• ISMAX = Maximum supply current per amplifier
• VOUTi = Maximum output voltage of the application

FIGURE 30. PACKAGE POWER DISSIPATION vs AMBIENT
TEMPERATURE

• ILOADi = Load current

JEDEC JESD51-3 LOW EFFECTIVE THERMAL
CONDUCTIVITY TEST BOARD

JEDEC JESD51-3 LOW EFFECTIVE THERMAL
CONDUCTIVITY TEST BOARD
1.2
TSSOP28
POWER DISSIPATION (W)

If we set the two PDMAX equations equal to each other, we
can solve for RLOADi to avoid device overheat. Figures 29
through 36 provide a convenient way to see if the device will
overheat. The maximum safe power dissipation can be
found graphically, based on the package type and the
ambient temperature. By using the previous equation, it is a
simple matter to see if PDMAX exceeds the device's power
derating curves. To ensure proper operation, it is important
to observe the recommended derating curves shown in
Figures 29 through 36.

θJA = +120°C/W
TSSOP24

1.0
0.8
0.6

θJA = +140°C/W
TSSOP16

977mW
893mW

0.4

θJA = +148°C/W

845mW
0.2

TSSOP14

758mW

0.9

θJA = +165°C/W

0.0

0.8
POWER DISSIPATION (W)

θJA = +128°C/W
TSSOP20

1.042W

0

694mW
0.7

HTSSOP14
θJA = +144°C/W

0.6

25

50

75 85 100

125

150

AMBIENT TEMPERATURE (°C)

FIGURE 31. PACKAGE POWER DISSIPATION vs AMBIENT
TEMPERATURE

0.5
0.4
0.3
0.2

JEDEC JESD51-7 HIGH EFFECTIVE THERMAL
CONDUCTIVITY TEST BOARD

0.1

1.8
0

25

50

75 85

100

125

AMBIENT TEMPERATURE (°C)

FIGURE 29. PACKAGE POWER DISSIPATION vs AMBIENT
TEMPERATURE

POWER DISSIPATION (W)

0.0

TSSOP28

1.6

θJA=+75°C/W
TSSOP24

1.4
1.2
1.0
0.8

1.471W

0.6

1.389W

0.4

1.289W

0.2

θJA=+85°C/W
TSSOP20

1.667W

1.250W

θJA=+90°C/W
TSSOP16
θJA=+97°C/W
TSSOP14
θJA=+100°C/W

0.0
0

25

50

75 85 100

125

150

AMBIENT TEMPERATURE (°C)

FIGURE 32. PACKAGE POWER DISSIPATION vs AMBIENT
TEMPERATURE

12

FN7119.7
May 7, 2007

EL5111, EL5211, EL5411
JEDEC JESD51-3 LOW EFFECTIVE THERMAL
CONDUCTIVITY (SINGLE LAYER) TEST BOARD

JEDEC JESD51-7 HIGH EFFECTIVE THERMAL
CONDUCTIVITY (4-LAYER) TEST BOARD
0.6

290mW

0.300
0.250

POWER DISSIPATION (W)

POWER DISSIPATION (W)

0.350

TSOT5
θJA = +345°C/W

0.200
0.150
0.100
0.050

0.5 483mW

0.3
0.2
0.1
0.0

0.000
0

25

50
75 85 100
125
AMBIENT TEMPERATURE (°C)

0

150

FIGURE 33. PACKAGE POWER DISSIPATION vs AMBIENT
TEMPERATURE

25

50
75 85 100
125
AMBIENT TEMPERATURE (°C)

150

FIGURE 34. PACKAGE POWER DISSIPATION vs AMBIENT
TEMPERATURE

JEDEC JESD51-3 LOW EFFECTIVE THERMAL
CONDUCTIVITY TEST BOARD

JEDEC JESD51-7 HIGH EFFECTIVE THERMAL
CONDUCTIVITY TEST BOARD

0.6

1
486mW

0.5
0.4

θ

JA
=

0.3

POWER DISSIPATION (W)

POWER DISSIPATION (W)

TSOT5
θJA = +207°C/W

0.4

HM

SO
P8
+2
06
°C
/W

0.2
0.1

870mW

0.9
0.8

θ

0.7

JA
=

0.6
0.5

HM
SO
P8
+1
15
°C
/W

0.4
0.3
0.2
0.1
0

0
0

25

50

75 85

100

125

AMBIENT TEMPERATURE (°C)

FIGURE 35. PACKAGE POWER DISSIPATION vs AMBIENT
TEMPERATURE

Unused Amplifiers
It is recommended that any unused amplifiers in a dual and
a quad package be configured as a unity gain follower. The
inverting input should be directly connected to the output
and the non-inverting input tied to the ground plane.

13

0

25

50

75 85

100

125

AMBIENT TEMPERATURE (°C)

FIGURE 36. PACKAGE POWER DISSIPATION vs AMBIENT
TEMPERATURE

Power Supply Bypassing and Printed Circuit
Board Layout
The EL5111, EL5211, and EL5411 can provide gain at high
frequency. As with any high-frequency device, good printed
circuit board layout is necessary for optimum performance.
Ground plane construction is highly recommended, lead
lengths should be as short as possible and the power supply
pins must be well bypassed to reduce the risk of oscillation.
For normal single supply operation, where the VS- pin is
connected to ground, a 0.1µF ceramic capacitor should be
placed from VS+ to pin to VS- pin. A 4.7µF tantalum
capacitor should then be connected in parallel, placed in the
region of the amplifier. One 4.7µF capacitor may be used for
multiple devices. This same capacitor combination should be
placed at each supply pin to ground if split supplies are to be
used.

FN7119.7
May 7, 2007

EL5111, EL5211, EL5411
Thin Shrink Small Outline Package Family (TSSOP)
MDP0044

0.25 M C A B
D

THIN SHRINK SMALL OUTLINE PACKAGE FAMILY

A
(N/2)+1

N

MILLIMETERS
SYMBOL 14 LD 16 LD 20 LD 24 LD 28 LD TOLERANCE
A

1

(N/2)

B

0.20 C B A
2X
N/2 LEAD TIPS

TOP VIEW

1.20

1.20

1.20

1.20

Max

0.10

0.10

0.10

0.10

0.10

±0.05

A2

E1

1.20

A1

PIN #1 I.D.
E

0.90

0.90

0.90

0.90

0.90

±0.05

b

0.25

0.25

0.25

0.25

0.25

+0.05/-0.06

c

0.15

0.15

0.15

0.15

0.15

+0.05/-0.06

D

5.00

5.00

6.50

7.80

9.70

±0.10

E

C
SEATING
PLANE

6.40

6.40

6.40

Basic

4.40

4.40

4.40

4.40

±0.10

e
H

6.40

4.40
0.65

0.65

0.65

0.65

0.65

Basic

L

0.60

0.60

0.60

0.60

0.60

±0.15

L1

0.05

e

6.40

E1

1.00

1.00

1.00

1.00

1.00

Reference
Rev. F 2/07

0.10 M C A B

b
0.10 C
N LEADS

SIDE VIEW

NOTES:
1. Dimension “D” does not include mold flash, protrusions or gate
burrs. Mold flash, protrusions or gate burrs shall not exceed
0.15mm per side.
2. Dimension “E1” does not include interlead flash or protrusions.
Interlead flash and protrusions shall not exceed 0.25mm per
side.

SEE DETAIL “X”

3. Dimensions “D” and “E1” are measured at dAtum Plane H.
4. Dimensioning and tolerancing per ASME Y14.5M-1994.

c

END VIEW

L1

A

A2
GAUGE
PLANE
0.25
L

A1

0° - 8°
DETAIL X

14

FN7119.7
May 7, 2007

EL5111, EL5211, EL5411
HTSSOP (Heat-Sink TSSOP) Family
MDP0048

0.25 M C A B
D

HTSSOP (HEAT-SINK TSSOP) FAMILY

A
(N/2)+1

N

MILLIMETERS
SYMBOL 14 LD 20 LD 24 LD 28 LD 38 LD TOLERANCE
A

0.20 C B A
2X
N/2 LEAD TIPS

(N/2)
TOP VIEW

B

1.20

1.20

1.20

Max

0.075

0.075

0.075

0.075

±0.075

0.90

0.90

0.90

0.90

0.90

+0.15/-0.10

b
1

1.20

0.075

A2

E1

1.20

A1

PIN #1 I.D.
E

0.25

0.25

0.25

0.25

0.22

+0.05/-0.06

c

0.15

0.15

0.15

0.15

0.15

+0.05/-0.06

D

5.00

6.50

7.80

9.70

9.70

±0.10

D1

7.25

Reference

6.40

6.40

Basic

4.40

4.40

4.40

4.40

4.40

±0.10

3.0

3.0

3.0

3.0

3.0

Reference

0.65

0.65

0.65

0.65

0.50

Basic

L

0.60

0.60

0.60

0.60

0.60

±0.15

L1

1.00

1.00

1.00

1.00

1.00

Reference

N

14

20

24

28

38

Reference
Rev. 3 2/07

BOTTOM VIEW

NOTES:

0.05

e

5.0

6.40

e

C

4.3

6.40

E2
E2

4.2

6.40

E1

D1

EXPOSED
THERMAL PAD

3.2

E

H

1. Dimension “D” does not include mold flash, protrusions or gate
burrs. Mold flash, protrusions or gate burrs shall not exceed
0.15mm per side.
2. Dimension “E1” does not include interlead flash or protrusions.
Interlead flash and protrusions shall not exceed 0.25mm per
side.

SEATING
PLANE
0.10 C
N LEADS

3. Dimensions “D” and “E1” are measured at Datum Plane H.

0.10 M C A B

b

4. Dimensioning and tolerancing per ASME Y14.5M-1994.

SIDE VIEW

SEE DETAIL “X”

c

END VIEW

L1
A A2

GAUGE
PLANE
0.25
L

A1

0° - 8°
DETAIL X

15

FN7119.7
May 7, 2007

EL5111, EL5211, EL5411
TSOT Package Family
MDP0049

e1

D

TSOT PACKAGE FAMILY

A

MILLIMETERS
6

N

SYMBOL

4

TSOT5

TSOT6

TSOT8

TOLERANCE

A

2X

1
5

2

(N/2)

0.25 C
2X N/2 TIPS

e
ddd M

B

C A-B D

b
NX

Max

0.05

±0.05

0.87

0.87

0.87

±0.03

0.38

0.38

0.29

±0.07

c

0.15 C D

1.00

0.05

A2

E

3

1.00

0.05

b

E1
2

1.00

A1

0.127

0.127

0.127

+0.07/-0.007

D

2.90

2.90

2.90

Basic

E

2.80

2.80

2.80

Basic

E1

1.60

1.60

1.60

Basic

e

0.95

0.95

0.65

Basic

e1

1.90

1.90

1.95

Basic

L

0.15 C A-B

0.40

±0.10

0.60

0.60

Reference

ddd

3

0.40

0.60
0.20

0.20

0.13

-

N

1
D

2X

0.40

L1

5

6

8

Reference
Rev. B 2/07

C
A2
SEATING
PLANE

1. Plastic or metal protrusions of 0.15mm maximum per side are
not included.
2. Plastic interlead protrusions of 0.15mm maximum per side are
not included.

A1

0.10 C

NOTES:

NX

3. This dimension is measured at Datum Plane “H”.
4. Dimensioning and tolerancing per ASME Y14.5M-1994.

(L1)

5. Index area - Pin #1 I.D. will be located within the indicated zone
(TSOT6 AND TSOT8 only).

H

A

GAUGE
PLANE
c

L

16

6. TSOT5 version has no center lead (shown as a dashed line).

0.25

4° ±4°

FN7119.7
May 7, 2007

EL5111, EL5211, EL5411
HMSOP (Heat-Sink MSOP) Package Family
E
B

0.25 M C A B

E1

MDP0050
HMSOP (HEAT-SINK MSOP) PACKAGE FAMILY
MILLIMETERS

1

N

SYMBOL

HMSOP8 HMSOP10

TOLERANCE

NOTES

A
A1

0.075

0.075

+0.025/-0.050

-

0.86

0.86

±0.09

-

0.30

0.20

+0.07/-0.08

-

0.15

0.15

±0.05

-

3.00

3.00

±0.10

1, 3

D1

1.85

1.85

Reference

-

E

4.90

4.90

±0.15

-

E1

3.00

3.00

±0.10

2, 3

E2

1.73

1.73

Reference

-

e

0.65

0.50

Basic

-

L

0.55

0.55

±0.15

-

L1

0.95

0.95

Basic

-

N

A

-

D

PIN #1
I.D.

Max.

c

(N/2)

1.00

b

(N/2)+1

1.00

A2

D

8

10

Reference

-

TOP VIEW

E2

EXPOSED
THERMAL PAD

D1

BOTTOM VIEW

Rev. 1 2/07
e

NOTES:

H

1. Plastic or metal protrusions of 0.15mm maximum per side are not
included.

C
SEATING
PLANE

2. Plastic interlead protrusions of 0.25mm maximum per side are
not included.
0.08 M C A B

b

0.10 C
N LEADS

3. Dimensions “D” and “E1” are measured at Datum Plane “H”.
4. Dimensioning and tolerancing per ASME Y14.5M-1994.

SIDE VIEW

L1
A
c
END VIEW

SEE DETAIL " X "

A2
GAUGE
0.25 PLANE
L
3° ±3°

A1

DETAIL X

17

FN7119.7
May 7, 2007

EL5111, EL5211, EL5411
Thin Shrink Small Outline Plastic Packages (TSSOP)
M14.173

N
INDEX
AREA

E

0.25(0.010) M

E1

2

SYMBOL

MIN

MAX

MILLIMETERS
MIN

MAX

NOTES

A
0.25
0.010

SEATING PLANE

-

0.15

-

0.031

0.041

0.80

1.05

-

0.0075

0.0118

0.19

0.30

9

c

α

e

A1

b

c

B S

0.0035

0.0079

0.09

0.20

-

0.195

0.199

4.95

5.05

3

E1

A2

0.10(0.004)
C A M

1.20

0.05

D

-C-

0.10(0.004) M

-

0.006

b

A

D

0.047

0.002

A2

L

-

A1

3
0.05(0.002)

-A-

INCHES

GAUGE
PLANE

-B1

14 LEAD THIN SHRINK SMALL OUTLINE PLASTIC
PACKAGE

B M

0.169

0.177

4.30

4.50

4

e

0.026 BSC

1. These package dimensions are within allowable dimensions of
JEDEC MO-153-AC, Issue E.

-

E

0.246

0.256

6.25

6.50

-

L

0.0177

0.0295

0.45

0.75

6

8o

0o

N
NOTES:

0.65 BSC

α

14
0o

14

7
8o

Rev. 2 4/06

2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Dimension “D” does not include mold flash, protrusions or gate burrs.
Mold flash, protrusion and gate burrs shall not exceed 0.15mm
(0.006 inch) per side.
4. Dimension “E1” does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.15mm (0.006 inch) per
side.
5. The chamfer on the body is optional. If it is not present, a visual index
feature must be located within the crosshatched area.
6. “L” is the length of terminal for soldering to a substrate.
7. “N” is the number of terminal positions.
8. Terminal numbers are shown for reference only.
9. Dimension “b” does not include dambar protrusion. Allowable dambar
protrusion shall be 0.08mm (0.003 inch) total in excess of “b” dimension at maximum material condition. Minimum space between protrusion and adjacent lead is 0.07mm (0.0027 inch).
10. Controlling dimension: MILLIMETER. Converted inch dimensions
are not necessarily exact. (Angles in degrees)

All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com
18

FN7119.7
May 7, 2007