ADVERTISEMENT

at30ic.pdf

CFI Grup model: CFI-S150X - pływające napięcie +5VSTB

http://obrazki.elektroda.pl/4570965400_1335100616.jpg Witam. Historia tego zasilacza jest nieco zawiła, a usterka wydaje się niby prosta. Pracowałem wczoraj na komputerze do dość późna. Komputer działał przez 4-5 godzin bez przerwy (zwykle taki jest jego dzienny czas pracy). Około 22:00 wyłączyłem go, jednak po wyłączeniu zwróciłem uwagę na gasnące co parę sekund kontrolki klawiatury. Myśląc, że to jakiś problem z zamknięciem systemu, włączyłem komputer ponownie. Jednak wymagało to nieco dłuższego przytrzymania włącznika - co nie było już normalnym objawem. Wyłączyłem go awaryjnie trzymając włącznik 4 sek. Odłączyłem zasilacz całkowicie od sieci do rana. Dziś rano po włączeniu do sieci znów taki sam objaw. Pomiar napięcia na pinie 5VSTB wykazał, że napięcie to zanika co parę sekund. Zasilacz został wymontowany. Pierwsza rzecz to sprawdzenie czy przypadkiem nie wysechł kondensator elektrolityczny na wyjściu PP. Optycznie wyglądał OK, ale został wymieniony na nowy 1000µF/10V (oczywiście LowESR). Niestety to nie wyeliminowało usterki. Pomiary paru kluczowych elementów PP nie wykazały by były one uszkodzone. Profilaktycznie wymieniłem jeszcze 10µF/50V i 22µF/50V po jej pierwotnej stronie. Zasilacz w dalszym ciągu "próbkuje" na linii 5VSTB i nie można go włączyć na sztucznym obciążeniu. Występuje też dodatkowy objaw, który zauważony został podczas pomiarów. Gdy napięcie za mostkiem jest "normalne", czyli 285V przetwornica PP próbkuje, ale gdy zasilacz zostanie odłączony od sieci i napięcie to zaczyna powoli spadać, to przy 216V przetwornica PP przestaje próbkować i pojawiają się stabilne napięcia wyjściowe: +5V (STBY) i +15,8V (do PWM-a), a zasilacz ma skłonności do prawidłowego uruchomienia się na ułamek sekundy. I teraz mam dylemat czy usterkę wiązać tylko i wyłącznie z PP, czy z pierwotną stroną za mostkiem, czy jednak po wtórnej w sterowniku zbytnio obciążającym jego 15V? Ostatnie jestem skłonny wykluczyć, bo zasilacz chce jednak startować. No i co to jest za układ scalony AT30B (TO-92)? Zasilacz jest dwuletni, co zresztą widać bo prawie się nie zakurzył, a jest to jednostka o mocy 150W występująca w kilku modelach obudów ITX. Oparty jest na elementach: Przetwornica PP: MJE13003, AT30B (TO-92), PC817, TL431 (SOT-23) Przetwornica Główna: 2005AZ, 2x MJE13007, 2x STC945, 2SD882 Napięcia na układzie scalonym 2005 w trybie stand-by: 1 - 4,2V pływa 2 - 4,9V pływa 3 - 0,03V 4 - 0,0V 5 - 0,23V pływa 6 - 0,0V 7 - 2,30V pływa 8 - 2,30V pływa 9 - 0,0V 10 - 1,0V pływa 11 - 1,0V pływa 12 - 0,0V 13 - 0,06V pływa 14 - 0,01V 15 - 0,01V 16 - 1,2V pływa Napięcia gdy zasilacz chwilowo wystartuje przy 216V na pierwotnej stronie, nie dają się zmierzyć bo szybko znikają, a autotransformatora niestety w domu brak. :( Zdjęcia wewnątrz (prosto z aparatu): http://obrazki.elektroda.pl/8011359100_1335096457_thumb.jpghttp://obrazki.elektroda.pl/6579702400_1335096458_thumb.jpghttp://obrazki.elektroda.pl/5251406700_1335096460_thumb.jpghttp://obrazki.elektroda.pl/8116311800_1335096462_thumb.jpg http://obrazki.elektroda.pl/6977649700_1335096463_thumb.jpghttp://obrazki.elektroda.pl/9439508800_1335096465_thumb.jpghttp://obrazki.elektroda.pl/9400562500_1335096467_thumb.jpghttp://obrazki.elektroda.pl/8268305000_1335096468_thumb.jpg Dodano po 3 45 : Problem układu scalonego AT30B się nieco rozwikłał i dotarłem do kopii noty, a jest to sterownik SMPS firmowany przez ATC Technology. Poprawiłem TONI_2003.


Download file - link to post

%

Page 1 of 9

T

E

C

H

N

O

L

O

G

AT30

Y

High Performance Off-line Controller

Description

Features

The AT30 is a high performance green-energy offline

● High Performance with 0.15W Standby Power

power supply controller. It features a scalable driver

● Current Mode Operation

for driving external NPN or MOSFET transistors for

● PWM/Pulse-Skipping Switching Control

line voltage switching. This proprietary architecture

● Emitter Drive Allows Safe NPN Flyback Use

enables many advanced features to be integrated

● 65kHz or 100kHz Switching Frequency

into a small package (TO-92 or SOT23-5), resulting

● Leading Edge Blanking

in lowest total cost solution.

● Complete Protection Circuits including

The AT30 design has 6 internal terminals and is a

Over-Current Protection, Under-Voltage Protection

pulse frequency and width modulation IC with many

and Hiccup Mode for Short Circuit

flexible packaging options. One combination of

● Flexible Packaging Options(including TO-92)

internal terminals is packaged in the space-saving

● Selectable 0.4A to 1.2A Current Limit

TO-92 package (A/B/C/D versions) for 65kHz or

● Lowest Total Cost Solution

100kHz switching frequency and with 400mA or
800mA current limit. The E version (SOT23-5) can
be configured for higher current limit.
HIGH VOLTAGE DC

Consuming only 0.15W in standby, the IC features
over-current, hiccup mode short circuit, and
under-voltage protection mechanisms. The AT30 is

R1

ideal for use in high performance universal adaptors
and chargers.

D2

Q1

R2

Applications
IC1

Offline PWM AC/DC converter for

DRV

AT30

● Battery Charger

C1

VDD

OPTOCOUPLER

D1
GND

● Power Adaptor
● Universal Off-line Power Supplies
● Standby Power Supplies

Figure1. Simplified Application Circuit of AT30

1

http://www.sirectsemi.com/atc
FP5101

http://dc205.4shared.com/doc/0nbIa9vj/preview.html

2012-04-22

%

Page 2 of 9

T

E

C

H

N

O

L

O

G

AT30

Y

Ordering Information
Part Number

Switching Frequency

Current Limit

Temperature Range

Package

Pins

AT30A

65kHz

400mA

-40°C to 85°C

To-92

3

AT30B

65kHz

800mA

-40°C to 85°C

To-92

3

AT30C

100kHz

400mA

-40°C to 85°C

To-92

3

AT30D

100kHz

800mA

-40°C to 85°C

To-92

3

AT30E

Selectable

Adjustable

-40°C to 85°C

SOT23-5

5

Pin Assignments
TO-92
SOT23-5

AT30A
AT30B
AT30E

AT30C
AT30D

Functional Pin Description
Pin Number
TO-92

PIN
NAME

Pin Function

SOT23-5

1

1

VDD

Power Supply Pin. Connect to optocoupler's emitter. Internally limited to 5.5V max.
Bypass to GND with a proper compensation network.

2

2

GND

Ground

DRV

Driver Output (TO-92 Only). Connect to emitter of the high voltage NPN or MOSFET. For
AT30A/C, DRV pin is internally connected to DRV1. For AT30B/D, DRV pin is internally
connected to both DRV1 and DRV2.

5

DRV1

Driver Output 1 (SOT23-5 Only). Also used as supply input during startup.

4

DRV2

Driver Output 2 (SOT23-5 Only)

3

FREQ

Frequency Select (SOT23-5 Only). This terminal has an internal 200k pull down
resistor. Connect to VDD for 100kHz operation. Connect to GND or leave unconnected for
65kHz operation.

3

2

http://www.sirectsemi.com/atc
FP5101

http://dc205.4shared.com/doc/0nbIa9vj/preview.html

2012-04-22

%

Page 3 of 9

T

E

C

H

N

O

L

O

G

AT30

Y

Absolute Maximum Ratings

Thermal Information

● VDD,FREQ Voltage------------------------------ -0.3V to + 6V

● Junction Temperature------------------------- -40°C to +150°C

● VDD current---------------------------------------------------20mA

● Storage Temperature Range---------------- -55°C to +150°C

● VDRV, DRV1, DRV2 Voltage ---------------- -0.3V to + 18V

● Lead Temperature (Soldering, 10sec) ------------------300°C

● Continuous DRV,
DRV1, DRV2 Current---------------------

ESD Classification

●Maximum Power Dissipation --------

Internally limited
0.6W for TO-92
0.39W for SOT23-5

● Human Body Model-----------------------------------2000V
● Machine Model-------------------------------------------200V

Note Stresses beyond those listed under “Absolute Maximum Ratings " may cause permanent damage to the device.

Electrical Characteristics
(TA = 25°C, VDD=4V if not otherwise noted)
Parameter

Symbol

Test Conditions

Min

Typ
5

VDD Start Voltage

V START

Rising edge

4.75

V DD Clamp Voltage

VDD_CLP

I(V DD )=10mA

5.15 5.45 5.75

Supply Current

I DD

Max Units

Startup Supply Current

IDDST

VDD Under-Voltage Threshold

5.25

V

0.7
V DD = 4V before V

U UV

0.1

0.23 0.45

UV

Falling edge

V

VDRVST

AT30A/C

8.6

10.5

AT30B/D

DRV1 Start Voltage

mA
mA

3.17 3.35 3.53

DRV1 must be

V

9.6

11.5

V

higher than this
voltage to start up.

DRV1 Short-Circuit Detect Threshold

V DRVSC

AT30A/C

6.8

AT30A/B or FREQ = 0
Switching frequency

V

55

65

85

75

100

125

67

75

83

F SW

kHz
AT30C/D or FREQ = V

Maximum Duty Cycle

D MAX

Minimum Duty Cycle

D MIN

Effective Current Limit

ILIM

DD

V DD =4V
V DD =4.6V

3.5
AT30A/C

%

400

AT30B/D

800

VDD =V UV +0.1V

mA

V DD to DRV1 Current Coefficient

G GAIN

-0.29

VDD Dynamic Impedance

R VDD

9

DRV1/DRV2 Driver On-Resistance

R DRV1, 2

%

I DRV1 = I DRV2 = 0.05A

A/V
k

3.6

DRV1 Rise Time

1nF load, 15

pull-up

30

ns

DRV1 Fall Time

1nF load, 15

pull-up

20

ns

DRV1 and DRV2 Switch Off Current

Driver off, V

DRV1

=V

DRV2

= 10V

12

30

µA

3

http://www.sirectsemi.com/atc
FP5101

http://dc205.4shared.com/doc/0nbIa9vj/preview.html

2012-04-22

%

Page 4 of 9

T

E

C

H

N

O

L

O

G

AT30

Y

N-channel MOSFET. This emitter-drive method

Operation Description

takes advantage of the high V

CBO

of the transistor,

allowing a low cost transistor such as ‘13003 (V

CBO

Figure 2 shows the Functional Block Diagram of the
= 700V) or ‘13002 (V

CBO

= 600V) to be used for a

AT30. The main components include switching
wide AC input range. The slew-rate limited driver
control logic, two on-chip medium-voltage
coupled with the turn-off characteristics of an
power-MOSFETs with parallel current sensor, driver,
external NPN result in lower EMI.
oscillator and ramp generator, current limit VC
The driver peak current is designed to have a
generator, error comparator, hiccup control, bias and
negative voltage coefficient with respect to supply
undervoltage-lockout, and regulator circuitry.
voltage V

DD

, so that lower supply voltage

As seen in Figure 2, the design has 6 internal
automatically results in higher DRV1 peak current.
terminals. V

DD

is the power supply terminal. DRV1
This way, the optocoupler can control V

DD

directly

and DRV2 are linear driver outputs that can drive the
to affect driver current.
emitter of an external high voltage NPN transistor or

DRV1
VDD

-

REGULATOR

FREQ
200k

OSC &
RAMP
CURRENT

+

3.6V(AT30A/C)
4.6V(AT30B/D)

BIAS &
UVLO

9k

DRV2

HICCUP
CONTROL
PWM/PULSE
-SKIPPING
SWITCHING
CONTROL
LOGIC

SLEW

1x

56x

56x

20k

ILIM VC
GENERATOR
-

4.75V

ERROR
COMP

+
40

-

20k

+

GND

GND

Figure 2. Block Diagram of AT30

4

http://www.sirectsemi.com/atc
FP5101

http://dc205.4shared.com/doc/0nbIa9vj/preview.html

2012-04-22

%

Page 5 of 9

T

E

C

H

N

O

L

O

G

AT30

Y

Startup Sequence

Normal Operation

Figure 1 shows a Simplified Application Circuit for

In normal operation, the feedback signal from the

the AT30. Initially, the small current through resistor

secondary side is transmitted through the
optocoupler as a current signal into VDD pin, which

R1 charges up the capacitor C1, and the BJT acts as

has dynamic impedance of 9k

a follower to bring up the DRV1 voltage. An internal
regulator generates a V

DD

3.6V for AT30A/C (V

DRV1

limits it to 5.5V max. As V

voltage equal to V

DRV1



– 4.6V for AT30B/D) but
DD

regulator sourcing function stops and V

DD

drop due to its current consumption. As V
decreases below 4.75V, the IC starts to operate with

begins to
DD

voltage

DD

voltage affects the switching of the IC. As seen from
the Functional Block Diagram, the Current Limit VC
Generator uses the V

crosses 5V, the

. The resulting V

DD

voltage difference with

4.75V to generate a proportional offset at the
negative input of the Error Comparator.
The drivers turn on at the beginning of each

increasing driver current. When the output voltage

switching cycle. The current sense resistor current,

reaches regulation point, the optocoupler feedback

which is a fraction of the transformer primary

circuit stops V

DD

from decreasing further. The

switching action also allows the auxiliary windings to
take over in supplying the C1 capacitor. Figure 3

current, increases with time as the primary current
increases. When the voltage across this current
sense resistor plus the oscillator ramp signal equals

shows a typical startup sequence for the AT30.

Error Comparator's negative input voltage, the

To limit the auxiliary voltage, use a 12V zener diode

drivers turn off. Thus, the peak DRV1 current has a

for AT30A/C or a 13V zener for AT30B/D (D1 diode

calculated from the following:

in Figure 1).
Even though up to 2M

negative voltage coefficient of -0.29A/V and can be

startup resistor (R1) can be

IDRV1PEAK

= 0.29A/V • (4.75V – V

DD

)

used due to the very low startup current, the actual

for V

R1 value should be chosen as a compromise

When the output voltage is lower than regulation,

DD

& lt; 4.75V and duty cycle & lt; 50%.

between standby power and startup time delay.

Figure 3. Startup Waveforms

5

http://www.sirectsemi.com/atc
FP5101

http://dc205.4shared.com/doc/0nbIa9vj/preview.html

2012-04-22

%

Page 6 of 9

T

E

C

H

N

O

L

O

G

AT30

Y

the current into VDD pin is zero and VDD voltage

each switching cycle (with minimum on time of

decreases. At V

500ns) to the output causes VDD to increase

DD

=V

UV

= 3.3V, the peak DRV1

current has maximum value of 400mA.

slightly above 4.75V. The PWM Switching Control

Current Limit Adjustment

Logic block is able to detect this condition and

The IC's proprietary driver arrangement allows the

prevents the IC from switching until V

current limit to be easily adjusted between 400mA

4.75V again. This results in a pulse-skipping action

and 1.2A. To understand this, the drivers have to be

with fixed pulse width and varying frequency, and

utilized as linear resistive devices with typically 3.6

low power consumption because the switching

(rather than as digital output switches). The current

frequency is reduced. Typical system standby

limit can then be calculated through linear

power consumption is 0.15W.

combination as shown in Figure 4. For TO-92

Short Circuit Hiccup

package, the AT30A/C are preprogrammed to

When the output is short circuited, the AT30 enters

400mA current limit and the AT30B/D are

hiccup mode operation. In this condition, the

preprogrammed to 800mA current limit. For AT30E

auxiliary supply voltage collapses. An on-chip

(SOT23-5) packages, both DRV1 and DRV2

detector compares DRV1 voltage during the

terminals are provided.

off-time of each cycle to 6.8V. If DRV1 voltage is

DD

is below

below 6.8V, the IC will not start the next cycle,

I LIM

DRV1

400 mA

causing both the auxiliary supply voltage and V

DRV2

DD

to

reduce further. The circuit enters startup mode
when V

DRV1

I LIM

DRV2

400 mA

RD

7 .2  R D
3.6  R D

DD

drops below 3.3V. This hiccup behavior

continues until the short circuit is removed. In this
behavior, the effective duty cycle is very low
resulting in very low short circuit current.
To make sure that the IC enters hiccup mode

DRV1

I LIM

DRV2

800 mA

easily, the transformer should be constructed so
that there is close coupling between secondary and

RD
DRV1

I LIM

400 mA

DRV2

RD
3. 6

auxiliary, so that the auxiliary voltage is low when

 2

the output is short-circuited. This can be achieved
with the primary/auxiliary/secondary sequencing

Figure 4. Driver Output Configurations

from the bobbin.

Pulse Skipping
The PWM/Pulse Skipping Switching Control Logic
block operates in different modes depending on the
output load current level. At light load, the VDD
voltage is around 4.75V. The energy delivered by

6

http://www.sirectsemi.com/atc
FP5101

http://dc205.4shared.com/doc/0nbIa9vj/preview.html

2012-04-22

%

Page 7 of 9

T

E

C

H

N

O

L

O

G

AT30

Y

Application Example

Layout Considerations

The application circuit in Figure 6 provides a

The following should be observed when doing

5V/0.75A constant voltage/constant current output.

layout for the AT30:

An AT30 is used in combination with the TL431 for

1. Use a " star point " connection at the GND pin of

highest efficiency and lowest component count.

AT30 for the VDD bypass components (C5 and C6

To change the constant output voltage V
constant current limit I

OUTCC

and

OUTCV

in Figure 6), the input filter capacitor (C2 in Figure

, modify R7 and R6 as

6) and other ground connections on the primary

following:

side.

R7 = 80k

• [(V

R6 = 250mV/I

OUTCV

-1V)/3.8V - 1]

2. Keep the loop across the input filter capacitor,
the transformer primary windings, and the high

OUTCC

The performance of this circuit is summarized

voltage transistor, and the AT30 as small as

in Table 1.

possible.

Table 1. System Performance of Circuit in Figure 6

3. Keep AT30 pins and the high voltage transistor

110VAC

220VAC

pins as short as possible.

Standby Power

0.09W

0.15W

4. Keep the loop across the secondary windings,

Current Limit

0.75A

0.75A

the output diode, and the output capacitors as small

Full Load Efficiency

65%

67%

as possible.
5. Allow enough copper area under the high voltage
transistor, output diode, and current shunt resistor
for heat sink.

RF1
AC1
10
2W

LF2

D1
D6

5V/0.75A

7uH

85~265VAC

AC2

C4

R4

R2

OUTPUT+

SR260

1000PF

100K

1M

T1

1KV

0.5W

D2

FR107
D3

R3

IN4148

510

+

0.5W
+

C1
4.7uF
400V

+

D4

C2

C7
470uF
+

10V
Q1

4.7uF

C8
680uF
16V

400V

IN4148
R3
IC2

330

+

C3
22uF
25V

R6

R7
13K

3
1

R1

AT30A

200

D5
1N5242B

LF1

12V

+

C5

IC3

C6
10nF

2

R5
2.2K

47K

PC817

C6
10nF

TL431

R8
12K

10uF
6V

820uH

OUTPUT-

Figure 6. A 3.75W Charger Using AT30 in combination with TL431

7

http://www.sirectsemi.com/atc
FP5101

http://dc205.4shared.com/doc/0nbIa9vj/preview.html

2012-04-22

%

Page 8 of 9

T

E

C

H

N

O

L

O

G

AT30

Y

Outline Information

SYMBOL

DIMENSION IN
MILIMETERS

DIMENSION IN
INCHES

SYMBOL

DIMENSION IN
MILIMETERS

DIMENSION IN
INCHES

MIN

MAX

MIN

MAX

MIN

MAX

A

3.300

3.700

0.130

0.146

∆k

-1.0

1.0

-0.039

0.039

A1

1.100

1.400

0.043

0.055

F1,F2

MIN

MAX

0.360

D

4.400

D1

4.300

0.510

3.430

E

0.550

4.700

0.015
0.014
0.173

0.087

0.110

21

0.748

0.827

15.5

16.5

0.610

0.650

L1

c

0.380

2.8

19

H0

b

2.2

H

2.5

0.022
0.020
0.185

0.0098

1.600
0.000

0.380

0.104
0.063

0.000

12.5

12.9

0.492

0.508

3.55

4.15

0.140

0.163

P2

6.05

6.65

0.238

0.262

Q1

3.8

4.2

0.150

0.165

0.35

0.45

0.014

0.018

0.15

0.25

0.006

0.010

17.5

19

0.689

0.748

5.5

6.5

0.217

0.256

W1

h

0.096

0.039

P0

W0

Φ

2.640

0.512

-0.039

W

2.440

0.050TYP

0.488

1.0

P1

0.185

13.0

-1.0

t2

e1

1.270TYP

0.169

12.4

t1

e

4.700

P
∆P

0.135

8.5

9.5

0.335

0.374

0.015

W2

1.0

0.039

8

http://www.sirectsemi.com/atc
FP5101

http://dc205.4shared.com/doc/0nbIa9vj/preview.html

2012-04-22

%

Page 9 of 9

T

E

C

H

N

O

L

O

G

AT30

Y

SYMBOL

DIMENSION IN
MILIMETERS

DIMENSION IN
INCHES

MIN

MAX

MIN

MAX

A

1.050

1.250

0.041

0.049

A1

0.000

0.100

0.000

0.004

A2

1.050

1.150

0.041

0.045

b

0.300

0.400

0.012

0.016

c

0.100

0.200

0.004

0.008

D

2.820

3.020

0.111

0.119

E

1.500

1.700

0.059

0.067

E1

2.650

2.950

0.104

0.116

e
e1
L
L1
θ

0.950TYP
1.800

0.067TYP

2.000

0.700REF
0.300
0

0

0.071

0.079

0.028REF

0.600
8

0

0.012
0

0

0.024
8

0

-End of Specifications-

U.S.A.: atc@sirectsemi.com

China:

hhc@szatc.com.cn

9

http://www.sirectsemi.com/atc

Amaxtronics Technology Corp.

http://dc205.4shared.com/doc/0nbIa9vj/preview.html

FP5101

2012-04-22