ADVERTISEMENT

Yaskawa SGDP SVMON.rar

Yaskawa SGDP SVMON DTR Rs232 Paczka dla serwisanta

Nie wiem gdzie dać to tu wsadzę. Jest to paczka rzeczy od serwonapędów Yaskawa SGDP montowane np: CNC Busellato. W skład paczki wschodzi: Dokumentacja napędów; Schemat przewodu PC - serwo Rs232, Oprogramowanie org z dyskietki SVMON i jak nowa wersja dla win XP + dokumentacja programu. Pozdrawiam


Download file - link to post
  • Yaskawa SGDP SVMON.rar
    • SIGMAWIN LITE 2 xp.ZIP
    • Sigma diagnostyka SGDP DTR.pdf
    • Yaskawa SGDP DTR.pdf
    • SVMON35r4 Program diagnostyka SGDP win nt 95 98.zip
    • Schemat kabla rs232.jpg


Yaskawa SGDP SVMON.rar > Sigma diagnostyka SGDP DTR.pdf


Yaskawa SGDP SVMON.rar > Yaskawa SGDP DTR.pdf

YASKAWA

AC Servomotors and Driver
SGMG/SGMS/SGMD/SGM/SGMP Servomotors
SGDB Servopack

YASKAWA

MANUAL NO. TSE-S800-16E

PREFACE
The rapid progress being made in today’s automation and information
technologies is resulting in a growing need for even more-advanced motion
control for future high-tech equipment. The end result is a need for devices
that can provide more-precise and quicker motion at higher speeds. Servo
control technology makes this possible. Launched by Yaskawa in 1993, the
Σ Series consists of innovative AC Servos that were developed using
leading-edge servo control technology.
This manual covers all products in the Σ Series, which feature superior
functions and performance. This manual was designed to provide
comprehensible information for users who are about to use a servo for the
first time as well as for users who already have experience in using servos.
This manual enables users to understand what Σ-Series AC Servos are all
about and how to design, install, operate, and maintain a servo system.
Keep this manual in a convenient location and refer to it whenever
necessary in operating and maintaining the servo system.

YASKAWA ELECTRIC CORPORATION

General Precautions
S Some drawings in this manual are shown with the protective cover or shields removed, in order to
describe the detail with more clarity. Make sure all covers and shields are replaced before operating this product.
S Some drawings in this manual are shown as typical example and may differ from the shipped
product.
S This manual may be modified when necessary because of improvement of the product, modification or changes in specifications.
Such modification is made as a revision by renewing the manual No.
S To order a copy of this manual, if your copy has been damaged or lost, contact your YASKAWA
representative listed on the last page stating the manual No. on the front cover.
S YASKAWA is not responsible for accidents or damages due to any modification of the product
made by the user since that will void our guarantee.

NOTES FOR SAFE OPERATION
Read this manual thoroughly before installation, operation, maintenance or inspection of the AC Servo
Drives. In this manual, the NOTES FOR SAFE OPERATION are classified as “WARNING” or
“CAUTION”.

WARNING
Indicates a potentially hazardous situation which, if not avoided, could result in death or serious personal injury.

CAUTION
Indicates a potentially hazardous situation which, if not avoided, may result in minor or moderate personal
injury and/or damage to the equipment.

In some instances, items described in .
follow these important items.

− iv −

CAUTION may also result in a serious accident. In either case,

WARNING
(WIRING)
S Grounding must be in accordance with the national code and consistent
with sound local practices.
Failure to observe this warning may lead to electric shock or fire.
(OPERATION)
S Never touch any rotating motor parts during operation.
Failure to observe this warning may result in personal injury.
(INSPECTION AND MAINTENANCE)
S Be sure to turn OFF power before inspection or maintenance.
Otherwise, electric shock may result.
S Never open the terminal cover while power is ON, and never turn ON power when the terminal cover is open.
Otherwise, electric shock may result.
S After turning OFF power, wait at least five minutes before servicing the
product.
Otherwise, residual electric charges may result in electric shock.

CAUTION
(RECEIVING)
S Use the specified combination of servomotor and SERVOPACK.
Failure to observe this caution may lead to fire or failure.
(INSTALLATION)
S Never use the equipment where it may be exposed to splashes of water,
corrosive or flammable gases, or near flammable materials.
Failure to observe this caution may lead to electric shock or fire.
(WIRING)
S Do not connect three−phase power supply to output terminals U V and
W.
Failure to observe this caution may lead to personal injury or fire.
S Securely tighten screws on the power supply and motor output terminals.
Failure to observe this caution can result in a fire.

−v −

CAUTION
(OPERATION)
S To avoid inadvertent accidents, run the servomotor only in test run (without load).
Failure to observe this caution may result in personal injury.
S Before starting operation with a load connected, set up parameters suitable for the machine.
Starting operation without setting up parameters may lead to overrun failure.
S Before starting operation with a load connected, make sure emergencystop procedures are in place.
Failure to observe this caution may result in personal injury.
S During operation, do not touch the heat sink.
Failure to observe this caution may result in burns.
(INSPECTION AND MAINTENANCE)
S Do not disassemble the servomotor.
Failure to observe this caution may result in electric shock or personal injury.
S Never change wiring while power is ON.
Failure to observe this caution may result in electric shock or personal injury.

− vi −

Manual Contents
This manual provides Σ-Series users with information on the following:
• An overview of servo systems for first-time users.
• Checking the product on delivery and basic applications of the servo.
• Servo applications.
• Selecting an appropriate servo for your needs and placing an order.
• Inspection and maintenance.

Manual Structure
All chapters in this manual are classified into one or more of three areas according to their contents: A, B, and
C. Refer to the applicable chapters for the information you require.
A: Chapters explaining how to select a servo: For users who wish to gain a basic understanding of
Σ Series products or who need to select an appropriate servo.
B: Chapters explaining how to design a servo system: For users who are about to design, install, and
operate a Σ-Series Servo Control System.
C: Chapters explaining maintenance: For users who are going to maintain and troubleshoot Σ-Series
products.
Chapter

Title

CHAPTER 1

For First-time Users of AC Servos . . . . . . . . . . . . . . . . . . . . . . .

Page

Area

1 .........

A, B

Basic Uses of Σ-series Products . . . . . . . . . . . . . . . . . . . . . . . . . 15 . . . . . . . . .

B

Provides an overview of servos and the Σ Series.
CHAPTER 2

Describes steps to take when product is received, plus basic
wiring and application methods.
CHAPTER 3

Applications of Σ-series Products . . . . . . . . . . . . . . . . . . . . . . . 51 . . . . . . . . .

B

Describes the effective usage of Σ-Series features according to
application.
CHAPTER 4

Using the Digital Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 . . . . . . . .

B

Describes operating procedures for Σ-Series servos, turning
features ON and OFF, setting control constants, etc.
CHAPTER 5

Servo Selection and Data Sheets . . . . . . . . . . . . . . . . . . . . . . . . 221 . . . . . . . .

A, B

Describes selection methods for Σ-Series servos and peripherals and provides servo specifications.
CHAPTER 6

Inspection, Maintenance, and Troubleshooting . . . . . . . . . . . 499 . . . . . . . .

C

Describes user maintenance and troubleshooting.
APPENDIXES
A Servo Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539 . . . . . . . .

B, C

B List of I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555 . . . . . . . .

B, C

C List of Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561 . . . . . . . .

B, C

D List of Alarm Displays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 569 . . . . . . . .

B, C

INDEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573. . . . . . . . .

A, B, C

− vii −

Basic Terms
Unless otherwise specified, the following definitions are used:
Servomotor:

Σ-Series SGMG/SGMD/SGMS/SGM/SGMP servomotor

SERVOPACK: An amplifier (Trademark of Yaskawa servo amplifier “Σ-Series SGDB-jAD
SERVOPACK”)
Servodrive:

A servomotor and an amplifier (SGDB SERVOPACK)

Servo system: A complete servo control system consisting of servodrive, host controller,
and peripheral devices

Visual Aids
The following aids are used to indicate certain types of information for easier reference.

.
TERMS

Indicates references for additional information.

Technical terms placed in bold in the text are briefly explained in a “TERMS” section at the bottom of the page. The following kinds of technical terms are explained:
Technical terms that need to be explained to users who are not very familiar with
servo systems or electronic devices and technical terms specific to Σ Series Servos that need to be explained in descriptions of functions.
The text indicated by this icon explains the operating procedure using hand-held
type digital operator (Type: JUSP-OP02A-1).

JUSP-OP02A-1

The text indicated by this icon explains the operating procedure using mount type
digital operator (Type: JUSP-OP03A).

NOTE

− viii −

A Σ-Series Servodrive alone cannot ensure the functionality and performance of the entire
machine control system. It must be combined with an appropriate machine and host controller so that the entire control system works properly. Therefore, carefully read the instruction
manuals for the machine to be used before attempting to operate the servodrive.

Yaskawa, 1995
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or
by any means, mechanical, electronic, photocopying, recording, or otherwise, without the prior written permission of Yaskawa. No patent liability is assumed with respect to the use of the information contained herein. Moreover, because Yaskawa
is constantly striving to improve its high-quality products, the information contained in this manual is subject to change
without notice. Every precaution has been taken in the preparation of this manual. Nevertheless, Yaskawa assumes no responsibility for errors or omissions. Neither is any liability assumed for damages resulting from the use of the information
contained in this publication.

− ix −

CONTENTS
CHAPTER 1
1.1
1.2
1.3

FOR FIRST-TIME USERS OF AC SERVOS . . . . . . . . . . . . . . .

1

Servo Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Servo Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features of Σ-Series Servos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.3.1
Servomotor Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.3.2
Control Type of SERVOPACKs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.3.3
How to Use the SGDB SERVOPACKs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2
5
11
11
11
12

CHAPTER 2
2.1
2.2

2.3

2.4

BASIC USES OF Σ-SERIES PRODUCTS . . . . . . . . . . . . . . . . .

15

Precautions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1.1
Notes on Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.1
Checking on Delivery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.2
Servomotors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.3
SERVOPACKs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.4
Installing the Servomotor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.5
Installing the SERVOPACK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Connection and Wiring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3.1
Connecting to Peripheral Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3.2
Main Circuit Wiring and Power ON Sequence . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3.3
Connection to Host Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Conducting a Test Run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4.1
Test Run in Two Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4.2
Step 1: Conducting a Test Run for Motor without Load . . . . . . . . . . . . . . . . . . .
2.4.3
Step 2: Conducting a Test Run with the Motor Connected to the Machine . . . . .
2.4.4
Supplementary Information on Test Run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4.5
Minimum Parameters Required and Input Signals . . . . . . . . . . . . . . . . . . . . . . . .

16
16
18
18
18
22
24
27
30
30
34
36
40
40
42
46
47
49

CHAPTER 3
3.1

3.2

3.3

−x −

APPLICATIONS OF Σ-SERIES PRODUCTS . . . . . . . . . . . . . .

51

Setting Parameters According to Machine Characteristics . . . . . . . . . . . . . . . . . . . . . . . . .
3.1.1
Changing the Direction of Motor Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1.2
Setting the Overtravel Limit Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1.3
Restricting Torque . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Setting Parameters According to Host Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2.1
Inputting Speed Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2.2
Inputting Position Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2.3
Using Encoder Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2.4
Using Contact I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2.5
Using Electronic Gear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2.6
Using Contact Input Speed Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2.7
Using Torque Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2.8
Using Torque Feed-forward Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2.9
Using Torque Restriction by Analog Voltage Reference . . . . . . . . . . . . . . . . . . .
3.2.10 Using the Reference Pulse Inhibit Function (INHIBIT) . . . . . . . . . . . . . . . . . . . .
3.2.11 Using the Reference Pulse Input Filter Selection Function . . . . . . . . . . . . . . . . .
3.2.12 Using the Analog Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Setting Up the Σ SERVOPACK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

54
54
56
59
64
64
68
73
77
79
83
87
94
95
97
98
99
100

CONTENTS

3.4

3.5

3.6

3.7

3.8

3.3.1
Setting Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3.2
Setting the Jog Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3.3
Setting the Number of Encoder Pulses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3.4
Setting the Motor Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3.5
Adjusting the Encoder Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Setting Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.4.1
Adjusting Offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.4.2
Using Dynamic Brake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.4.3
Using Zero-Clamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.4.4
Using Holding Brake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Running the Motor Smoothly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.5.1
Using the Soft Start Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.5.2
Using the Smoothing Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.5.3
Adjusting Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.5.4
Adjusting Offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.5.5
Setting the Torque Reference Filter Time Constant . . . . . . . . . . . . . . . . . . . . . . .
Minimizing Positioning Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.6.1
Using Autotuning Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.6.2
Setting Servo Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.6.3
Using Feed-forward Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.6.4
Using Proportional Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.6.5
Setting Speed Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.6.6
Using Mode Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Forming a Protective Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.7.1
Using Servo Alarm Output and Alarm Code Output . . . . . . . . . . . . . . . . . . . . . .
3.7.2
Using Servo ON Input Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.7.3
Using Positioning Complete Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.7.4
Using Speed Coincidence Output Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.7.5
Using Running Output Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.7.6
Using OL Warning and Alarm Output Signals . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.7.7
Using Servo Ready Output Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.7.8
Handling of Power Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Special Wiring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.8.1
Wiring Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.8.2
Wiring for Noise Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.8.3
Using More Than One Servo Drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.8.4
Using Regenerative Resistor Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.8.5
Using an Absolute Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.8.6
Extending an Encoder Cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.8.7
Using SGDB SERVOPACK with High Voltage Line . . . . . . . . . . . . . . . . . . . . . .
3.8.8
Connector Terminal Layouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CHAPTER 4
4.1

100
101
102
103
104
105
105
106
107
108
113
113
114
114
115
115
117
117
117
119
119
120
121
127
127
130
131
134
136
138
140
141
142
142
144
149
151
152
162
164
166

USING THE DIGITAL OPERATOR . . . . . . . . . . . . . . . . . . . . .

177

Basic Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.1
Connecting the Digital Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.2
Digital Operator Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.3
Resetting Servo Alarms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

178
178
179
180

− xi −

CONTENTS

4.2

4.1.4
Basic Functions and Mode Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.5
Operation in Status Display Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.6
Operation in Parameter Setting Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.7
Operation in Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Using the Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.1
Operation in Alarm Trace-back Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.2
Operation Using the Digital Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.3
Autotuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.4
Reference Offset Automatic Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.5
Reference Offset Manual Adjustment Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.6
Clearing Alarm Trace-back Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.7
Checking Motor Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.8
Checking Software Version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.9
Current Detection Offset Manual Adjustment Mode . . . . . . . . . . . . . . . . . . . . . .

CHAPTER 5
5.1

5.2

5.3

5.4

5.5

5.6

− xii −

181
182
186
191
194
194
197
201
207
210
213
215
216
217

SERVO SELECTION ANDDATA SHEETS . . . . . . . . . . . . . . . .

221

Selecting a Σ-Series Servo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1.1
Selecting a Servomotor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1.2
Selecting a SERVOPACK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1.3
Selecting a Digital Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SGM Servomotor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2.1
Ratings and Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2.2
Mechanical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2.3
Option Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SERVOPACK Ratings and Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.3.1
Combined Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.3.2
Ratings and Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.3.3
Overload Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.3.4
Starting Time and Stopping Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.3.5
Load Inertia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.3.6
Overhanging Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Σ-Series Dimensional Drawings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.4.1
Servomotor Dimensional Drawings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.4.2
SERVOPACK Dimensional Drawings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.4.3
Digital Operator Dimensional Drawings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Selecting Peripheral Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.5.1
Selecting Peripheral Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.5.2
Order List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Specifications and Dimensional Drawings of Peripheral Devices . . . . . . . . . . . . . . . . . . .
5.6.1
Cable Specifications and Peripheral Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.6.2
Motor Cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.6.3
Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.6.4
Brake Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.6.5
Encoder Cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.6.6
Battery for Absolute Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.6.7
1CN Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.6.8
Connector Terminal Block Converter Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

223
223
233
235
237
237
269
272
282
282
285
288
289
290
291
292
292
400
412
414
414
424
442
442
446
447
466
469
480
481
483

CONTENTS
5.6.9
5.6.10
5.6.11
5.6.12
5.6.13
5.6.14
5.6.15
5.6.16
5.6.17

CHAPTER 6
6.1

Cable With 1CN Connector and One End Without Connector . . . . . . . . . . . . . . .
Circuit Breaker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Noise Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Magnetic Contactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Surge Suppressor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Regenerative Resistor Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Variable Resistor for Speed Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Encoder Signal Converter Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Cables for Connecting PC and SERVOPACK . . . . . . . . . . . . . . . . . . . . . . . . . . .

485
486
486
488
490
490
491
492
494

INSPECTION, MAINTENANCE, AND TROUBLESHOOTING . 499

Inspection and Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.1.1
Servomotor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.1.2
SERVOPACK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.1.3
Replacing Battery for Absolute Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.2.1
Troubleshooting Problems with Alarm Display . . . . . . . . . . . . . . . . . . . . . . . . . .
6.2.2
Troubleshooting Problems With No Alarm Display . . . . . . . . . . . . . . . . . . . . . . .
6.2.3
Internal Connection Diagram and Instrument Connection Examples . . . . . . . . .
Servo Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Σ-Series AC SERVOPACK Gain Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A.1.1 Σ-Series AC SERVOPACKs and Gain Adjustment Methods . . . . . . . . . . . . . . . .
A.1.2 Basic Rules for Gain Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Adjusting a Speed-control SERVOPACK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A.2.1 Adjusting Using Auto-tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A.2.2 Manual Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Adjusting a Position-control SERVOPACK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A.3.1 Adjusting Using Auto-tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A.3.2 Manual Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Gain Setting References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A.4.1 Guidelines for Gain Settings According to Load Inertia Ratio . . . . . . . . . . . . . .
List of I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
List of Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
List of Alarm Displays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

500
500
501
502
503
503
529
531
539
540
540
541
542
542
543
546
546
547
551
551
555
561
569

INDEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

573

6.2

A
A.1

A.2

A.3

A.4
B
C
D

− xiii −

FOR FIRST-TIME USERS OF AC
SERVOS

1

This chapter is intended for first-time users of AC servos. It describes the basic configuration of a servo mechanism and basic technical terms relating to
servos.
Users who already have experience in using a servo should also take a look at
this chapter to understand the features of Σ-Series AC Servos.

1.1 Servo Mechanisms . . . . . . . . . . . . . . . . . . . . . . .

2

1.2 Servo Configuration . . . . . . . . . . . . . . . . . . . . .

5

1.3 Features of Σ-Series Servos . . . . . . . . . . . . . . . .

11

1.3.1 Servomotor Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.3.2 Control Type of SERVOPACKs . . . . . . . . . . . . . . . . . . . . . . .
1.3.3 How to Use the SGDB SERVOPACKs . . . . . . . . . . . . . . . . .

11
11
12

1

1

FOR FIRST-TIME USERS OF AC SERVOS

1.1

Servo Mechanisms

You may be familiar with the following terms:
• Servo

1

• Servo mechanism
• Servo control system
In fact, these terms are synonymous. They have the following meaning:
A control mechanism that monitors physical quantities such as specified positions.
In short, a servo mechanism is like a servant who does tasks faithfully and quickly according
to his master’s instructions. In fact, “servo” originally derives from the word “servant.”

TERMS

Servo mechanism
According to Japanese Industrial Standard (JIS) terminology, a “servo mechanism” is defined as a mechanism that uses the position, direction, or orientation of an object as a process variable to control a system to follow any changes in a target value (set point).
More simply, a servo mechanism is a control mechanism that monitors physical quantities
such as specified positions. Feedback control is normally performed by a servo mechanism. (Source: JIS B0181)

2

1.1 Servo Mechanisms

Servo system could be defined in more detail as a mechanism that:
• Moves at a specified speed and
• Locates an object in a specified position
To develop such a servo system, an automatic control system involving feedback control
must be designed. This automatic control system can be illustrated in the following block diagram:
Configuration of Servo System
Specified position
input

Servo
amplifier

Servo
motor

Controlled
machine
(load)

Machine position
output

Feedback part
Detector

This servo system is an automatic control system that detects the machine position (output
data), feeds back the data to the input side, compares it with the specified position (input
data), and moves the machine by the difference between the compared data.
In other words, the servo system is a system to control the output data to match the
specified input data.
If, for example, the specified position changes, the servo system will reflect the changes.
In the above example, input data is defined as a position, but input data can be any physical
quantities such as orientation (angle), water pressure, or voltage.
Position, speed, force (torque), electric current, and so on are typical controlled values for a
servo system.
The main technical terms used in this manual are as follows:
1) Servo mechanism
2) Servo
Normally, servo is synonymous with servo mechanism. However, because “mechanism” is
omitted, the meaning becomes somewhat ambiguous. Servo may refer to the entire servo
mechanism but may also refer to an integral part of a servo mechanism such as a servomotor
or a servo amplifier. This manual also follows this convention in the use of the term “servo”.

TERMS

Feedback control
A control that returns process variables to the input side and forms a closed loop. It is also
called closed-loop control.

3

1

FOR FIRST-TIME USERS OF AC SERVOS

3) Servo control system
Servo control system is almost synonymous with servo mechanism but places the focus on
system control. In this manual, the term “servo system” is also used as a synonym of servo
control system.
Related Terms

Meaning

Servomotor

SERVOPACK

1

General servomotors or Yaskawa SGMj servomotors. In
some cases, a position detector (encoder) is included in a
servomotor.
Trademark of Yaskawa servo amplifier “SGDB
SERVOPACK.”
A servomotor and amplifier pair. Also called “servo.”

Servo drive
Servo system

A closed control system consisting of a host controller,
servo drive and controlled system to form a servo
mechanism.

Host controller

Reference
Amplifier
(SERVOPACK)

Servomotor

Operate

Servo drive

Servo system

4

Controlled
system

1.2 Servo Configuration

1.2

Servo Configuration
The following diagram illustrates a servo system in detail:

1

Host controller

(5)
Position or
speed
reference
Servo amplifier
Comparator Power
amplifier

(4)
(Output)
Motor
drive
circuit

(Input)

Gear
Position or
speed
feedback

(3) (2)
Detector servomotor

Position
Speed

(1)

Controlled
system

Movable
table

Ball screw

Drive system

(1) Controlled system:

Mechanical system for which the position or speed is to be controlled.
This includes a drive system that transmits torque from a servomotor.

(2) Servomotor:

A main actuator that moves a controlled system. Two types are
available: AC servomotor and DC servomotor.

(3) Detector:

A position or speed detector. Normally, an encoder mounted on
a motor is used as a position detector.

(4) Servo amplifier:

An amplifier that processes an error signal to correct the difference between a reference and feedback data and operates the
servomotor accordingly. A servo amplifier consists of a
comparator, which processes error signals, and a power amplifier, which operates the servomotor.

(5) Host controller:

A device that controls a servo amplifier by specifying a position
or speed as a set point.

5

FOR FIRST-TIME USERS OF AC SERVOS

Servo components (1) to (5) are outlined below:
(1) Controlled system
In the previous figure, the controlled system is a movable table for which the position
or speed is controlled. The movable table is driven by a ball screw and is connected to
the servomotor via gears.
So, the drive system consists of:

1

Gears + Ball Screw
This drive system is most commonly used because the power transmission ratio
(gear ratio) can be freely set to ensure high positioning accuracy. However, play in the
gears must be minimized.
The following drive system is also possible when the controlled system is a movable
table:
Coupling + Ball Screw
When the power transmission ratio is 1 :
1, a coupling is useful because it has no
play.

Rolling-contact
guide
Coupling

Ball screw

This drive system is widely used for machining tools.

Rolling-contact
bearing

Housing

Timing Belt + Trapezoidal Screw Thread
A timing belt is a coupling device that allows
the power transmission ratio to be set freely
and that has no play.
Trapezoidal
screw
thread

A trapezoidal screw thread does not provide
excellent positioning accuracy, so can be
treated as a minor coupling device.
Servomotor

Timing belt

To develop an excellent servo system, it is important to select a rigid drive system that
has no play.
Configure the controlled system by using an appropriate drive system for the control
purpose.

TERMS

Drive system
Also called a drive mechanism.
A drive system connects an actuator (such as a servomotor) to a controlled system and
serves as a mechanical control component that transmits torque to the controlled system,
orientates the controlled system, and converts motion from rotation to linear motion and
vice versa.

6

1.2 Servo Configuration

(2) Servomotor
(a) DC servomotor and AC servomotor
Servomotors are divided into two types: DC servomotors and AC servomotors.
DC servomotors are driven by direct current (DC). They have a long history. Up
until the 1980s, the term “servomotor” used to imply a DC servomotor.
From 1984, AC servomotors were emerging as a result of rapid progress in microprocessor technology. Driven by alternating current (AC), AC servomotors are
now widely used because of the following advantages:
• Easy maintenance:

No brush

• High speed:

No limitation in rectification rate

Note however that servomotors and SERVOPACKs use some parts that are subject to mechanical wear or aging. For preventive maintenance, inspect and replace parts at regular intervals.
For details, refer to Chapter 6 Inspection, Maintenance, and Troubleshooting.
(b) AC servomotor
AC servomotors are divided into two types: synchronous type and induction type.
The synchronous type is more commonly used.
For a synchronous type servomotor, motor speed is controlled by changing the
frequency of alternating current.
A synchronous type servomotor provides strong holding torque when stopped, so
this type is ideal when precise positioning is required. Use this type for a servo
mechanism for position control.
The following figure illustrates the structure of a synchronous type servomotor:
Light-receiving
Rotary disc element
Armature Housing
Front cap
wire
Light-emitting
Stator core
element
Ball bearing

Shaft
Rotor core
Position detector
(encoder)

Magnet
Lead wire

Yaskawa SGMj servomotors are of the synchronous type.

7

1

FOR FIRST-TIME USERS OF AC SERVOS

(c) Performance of servomotor
A servomotor must have “instantaneous power” so that it can start as soon as a
start reference is received.
The term “power rating (kW/s)” is used to represent instantaneous power.
It refers to the electric power (kW) that a servomotor generates per second.
The greater the power rating, the more powerful the servomotor.

1

(3) Detector
A servo system requires a position or speed detector. It uses an encoder mounted on
a servomotor for this purpose.
Encoders are divided into the following two types:
(a) Incremental Encoder
An incremental encoder is a pulse generator, which generates a certain number
of pulses per revolution (e.g., 2,000 pulses per revolution). If this encoder is connected to the mechanical system and one pulse is defined as a certain length
(e.g., 0.001 mm), it can be used as a position detector.
However, this encoder does not detect an absolute position and merely outputs a
pulse train. Zero point return operation must be performed before positioning.
The following figure illustrates the operation principle of a pulse generator:

Phase A

Phase A pulse train

Phase B

Phase B pulse train

Phase Z
Slit
Center of
revolution

Fixed slit

Rotary
disc

Light-emitting
element

Light-receiving
element

Rotary slit

(b) Absolute encoder
An absolute encoder is designed to detect an absolute angle of rotation as well as
to perform the general functions of an incremental encoder. With an absolute encoder, therefore, it is possible to create a system that does not require zero point
return operation at the beginning of each operation.
• Difference between an absolute and incremental encoder:
An absolute encoder will keep track of the motor shaft position even if system
power is lost and some motion occurs during that period of time. The incremental
encoder is incapable of the above.

8

1.2 Servo Configuration

(4) Servo amplifier
A servo amplifier is required to operate an AC servomotor.
The following figure illustrates the configuration of a servo amplifier:
Servo amplifier

Comparator

Power
amplifier

1

Motor driving AC power

Reference
input

Feedback

Servomotor
Commercial AC power

A servo amplifier consists of the following two sections:
(a) Comparator
A comparator consists of a comparison function and a control function. The comparison function compares reference input (position or speed) with a feedback
signal and generates a differential signal.
The control function amplifies and transforms the differential signal. In other
words, it performs proportional (P) control or proportional/integral (PI) control.
(It is not important if you do not understand these control terms completely at this
point.)
(b) Power amplifier
A power amplifier runs the servomotor at a speed or torque proportional to the
output of the comparator. In other words, from the commercial power supply of
50/60 Hz, it generates alternating current with a frequency proportional to the reference speed and runs the servomotor with this current.

TERMS

Proportional/integral (PI) control
PI control provides more accurate position or speed control than proportional control, which
is more commonly used.

9

FOR FIRST-TIME USERS OF AC SERVOS

(5) Host controller
A host controller controls a servo amplifier by specifying a position or speed as a set
point.
For speed reference, a position control loop may be formed in the host controller when
a position feedback signal is received. Yaskawa MP920 is a typical host controller.

1

TERMS

MP920
A machine controller. If combined with a servo amplifier
for speed control (maximum 44 axes control), the MP920
can provide position control.
The MP920 also provides programmable controller functions.

10

1.3 Features of Σ-Series Servos

1.3

Features of Σ-Series Servos
This section describes the features of Σ-Series servos.

1.3.1 Servomotor Type
Σ-Series SGMj servomotors are synchronous type servomotors and have the following
features:
Rated rotation speed
Rated output
Maximum rotation speed
SGMG

1500 r/min
3000 r/min

0.45 to 15 kW
(10 models)

1000 r/min
2000 r/min

0.3 to 6.0 kW
(8 models)

SGMS

3000 r/min
4500 r/min

1.0 to 5.0 kW
(6 models)

SGMD

2000 r/min
3000 r/min

2.2 to 4.0 kW
(3 models)

SGM

3000 r/min
4500 r/min

0.4 to 0.8 kW
(2 models)

SGMP

3000 r/min
4500 r/min

0.4 to 1.5 kW
(3 models)

SGMG type

SGMP type

1.3.2 Control Type of SERVOPACKs
SGDB model SERVOPACKs allow the control of speed, position and torque.
• Speed control (analog reference)
Accepts an analog voltage speed reference.
• Speed control (contact reference)
There are 3 internally set speeds. One of
these is selected as a reference by a contact.
• Position control (pulse reference)

SGDB SERVOPACK

Accepts a pulse train position reference
• Torque control (analog reference)
Accepts an analog voltage torque reference

11

1

FOR FIRST-TIME USERS OF AC SERVOS
1.3.3 How to Use the SGDB SERVOPACKs

1.3.3 How to Use the SGDB SERVOPACKs
J Using SERVOPACK for Speed Control
The most common use of a SERVOPACK for speed control is shown below:
Host controller

1

Position reference +
Position control loop

Position
feedback

Speed
reference

(Analog
voltage)

SERVOPACK
(speed control mode)
Power
amplifier
Servomotor
Torque
(current)
feedback

Position
Speed
Convert
Pulse train
Position feedback

Encoder

As shown in the above figure, a position control loop is formed in the host controller. The
host controller compares a position reference with a position feedback signal and sends
the processed result to the SERVOPACK as a speed reference.
In this way the host controller can be freed from performing the servo mechanism control.
The SERVOPACK undertakes the speed control loop and subsequent control processing.
The Yaskawa programmable machine controller MP920 is used as a typical host controller.

12

1.3 Features of Σ-Series Servos

J Using SERVOPACK for Torque Control
SERVOPACK for torque control can be used as shown below:
Host controller
Position
monitoring

1
Position
information Torque
reference

SERVOPACK
(torque control mode)
Power
amplifier
Servomotor

(Analog
voltage)

Torque
(current)
feedback
Pulse train
Position feedback

Encoder

The host controller outputs a torque reference to control the SERVOPACK. It also receives a pulse train (position information) from the SERVOPACK and uses it to monitor
the position.
J Using SERVOPACK for Position Control
SERVOPACK for position control can be used as shown below:
Host controller
Position
monitoring

Position
reference
Position
information

SERVOPACK
(position control mode)
Power
amplifier
Servomotor

Pulse
train
Speed/current loop
Pulse train
Position feedback

Encoder

13

FOR FIRST-TIME USERS OF AC SERVOS
1.3.3 How to Use the SGDB SERVOPACKs cont.

The host controller can send a position reference (pulse train) to the SERVOPACK to perform positioning or interpolation.
This type of SERVOPACK contains a position control loop.
Parameters can be used to select either of the following pulse trains:
(1) Code and pulse train

1

(2) Two-phase pulse train with 90° phase difference
(3) Forward and reverse pulse trains
The host controller receives a pulse train (position information) from the SERVOPACK
and uses it to monitor the position.
J Setting Parameters
A Digital Operator can be used to set parameters for a SERVOPACK as follows:
• Setting parameters to enable or disable each function
• Setting parameters required for functions to be used
Set parameters according to the servo system to be set up.

14

BASIC USES OF Σ-SERIES
PRODUCTS

2
2

This chapter describes the first things to do when Σ-Series products are delivered. It also explains the most fundamental ways of connecting and operating
Σ-Series products. Both first-time and experienced servo users must read
this chapter.

2.1 Precautions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1.1 Notes on Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.2 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.1
2.2.2
2.2.3
2.2.4
2.2.5

Checking on Delivery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Servomotors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SERVOPACKs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Installing the Servomotor . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Installing the SERVOPACK . . . . . . . . . . . . . . . . . . . . . . . . . .

2.3 Connection and Wiring . . . . . . . . . . . . . . . . . . .
2.3.1 Connecting to Peripheral Devices . . . . . . . . . . . . . . . . . . . . .
2.3.2 Main Circuit Wiring and Power ON Sequence . . . . . . . . . . . .
2.3.3 Connection to Host Controller . . . . . . . . . . . . . . . . . . . . . . . .

2.4 Conducting a Test Run . . . . . . . . . . . . . . . . . . .
2.4.1 Test Run in Two Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4.2 Step 1: Conducting a Test Run for Motor without Load . . . .
2.4.3 Step 2: Conducting a Test Run with the Motor Connected to the
Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4.4 Supplementary Information on Test Run . . . . . . . . . . . . . . . .
2.4.5 Minimum Parameters Required and Input Signals . . . . . . . . .

16
16

18
18
18
22
24
27

30
30
34
36

40
40
42
46
47
49

15

BASIC USES OF Σ-SERIES PRODUCTS
2.1.1 Notes on Use

2.1

Precautions
This section provides notes on using Σ-Series products.

2.1.1 Notes on Use
NOTE

2

Always note the following to ensure safe use.
Use 200VAC power supply
Be sure to use the correct type. Do not plug the
servomotor directly into the power frequency supply (Direct connection to the power frequency
supply will damage the servomotor.)

Direct
connection
200VAC
power supply

Damage will result!

Always use the SGMj servomotor and SGDB SERVOPACK in pairs.
Check whether the combination of applicable motor series of SERVOPACK and of SGMj ( motor
series) is correct or not. Check the setting of parameter Cn-2A (motor selection) and always after
changing its combination. The motor may get
damaged if the combination is not correct.

Recheck the setting
of parameter Cn-2A
(motor selection) after
changing its combination.
Refer to Section 3.3.4.

Do not change wiring when power is ON.
Always turn the power OFF before connecting or
disconnecting a connector.
(Except for Digital Operator (Types: JUSPOP02A-1, JUSP-OP03A))

OFF

(POWER and
CHARGE lamp)
Always turn the power
OFF before connecting or disconnecting a
connector.

Note that residual voltage still remains in the SERVOPACK even after the power is
turned OFF.
Even after the power is turned OFF, residual electric charge still remains in the capacitor inside the
SERVOPACK. To prevent an electric shock, always wait for the CHARGE lamp to go OFF before
starting inspection (if necessary).

16

CHARGE lamp

2.1 Precautions

Always follow the specified installation method.

Provide sufficient clearance

The SERVOPACK generates heat. Install the
SERVOPACK so that it can radiate heat freely.
Note also that the SERVOPACK must be in an environment free from condensation, vibration and
shock.

10 mm
or
more

50 mm
or
more

Ambient
temperature:
0 to 55°C

Perform noise reduction and grounding properly.
If the signal line is noisy, vibration or malfunction
will result.

Casing
SERVOPACK
Signal
line

D Separate high-voltage cables from low-voltage cables.
D Use cables as short as possible.
D Ground the SERVOPACK ground terminal with the
resistance 100Ω or less for the servomotor and
SERVOPACK.
D Never use a line filter for the power supply in the
motor circuit.

Servomotor

2
100 Ω or less

Conduct a voltage resistance test under the following conditions.
D
D
D
D

Voltage: 1500 Vrms AC, one minute
Current limit: 100 mA
Frequency: 50/60 Hz
Voltage application points: Between r, t, R, S, T
terminals and frame ground (connect terminals
securely).

Conduct a voltage
resistance test
under the conditions given on the
left.

Use a fast-response type ground-fault interrupter.
For a ground-fault interrupter, always use a fastresponse type or one designed for PWM inverters. Do not use a time-delay type.

Ground-fault interrupter

GOOD

GOOD

POOR

Fast-response
type

For PWM
inverter

Time-delay
type

Do not perform continuous operation under overhanging load.
Continuous operation cannot be performed by rotating the motor from the load and applying regenerative braking. Regenerative braking by the
SERVOPACK can be applied only for a short period, such as the motor deceleration time.

Servomotor

Do not apply regenerative
braking continuously.

The servomotor cannot be operated by turning the power ON and OFF.
Frequently turning the power ON and OFF causes
the internal circuit elements to deteriorate. Always
start or stop the servomotor by using reference
pulses.

SERVOPACK

Power
supply
Do not start or stop by
turning power ON and OFF.

17

BASIC USES OF Σ-SERIES PRODUCTS
2.2.2 Servomotors

2.2

Installation

This section describes how to check Σ-Series products on delivery and how to install them.

2.2.1 Checking on Delivery
When Σ-Series products are delivered, check the following items:

2

Remarks

Check Items

Check if the delivered products are Check the types marked on the nameplates of
the ones you ordered.
servomotor and SERVOPACK (see the table below).
Check if the motor shaft rotates
smoothly.

If the motor shaft is smoothly turned by hand, it is
normal. However, if the motor has brakes, it cannot be
turned manually.

Check for damage.

Check the overall appearance, and check for damage
or scratches resulting from transportation.

Check screws for looseness.

Check for looseness by using a screwdriver as
necessary.

If any of the above items are faulty or incorrect, contact the dealer from which you purchased the products or your nearest local sales representative.

2.2.2 Servomotors
J External Appearance and Nameplate Examples
Rated output
Servomotor model

Σ-II Series Servomotor

Serial number
Manufacturing date
Rated motor speed

18

2.2 Installation

J Model Numbers
Standard Servomotors

SGM S − 10 A 6 A j j
Option specifications

Σ Series servomotor

B:
C:
S:
F:
G:

Series name of products
G: SGMS
S: SGMS
D: SGMD

Motor capacity
(See the following table.)

90 VDC Brake
24 VDC Brake
Oil seal
90 VDC Brake Oil seal
24 VDC Brake Oil seal

Shaft Specifications
A: Standard (straight without key,
with option specification)
B: Straight with key,
shaft end tap (one place)
C: Taper 1/10, with parallel key
D: Taper 1/10, with semicircle key
(For G series 05, 09 type only)

Standard
A: YASKAWA Standard

2

Rated rotation speed

Encoder specifications
(See the following table.)

A: SGMG 1500 min−1
SGMS 3000 min−1
SGMD 2000 min−1
B SGMG 1000 min−1

Servomotor Capacity (kW)
Symbol
y

03
05
06
09
10
12
13
15
20
22

SGMG
SGMS
1500 min−1 1000 min−1 3000 min−1


0.45

0.85


1.3

1.8


0.3

0.6
0.9

1.2


2.0


SGMD
2000 min−1

Symbol
y










2.2

30
32
40
44
50
55
60
75
1A
1E





1.0


1.5
2.0


SGMG
SGMS
SGMD
1500 min−1 1000 min−1 3000 min−1 2000 min−1

2.9


4.4

5.5

7.5
11
15

3.0


4.4


6.0




3.0

4.0

5.0







3.2
4.0








Encoder Specifications
Code
2
6
W
S

NOTE

Specification
8192 P/R incremental
4096 P/R incremental
12-bit absolute
15-bit absolute

SGMG
Optional
Standard
Optional
Optional

SGMS
Standard
Optional
Optional
Optional

SGMD
Optional
Optional
Standard
Optional

Refer to Section 5.1.1 Selecting a Servomotor for the SGMP-15A type.

19

BASIC USES OF Σ-SERIES PRODUCTS
2.2.2 Servomotorscont.

Servomotors with Gears

SGM G − 05 A 2 A S A R j
Σ-Series servomotor

Brake specifications
Blank: Without brake
B: With 90 VDC brake
C: With 24 VDC brake

Series name
G: SGMG
S: SGMS

Shaft specifications
(See the following table.)

Motor capacity
(See the following table.)

Gear ratio
(See the following table.)

Standard
A: YASKAWA Standard

2

Gear type (See the following table.)
Encoder specifications
(See the following table.)
Rated rotation speed
A: SGMG 1500 min−1
SGMS 3000 min−1
B: SGMG 1000 min−1

Motor Capacity (kW)
Symbol
y

03
05
06
09
10
12
13
15
20

SGMG
1500 min−1
1000 min−1


0.45

0.85


1.3

1.8

0.3

0.6
0.9

1.2


2.0

SGMS
3000 min−1

Symbol
y





1.0


1.5
2.0

30
40
44
50
55
60
75
1A


SGMG
1500 min−1
1000 min−1

2.9

4.4

5.5

7.5
11


3.0

4.4


6.0




SGMS
3000 min−1

3.0
4.0

5.0






Encoder Specifications
Code
2
6
W
S

Specification
8192 P/R incremental
4096 P/R incremental
12-bit absolute
15-bit absolute

SGMG
Optional
Standard
Optional
Optional

SGMS
Standard
Optional
Optional
Optional

Specification

SGMG

SGMS

Gear Type
Code
S

Standard

Flange

Standard

L

20

With foot

T

IMT planetary low-backlash gear

Standard

Standard

2.2 Installation

Gear Ratio (Varies with Gear Type.)
Code

Specification

SGMG

SGMS

A

S, T*

1/11

S, T

C

1/21

S, T

1

1/5

L

L

2

1/9

L

L

5

1/20

7

1/29 or 1/33

8
*

1/6

B

1/45

L*

L

L, S, T*

L*

L*

L*

Not all applicable models available.

2

Shaft Specifications (Varies with Gear Type.)
Code

Specification

K

Straight, with key

R

Straight, with key and tap

SGMG

SGMS

L

L

S, T

21

BASIC USES OF Σ-SERIES PRODUCTS
2.2.3 SERVOPACKs

2.2.3 SERVOPACKs
J External Appearance and Nameplate Examples
SERVOPACK model

2

Serial number
Σ-Series SGDB
SERVOPACK

Applicable power supply

J Model Numbers

SGDB − 10 A D S −j
Σ-Series
SGDB SERVOPACK
Motor capacity
(See the following table.)
Voltage
A: 200 V

Model
D: torque, speed, position control

Applicable motor series
G: SGMG (1500 min−1)
M: SGMG (1000 min−1)
S: SGMS
D: SGMD
P: SGMP
Blank: SGM

Option specifications
P: Duct ventilation type

22

Output
power

2.2 Installation

Motor Capacity (kW)
Maximum Applicable
Servomotor Capacity
Symbol

Capacity

Maximum Applicable
Servomotor Capacity
Symbol

Capacity

03

0.3

44

4.4

05

0.50

50

5.0

07

0.7

60

6.0

10

1.0

75

7.5

15

1.5

1A

11

20

2.0

1E

15

30

3.0





2

23

BASIC USES OF Σ-SERIES PRODUCTS
2.2.4 Installing the Servomotor

2.2.4 Installing the Servomotor
Servomotor SGMj type can be installed either horizontally or vertically. However, if the servomotor is installed incorrectly or in an inappropriate location, the service life will be shortened or unexpected problems will occur. To prevent this, always observe the installation
instructions described below.
When using the models with an oil seal, installing the motor with the output shaft up may
cause oil to enter the motor depending on the operating conditions. Check the operating
conditions.
Before installation:
Anticorrosive paint is coated on the edge of the motor shaft to prevent it from rusting during storage. Clean off the anticorrosive paint thoroughly using a cloth before installing the
motor.

2

Anticorrosive paint is
coated here

NOTE

Avoid getting thinner on other parts of the servomotor when cleaning the shaft.
Storage:
When the servomotor is to be stored with the power cable disconnected, store it in the
following temperature range:
Between −20°C and 60°C

24

2.2 Installation

Installation sites:
The servomotor SGMj type is designed for indoor use.
Install servomotor in an environment which meets the following conditions:
a) Free from corrosive and explosive gases
b) Well-ventilated and free from dust and moisture
c) Ambient temperature of 0 to 40°C
d) Relative humidity of 20% to 80% (non-condensing)
e) Inspection and cleaning can be performed easily
If the servomotor is used in a location subject to water or oil mist, the motor can be protected by taking necessary precautions on the motor side. However, if the shaft opening
is to be sealed, specify the motor with oil seal. Install with the electrical connector facing
downward.
Alignment:
Align the shaft of the servomotor with that of the equipment to be controlled, then connect
the shafts with couplings. Install the servomotor so that alignment accuracy falls within
the range shown below.
Measure this distance at four different positions in the circumference. The
difference between the maximum and minimum measurements must be
0.03 mm or less. (Turn together with couplings)

Measure this distance at four different positions in the
circumference. The difference between the maximum and minimum
measurements must be 0.03 mm or less. (Turn together with
couplings)

NOTE

TERMS

If the shafts are not aligned properly, vibration will occur, resulting in damage to the bearings.
When using a pinion gear mounted directly to the motor output shaft, contact your YASKAWA
representative.

Shaft opening

Shaft
opening

Refers to the space where the shaft comes out from the motor.

25

2

BASIC USES OF Σ-SERIES PRODUCTS
2.2.4 Installing the Servomotor cont.

A precision detector (encoder) is mounted on the opposite-drive end of the servomotor.
To mount a coupling, always protect the shaft from impacts that could damage the detector.
Perform a mechanical design so that thrust load and radial load applied to the servomotor shaft end falls within the range given in the following table.

Motor Type
SGMG-05AjA
-09AjA
-13AjA
-20AjA
-30AjA
-44AjA
-55AjA
-75AjA
-1AAjA
-1EAjA
SGMG-03AjB
-06AjB
-09AjB
-12AjB
-20AjB
-30AjB
-44AjB
-60AjB
SGMS-10A
-15A
-20A
-30A
-40A
-50A
SGMD-22A
-32A
-40A
SGMP-15A

2

Allowable
Radial Load
Fr [N(lb)]
490 (110)
490 (110)
686 (154)
1176 (265)
1470 (331)
1470 (331)
1764 (397)
1764 (397)
1764 (397)
4998 (1125)
490 (110)
490 (110)
686 (154)
1176 (265)
1470 (331)
1470 (331)
1764 (397)
1764 (397)
686 (154)
686 (154)
686 (154)
980 (221)
1176 (265)
1176 (265)
1176 (265)
1176 (265)
1176 (265)
490 (110)

Allowable
Thrust
Load Fs
[N(lb)]
98 (22)
98 (22)
343 (77)
490 (110)
490 (110)
490 (110)
588 (132)
588 (132)
588 (132)
2156 (485)
98 (22)
98 (22)
343 (77)
490 (110)
490 (110)
490 (110)
588 (132)
588 (132)
196 (44)
196 (44)
196 (44)
392 (88)
392 (88)
392 (88)
490 (110)
490 (110)
490 (110)
147 (33)

LR
[mm(in.)]

Reference Drawing

58 (
(2.28)
)

79 (3.11)
(
)

113 (4.45)
(
)
116 (4.57)
116 (4.57)
58 (
(2.28)
)

79 (3.11)
(
)

113 (4.45)
(
)
45 (
(1.77)
)

63 (
(2.48)
)

55 (
(2.17)
)
65 (2.56)
35 (1.38)

Note Allowable radial loads shown above are the maximum values that could be applied to the shaft end.

TERMS

Thrust load and radial load
1. Thrust load: Shaft-end load applied parallel to the
centerline of a shaft
2. Radial load: Shaft-end load applied perpendicular to
the centerline of a shaft

26

2.
Motor

1.
Shaft end

2.2 Installation

2.2.5 Installing the SERVOPACK
Σ-Series SGDB SERVOPACK is a base-mount type
servo controller.
Incorrect installation will cause problems. Always observe the installation instructions described below.
Storage:
When the SERVOPACK is to be stored with the
power cable disconnected, store it in the following
temperature range:

SGDB SERVOPACK

2

Between −20°C and 85°C
Installation sites:

Situation
When installed in a control panel

When installed near a heating
unit

Notes on Installation
Design the control panel size, unit layout, and cooling
method so that the temperature around the periphery of
the SERVOPACK does not exceed 55°C.
Suppress radiation heat from the heating unit and a
temperature rise caused by convection so that the
temperature around the periphery of the SERVOPACK
does not exceed 55°C.

When installed near a source of
vibration

Install a vibration isolator underneath the SERVOPACK
to prevent it from receiving vibration.

When installed in a place
receiving corrosive gases

Corrosive gases do not immediately affect the
SERVOPACK but will eventually cause contactor-related
devices to malfunction. Take appropriate action to
prevent corrosive gases.

Others

Avoid installation in a hot and humid place or where
excessive dust or iron powder is present in the air.

Orientation:
Install the SERVOPACK perpendicular to the wall
as shown in the figure.
The SERVOPACK must be orientated as shown
in the figure.
• Firmly secure the SERVOPACK through four
mounting holes.

Ventilation

27

BASIC USES OF Σ-SERIES PRODUCTS
2.2.5 Installing the SERVOPACK cont.

Installation method:
When installing multiple SERVOPACKs side by side in a control panel, observe the following installation method:

Fan

Fan

50 mm or more

Fan

2

30 mm or more

10 mm or more

50 mm or more

a) Install SERVOPACK perpendicular to the wall so that the front panel (digital operator
mounted face) faces outward.
b) Provide sufficient space around each SERVOPACK to allow cooling by fan and natural convection.
c) When installing SERVOPACKs side by side, provide at least 10 mm space between
them and at least 50 mm space above and below them as shown in the figure above.
Install cooling fans above the SERVOPACKs to prevent the temperature around each
SERVOPACK from increasing excessively and also to maintain the temperature inside the control panel evenly.
d) Maintain the following conditions inside the control panel:
• Ambient temperature for SERVOPACK: 0 to 55°C
• Humidity: 90%RH or less
• Vibration: 4.9 m/s2
• Condensation and freezing: None
• Ambient temperature to ensure long-term reliability: 45°C or less

28

2.2 Installation

Power loss
Power loss of SERVOPACK is given below:
Power loss for rated output

SERVOPACK
type

Output
current
(RMS value)
A

Power loss
in main
circuit

Power loss
of
regenerative
resistor W

Power loss
in control
circuit
W

SGDB-03ADj
SGDB-05ADj
SGDB-07ADj
SGDB-10ADj
SGDB-15ADj
SGDB-20ADj
SGDB-30ADj
SGDB-44ADj
SGDB-50ADj
SGDB-60ADj
SGDB-75ADj
SGDB-1AADj
SGDB-1EADj

3.0
3.8
5.7
7.6
11.6
18.5
24.8
32.9
28.2
46.9
54.7
58.6
78.0

18
27
41
55
80
120
170
250
260
290
330
360
490

30

20

W

60

-

22
24
27
30

Power loss
in total
W
68
77
91
105
130
170
222
334
344
317
357
390
520

2

Note a) Power loss of regenerative resistor is allowable loss. If the loss exceeds the
allowable loss, the regenerative resistor inside the SERVOPACK should be
removed and connected externally. Because the model in which the regenerative resistor is externally connected falls into non-standard specification categories, contact YASKAWA for further information.
For this non-standard type, “Y8” is appended to the end of the standard model
number.
b) For SGDB-60AD to 1EADj models, the regenerative resistor is placed separately. The regenerative resistor unit provided from YASKAWA is described in
Section 3.8.4 Using Regenerative Resistor Units. Its power loss for
SGDB-60ADj is 180W (type: JUSP-RA04), and for SGDB-75ADj and
-1EADj is 350W(type: JUSP-RA05).

29

BASIC USES OF Σ-SERIES PRODUCTS
2.3.1 Connecting to Peripheral Devices

2.3

Connection and Wiring

This section describes how to connect Σ-Series products to peripheral devices and explains a
typical example of wiring the main circuit. It also describes an example of connecting to main
host controllers.

2.3.1 Connecting to Peripheral Devices
This section shows a standard example of connecting Σ-Series products to peripheral devices and briefly explains how to connect to each peripheral device.

2

30

2.3 Connection and Wiring

Host controller
SERVOPACK is compatible with most P.L.C.
motion controllers and indexers.

Connector terminal block conversion unit
1CN connector kit
Cable with 1CN connector and
one end without connector

See next page

Power supply
3 phase 200 VAC

Molded-case circuit
breaker (MCCB)

MP920
Digital Operator
Allows the user to set parameters or operation
references and display operation status or
alarm status. The following two types are
available in addition to personal computers:

Used to protect
power supply
line. Shuts the
circuit off if
overcurrent is
detected.

2

Molded-case
circuit breaker
Noise filter
Used to eliminate external
noise from power supply
line.

Mount type (JUSP-OP03A)
This type can be mounted
directly on the SERVOPACK.

Types:
LF-350
LF-315
LF-320

Hand-held type
(JUSP-OP02A-1)
1-meter(3.3ft.)
cable included

LF-380K

Noise filter

Personal computer

Magnetic contactor
Turns the servo
ON or OFF.
Use a surge
suppressor for
the magnetic
contactor.

Magnetic
contactor
Magnetic
contactor

Brake power supply
Types:
LPSE-2H01 (for 200 V input)
LPDE-1H01 (for 100 V input)

Used for
servomotor
with brake.

Connecting cable type:
DE9405258

Cable for PG
Connector for
PG
See next page

Power
ground

Brake
power supply
Regenerative resistor
(option)

Regenerative resistor unit
If the capacity of the regenerative resistor
is insufficient, remove the internal resistor
(P-B terminals) and connect it to the P-B
terminals).
For SERVOPACK with capacity more
than 6kW, a regenerative resistor unit is
mounted separately (connected to P1-B
terminals)

31

BASIC USES OF Σ-SERIES PRODUCTS
2.3.1 Connecting to Peripheral Devices cont.

• Connector terminal block conversion unit (Type: JUSP-TA50P)
The terminal block allows connection to a host controller.
1CN
0.5 meter cable with
1CN connector

• Cable with 1CN connector and one end without connector
1m (3.3ft)
2m (6.6ft)

DE9406969-2

3m (9.8ft)

2

DE9406969-1

DE9406969-3

1CN

• 1CN connector kit (Type: DE9406970)
1CN

• Cable for PG
This cable is used to connect the encoder of servomotor to the SERVOPACK.
The following three types of cables are available according to encoder types.
For models SGMG, SGMS, SGMD
a) Cable with a single connector (without connector on encoder side)

Length

Cable type
Incremental
Absolute

3m (9.8ft)

DE9406971-1

DE9406972-1

5m (16.4ft)

DE9406971-2

DE9406972-2

10m (32.8ft)

DE9406971-3

DE9406972-3

15m (49.2ft)

DE9406971-4

DE9406972-4

20m (65.6ft)

DE9406971-5

DE9406972-5

b) Cable with connectors on both side (straight plug on encoder side)

Length

Cable type
Incremental
Absolute

3m (9.8ft)

DE9407236-1

5m (16.4ft)

DE9407234-2

DE9407236-2

10m (32.8ft)

DE9407234-3

DE9407236-3

15m (49.2ft)

DE9407234-4

DE9407236-4

20m (65.6ft)

32

DE9407234-1

DE9407234-5

DE9407236-5

2.3 Connection and Wiring

c) Cable with connectors on both side (L-shape plug on encoder side)

Length

Cable type
Incremental
Absolute

3m (9.8ft)

DE9407235-1

DE9407237-1

5m (16.4ft)

DE9407235-2

DE9407237-2

10m (32.8ft)

DE9407235-3

DE9407237-3

15m (49.2ft)

DE9407235-4

DE9407237-4

20m (65.6ft)

DE9407235-5

DE9407237-5

For models SGM, SGMP

2

a) Cable with connectors on both side

Length

Cable type
Incremental
Absolute

3m (9.8ft)

DP9320089-1

DP9320088-1

5m (16.4ft)

DP9320089-2

DP9320088-2

10m (32.8ft)

DP9320089-3

DP9320088-3

15m (49.2ft)

DP9320089-4

DP9320088-4

20m (65.6ft)

DP9320089-5

DP9320088-5

b) Cable with a single connector (without connector on SERVOPACK)

Length

Cable type
Incremental
Absolute

3m (9.8ft)

DP9320086-1

DP9320085-1

5m (16.4ft)

DP9320086-2

DP9320085-2

10m (32.8ft)

DP9320086-3

DP9320085-3

15m (49.2ft)

DP9320086-4

DP9320085-4

20m (65.6ft)

DP9320086-5

DP9320085-5

c) Cable without connectors

Length

Cable type
Incremental
Absolute

3m (9.8ft)

DP9400064-1

DP8409123-1

5m (16.4ft)

DP9400064-2

DP8409123-2

10m (32.8ft)

DP9400064-3

DP8409123-3

15m (49.2ft)

DP9400064-4

DP8409123-4

20m (65.6ft)

DP9400064-5

DP8409123-5

• Connector kit (DE9406973)for PG.
Connector on SERVOPACK side only

SERVOPACK
side
2CN

33

BASIC USES OF Σ-SERIES PRODUCTS
2.3.2 Main Circuit Wiring and Power ON Sequence

2.3.2 Main Circuit Wiring and Power ON Sequence
The following diagram shows a typical example of wiring the main circuit for Σ-Series
products:
Three-phase 200 to 230 VAC

+ 10%
–15%

(50/60 Hz)

SERVOPACK
SGDB-jjADj

2
(Alarm lamp)
Main circuit
power

Main circuit power

1MCCB:
FIL:
1MC:
1Ry:
1PL:
1SUP:
1D:

Circuit breaker (for inverter type)
Noise filter
Contactor
Relay
Lamp for display
Surge suppressor
Flywheel diode

The following table shows the name and description of each main circuit terminal:
Terminal
Symbol
R, S, T
U, V, W
r, t
×2
P, B

P1, B
N

Name
Main power input
terminals
Motor connection
terminal
Control power
input terminals
Ground terminal
Regenerative
resistor unit
connection
terminal
Regenerative
resistor unit
connection
terminal
Main circuit minus
side terminal.

Description
Three-phase 200 to 230 VAC + 10 % , 50/60Hz
–15
Used to connect motor
Single phase 200 to 230 VAC + 10 % , 50/60Hz
–15
Connected to earth. (For power ground and motor ground).
Normally, external connection is not required.

Terminal used to connect regenerative resistor for
SERVOPACK with power capacity more than 6 kW.
Normally, external connection is not required.

Note P1 terminal is not available for SERVOPACK with power capacity less than 5 kW.

34

2.3 Connection and Wiring

Form a power ON sequence as follows:
• Form a power ON sequence so that the power is turned OFF when a servo alarm signal
is output. (See the circuit diagram shown on the previous page.)
• Hold down the power ON push-button for at least two seconds. The SERVOPACK outputs a servo alarm signal for approximately two seconds or less when the power is
turned ON. This operation is required to initialize the SERVOPACK.

Power supply

2
Servo alarm (ALM) output signal

NOTE
• Do not wire power lines and signal lines in the same duct or bundle them together.
Wire such that signal lines are kept apart from power lines by at least 30 cm.
• Twisted pair wire and multi-core twisted pair shielding wires should be used for signal
lines, encoder (PG) feedback line.
The length for wiring is 3 m maximum for the reference input line, 20 m maximum for the
PG feedback line.
• Do not touch the power terminal even if power was turned OFF.
High voltage may still remain in SERVOPACK.
Perform inspection only after the CHARGE lamp is OFF.
• Avoid frequently turning the power ON and OFF. Since the SERVOPACK has a capacitor in the power supply, a high charging current flows (for 0.2 second) when the power is
turned ON. Therefore, frequently turning the power ON and OFF causes the main circuit devices (such as capacitors and fuses) to deteriorate, resulting in unexpected
problems.

35

BASIC USES OF Σ-SERIES PRODUCTS
2.3.3 Connection to Host Controller

2.3.3 Connection to Host Controller
The SGDB SERVOPACK can be connected to the following host controllers. For details,
refer to the technical documentation for the host controller.
• MP920
• GL-Series Positioning Module B2833
• GL-Series Positioning Module B2813

2

• OMRON Position Control Unit
• MITSUBISHI Positioning Unit
The following diagrams show connection examples with the host controllers manufactured by OMRON and MITSUBISHI.
J Connection to OMRON Position Control Unit C500-NC222
SERVOPACK for Speed/Torque Control
SERVOPACK

Speed/Torque

SGDB-jjADj
I/O Power Supply
C500-NC222
(Made by OMRON)

X-axis (Y-axis)
(ON when
positioning is
stopped)
(ON when
proximity is
detected)

/S-ON
(T-REF)
X-/A

/PAO

X-/B

/PBO

X-/C

/PCO

* These signals are output for approximately two seconds when the power is turned
ON. Take this into consideration when designing a power ON sequence. Relay 1Ry is
used to stop main circuit power supply to SERVOPACK.

Note The signals shown here are applicable only to OMRON Sequencer
C500-NC222 and Yaskawa SERVOPACK SGDB-VVADV.

36

2.3 Connection and Wiring

J Connection to OMRON Position Control Unit C500-NC112
SERVOPACK for Position Control
SERVOPACK
SGDB-jjADj *2

Position

I/O
Power
Supply
C500-NC112
(Made by OMRON)

CW limit
CCW limit
Emergency stop
External interrupt
Home position
Home position
proximity
Local
Ready

/S-ON

(ON when proximity
is detected)

External
power
supply
+24V

2

/PCO

Pulse output
CW + CCW
Direction output
CW

*1 These signals are output for approximately two seconds when the power is turned ON. Take this
into consideration when designing a power ON sequence. Relay 1Ry is used to stop main circuit
power supply to SERVOPACK.
*2 Change the Cn-02 setting as follows:
Bit No. 3 = 1
Bit No. 4 = 0
Bit No. 5 = 0
*3 Manufactured by Yaskawa Controls Co., Ltd.

Note The signals shown here are applicable only to OMRON Sequencer C500-NC112 and
Yaskawa SERVOPACK SGDB-VVADV.

37

BASIC USES OF Σ-SERIES PRODUCTS
2.3.3 Connection to Host Controllercont.

J Connection to MITSUBISHI Positioning Unit AD72
SERVOPACK for Speed/Torque Control
SERVOPACK
SGDB-jjADj

Speed/Torque

I/O power supply

AD72
(Made by MITSUBISHI)
(ON when
positioning
is stopped)
(ON when
proximity
is detected)

2

/S-ON

Speed
reference

/PBO
/PAO
/PCO

*1 These signals are output for approximately two seconds when the power is turned ON. Take this into
consideration when designing a power ON sequence. Relay 1Ry is used to stop main circuit power
supply to SERVOPACK.
*2 These pin numbers are the same for both X and Y axes.

Note The signals shown here are applicable only to MITSUBISHI Sequencer AD72 and Yaskawa SERVOPACK SGDB-VVADV.

38

2.3 Connection and Wiring

J Connection to MITSUBISHI Positioning Unit AD75
SERVOPACK for Position Control
SERVOPACK

Servomotor

SGDB-jjADj

Position
L1C
L2C
L1
L2
L3

I/O power supply

+24v

+


+24v
AD75
(Made by MITSUBISHI)

U

READY

7

STOP

14

DOG

11

D (4)

PG

2

CN2
1Ry
ON when
positioning
is stopped
ON when
proximity
is detected

CN1
47
CN1

/S-ON
P-OT

19

PCO

25

20

31

42
43

024V

ALM+

32

+24v

40

/PCO

ALM−

1Ry

*

3

PULSE

21

7
8

4
22

11
12

/SIGN

15
14

N-OT

/PULSE

SIGN

/CLR

2.2KΩ
5
CLEAR

*

M

C (3)

024V

24
PGO

B (2)

W

X axis (Y axis)

26

A (1)

V

PULSE

SIGN

CLR

2
3

These signals are output for approximately two seconds when the power is turned ON. Take this into
consideration when designing a power ON sequence. Relay 1Ry is used to stop main circuit power
supply to SERVOPACK.

Note The signals shown here are applicable only to MITSUBISHI Sequencer AD72 (B Type)
and Yaskawa SERVOPACK SGDB-VVADV.

39

BASIC USES OF Σ-SERIES PRODUCTS
2.4.1 Test Run in Two Steps

2.4

Conducting a Test Run

This section describes how to conduct a full test run. The test run is divided into two steps.
Complete a test run in step 1 first, then proceed to step 2.

2.4.1 Test Run in Two Steps
Conduct the test run when wiring is complete.

2

Generally, conducting a test run for servo drives can be difficult. However, by following the two
steps described below, the test run can be performed safely and correctly.
NOTE

To prevent accidents, initially conduct a test run only for a servomotor under no load (i.e., with
all couplings and belts disconnected). Do not run the servomotor while it is connected to a
machine.
The test run is divided here into steps 1 and 2.
Complete the test run in step 1 first, then proceed to step 2. The purposes of each step are
described on the next page.

40

2.4 Conducting a Test Run

Step 1: Conducting a test run for the motor without load . . . Check that the motor is wired correctly.
Operate the motor with a Digital
Operator.

Conduct a test run with the motor shaft disconnected
from the machine.
Purpose:

• To check power supply circuit wiring
• To check motor wiring
• To check I/O signal (1CN) wiring

Outline:

• Turn the power ON
• Operate the motor with a digital operator

Check wiring.

• Check I/O signals (1CN)

Do not connect
to a machine.

• Conduct a test run using I/O signals

2
Step 2: Conducting a test run with the motor and
machine connected . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Adjust SERVOPACK according to machine characteristics.
Connect to the machine and conduct a test run.

Speed adjustment by
autotuning

Purpose: • To perform autotuning to adjust the motor according to machine characteristics
• To match the speed and direction of
rotation with the machine specifications

SGDB

• To check the final control mode

SGM

Connect to the machine.

Outline:

• Perform autotuning
• Adjust parameter settings
• Record parameter settings

End of test run

For servomotors with a brake, refer to Section 2.4.4 Supplementary Information on Test
Run before starting a test run.
The following pages describe the test run procedure in detail.

41

BASIC USES OF Σ-SERIES PRODUCTS
2.4.2 Step 1: Conducting a Test Run for Motor without Load

2.4.2 Step 1: Conducting a Test Run for Motor without Load
Check that the motor is wired correctly.
If the motor fails to rotate properly during a servo drive test run, the cause most frequently lies
with incorrect wiring.
Conduct a test run for the motor without load according to the procedure described below.
For customers who use a servomotor with brake, refer to Section 2.4.4 Supplementary Information on Test Run before starting a test run.

Operate the motor with
a Digital Operator.

2

Check wiring.
Do not connect
to the machine.

J Securing the Servomotor
Secure the servomotor to mounting holes to prevent
it from moving during operation. Alternatively, install
the servomotor on the machine and disconect couplings and belts.

Secure servomotor to mounting holes.
Do not connect
anything to the
motor shaft
(no-load
status).

J Verifying the Wiring
Disconnect connector 1CN, then check the motor
wiring in the power supply circuit.
I/O signals (1CN) are not to be used so leave connector 1CN disconnected.

Disconnect
connector
1CN

J Turning the Power ON
Turn the SERVOPACK power ON. If the SERVO- Normal display
PACK is turned ON normally, the LED on the Digital
Operator lights up as shown in the figure.
Alternately displayed
Power is not supplied to the servomotor because the
Example of alarm display
servo is OFF.
If an alarm display appears on the LED as shown in
the figure above, the power supply circuit, motor wiring or encoder wiring is incorrect. In this case, turn
the power OFF, then correct the problem. For details, refer to Appendix D List of Alarm Displays.

42

Refer to Appendix D List of
Alarm Displays.

2.4 Conducting a Test Run

J Using the Digital Operator

Operation by Digital Operator

Operate the motor with the Digital Operator. Check
that the motor runs normally.
Refer to Section 4.2.2 Operation Using the Digital
Operator.

If an alarm occurs, the power supply
circuit, motor wiring, or encoder
wiring is incorrect.

J Connecting Signal Lines
Connect
connector
1CN.

Connect connector 1CN as follows:

2

1. Turn the power OFF.
2. Connect connector 1CN.
3. Turn the power ON again.
J Checking Input Signals.
Check the input signal wiring in monitor mode.
For the checking method, refer to Section
4.1.7 Operation in Monitor Mode.

• Checking method
Turn each connected signal line ON and
OFF to check that the monitor bit display
changes accordingly.

Input Signal

ON/OFF

Example of
Un-05

Internal status bit display
(Un-05, Un-06)

The memory switch can be
used to eliminate the need
for external short-circuits in
wiring (see pages 56 and
131).

Monitor Bit Display

High level or open

OFF

Extinguished

0 V level

ON

Lit

If the signal lines below are not wired correctly, the motor fails to rotate. Always wire
them correctly. (If signal lines are not to be used, short them as necessary.)
P-OT

1CN-42

Motor can rotate in forward direction when this input signal is at 0 V.

N-OT

1CN-43

Motor can reverse when this input signal is at 0 V.

S-ON

1CN-40

Servo is turned ON when this input signal is at 0 V. However, leave
the servo in OFF status.

43

BASIC USES OF Σ-SERIES PRODUCTS
2.4.2 Step 1: Conducting a Test Run for Motor without Load cont.

J Turning Servo (Motor) ON
Turn the servo ON as follows:

SERVOPACK Servomotor
S-ON

(1CN-40)

1. Check that no reference has been input.
Turn the servo ON.

For speed/torque control:
V-REF (1CN-5) and T-REF (1CN-9) are at 0 V.
For position control:
PULS (1CN-7) and SIGN (1CN11) are fixed to L level.

2

Note The parameter Cn-2B is used to set control modes (refer to Section 3.2 Setting
Parameters According to Host Controller).
2. Turn the servo ON signal ON.

Display when servo is turned ON

Set /S-ON (1CN-40) to 0 V. If normal, the motor
starts and the Digital Operator displays the
data as shown in the figure. If an alarm display
appears, take appropriate action as described
in Appendix D List of Alarm Displays.
J Operating by Reference Input
The operating procedure varies according to the setting of parameter ’Control mode
selection (Cn-2B)’.
SERVOPACK for Speed/Torque
Speed/Torque

This section describes the standard speed control
setting.

SERVOPACK

Servomotor

(1CN-5)

1. Gradually increase the speed reference input
(V-REF, 1CN-5) voltage. The motor will rotate.

(1CN-6)
Servomotor rotates at a speed
proportional to the reference voltage.

When a host controller such as a programmable controller performs position control,
it may be difficult to directly input the speed reference voltage. In this case, constant
voltage reference should be input once to ensure correct operation.
2. Check the following items in monitor mode (see page 191):
S Has a reference speed been input?
S Is the rotation speed the same value as the setting one?

44

2.4 Conducting a Test Run

S Does the reference speed match the actual motor speed?
S Does the motor stop when no reference is input?
Un-00

Actual motor speed

Un-01

Reference speed

3. If the motor rotates at an extremely slow speed when 0 V is specified as the reference
voltage, correct the reference offset value as described in Section 4.2.4 Reference
Offset Automatic Adjustment
4. To change motor speed or the direction of rotation, reset the parameters shown be
low.
Cn-03

Speed reference gain (see page 68)

Cn-02 bit 0

Reverse rotation mode (see page 54)

SERVOPACK for Position Control
Position

1. Set parameter Cn-02 so that the reference pulse form matches the host controller output form. (See page 183 for details on how to set parameters.)
Selecting reference pulse form (See page 70)
Bit 3

Cn-02

Bit 4
Bit 5

2. Input slow speed pulses from the host con- Host
controller
troller and execute low-speed operation.
3. Check the following items in monitor mode
(see page 191):

Reference
pulse

SERVOPACK
/PULS
/SIGN

Servomotor

(1CN-7)
(1CN-8)
(1CN-11)
(1CN-12)

S Has a reference pulse been input?
S Is the motor speed as designed?
S Does the reference speed match the actual motor speed?
S Does the motor stop when no reference is input?
Un-00

Actual motor speed

Un-07

Reference pulse speed display

Un-08

Position error

4. To change motor speed or the direction of rotation, reset the parameters shown as
follows.

45

2

BASIC USES OF Σ-SERIES PRODUCTS
2.4.3 Step 2: Conducting a Test Run with the Motor Connected to the Machine

Cn-24,Cn-25
Cn-02 bit 0

Electronic gear ratio (see page 81)
Reverse rotation mode (see page 54)

If an alarm occurs or the motor fails to rotate during the above operation, connector 1CN
wiring is incorrect or the parameter settings do not match the host controller specifications.
In this case, check the wiring and review the parameter settings, then repeat step 1.
Refer to Appendix D List of Alarm Displays and Appendix C List of Parameters.
This is all that is required to complete step 1 (conducting a test run for motor without load).
Whenever possible, perform tuning associated with the host controller and other necessary adjustments in step 1 (before installing the motor on the machine).

2

2.4.3 Step 2: Conducting a Test Run with the Motor Connected to
the Machine
After step 1 is complete, proceed to step 2 in which a test run is conducted with the motor
connected to the machine. The purpose of step 2 is to adjust the SERVOPACK according to
the machine characteristics.
Conduct a test run according to the procedure described below.
Purposes:

S Autotuning
S Speed adjustment

SGDB
SERVOPACK

Servomotor

Connect to the machine.

NOTE

Before proceeding to step 2, repeat step 1 (conducting a test run for the motor without load)
until you are fully satisfied that the test has been completed successfully. Operation faults that
arise after the motor is connected to the machine not only damage the machine but may also
cause an accident resulting in injury or death. Therefore, all items including parameters setting and wiring should be tested as conclusively as possible before step 1 is complete.
1. Check that power is OFF.
Turn the SERVOPACK power OFF.

Power
supply

SERVOPACK

Power

46

2.4 Conducting a Test Run

Install servomotor on machine.
2. Connect the servomotor to the machine.
Refer to Section 2.2.4 Installing the Servo- Servomotor
motor.

3. Perform autotuning.
Tune the SERVOPACK according to the machine characteristics. Refer to Section 4.2.3
Autotuning.

Autotuning:
Automatically measures
machine characteristics and
performs optimum tuning
SGDB

2

SERVOPACK Servomotor

4. Operate by reference input.
As in step 1 (conducting a test run for motor
without load), perform (8) Operate by reference input on page 44. Perform tuning
associated with the host controller.

Host
controller

5. Set parameters and record the settings.
Set parameters as necessary. Record all the
parameter settings for maintenance purposes.

SERVOPACK
Servomotor

Reference

SERVOPACK
Parameters

Record the settings

This is all that is required to conduct the test run.
Normally, the machine may cause much friction because of an insufficient running-in period. After a test run is complete, perform adequate running-in.

2.4.4 Supplementary Information on Test Run
In the following cases, always refer to the information described below before starting a
test run:
• When using a servomotor with a brake
• When performing position control from the host controller
J When Using a Servomotor with Brake
The brake prevents the motor shaft from rotating due to a backdriving torque. Such a
torque may be created by an external force or the force of gravity acting on the load and
may result in undesired motion or the load, should motor power be lost.

47

BASIC USES OF Σ-SERIES PRODUCTS
2.4.4 Supplementary Information on Test Run cont.

SERVOPACK uses the brake interlock output (BK) signal to control holding brake operation for a servomotor with brake.
• Axis to which external force is applied

• Vertical axis
Servomotor
Holding brake

External force

Servomotor

Prevents the
motor from
rotating due to
gravity

2
NOTE

To prevent faulty operation caused by gravity (or external force), first check that the motor
and holding brake operate normally with the motor disconnected from the machine.
Then, connect the motor to the machine and conduct a test run.
For wiring of a servomotor with a brake, refer to Section 3.4.4 Using Holding Brake.
Power supply:
Three-phase
200 V

SERVOPACK

Brake control relay
Brake power supply
LPSE-2H01 (200 V input)
LPDE-1H01 (100 V input)

Servomotor with brake

J When Performing Position Control from the Host Controller
Check motor operation first and then conduct a test run as described in the table below.
SGDB-jjADj

Speed
reference
Host
controller
Position
control

48

Speed
control

Test run
for motor
without
load

2.4 Conducting a Test Run

NOTE

Check the motor operation with the motor disconnected from the machine. If the host controller does not perform position control correctly, the motor may run out of control.
Reference from
Host Controller

Check Items

Check Method

Review Items

Check the motor
speed as follows:
D Use the speed
monitor (Un-00) of
the digital operator.
Jogging
(constant-speed
reference input from
host controller)

Motor speed

D Run the motor at
low speed. For
example, input a
speed reference of
60 min−1 and
check that the
motor makes one
revolution per one
second.

Check whether the
speed reference gain
value (parameter
Cn-03) is correct.

Simple positioning

Number of motor
revolutions

D Input a reference
equivalent to one
motor revolution
and visually check
that the motor shaft
makes one
revolution.

Check whether the
dividing ratio count
(parameter Cn-0A) is
correct.

Overtravel (when
P-OT and N-OT
signals are used)

Whether the motor
stops rotating when
P-OT and N-OT
signals are input

D Check that the
motor stops when
P-OT and N-OT
signals are input
during continuous
motor operation.

If the motor does not
stop, review the
P-OT and N-OT
wiring.

2.4.5 Minimum Parameters Required and Input Signals
This section describes the minimum parameters and input signals that must be set to
conduct a test run.
For details on how to set each parameter, refer to Section 4.1.6 Operation in Parameter
Setting Mode.
J Parameters
• Basic parameters (common to speed, torque, position control)
Cn-11

Number of encoder pulses

Cn-01, bit E

Encoder selection

Cn-2A

Motor selection (check only in substance).

Cn-2C

PG power supply voltage change

• For speed/torque control
Cn-03

Speed reference gain (see page 68)

Cn-0A

Dividing ratio setting

49

2

BASIC USES OF Σ-SERIES PRODUCTS
2.4.5 Minimum Parameters Required and Input Signals cont.

• For position control
Cn-02 bits 3, 4 and 5

Reference pulse form selection (see page 70)

Cn-24

Electronic gear ratio (numerator) (see page 81)

Cn-25

Electronic gear ratio (denominator) (see page 81)

When these parameters (except for Cn-03) are changed, always turn the power OFF,
then back ON. This makes the new setting valid.
If the specified direction of rotation differs from the actual direction of rotation, the wiring
may be incorrect. In this case, recheck the wiring and correct it accordingly. Then, if the
direction of rotation is to be reversed, set the following parameter:

2

Cn-02 (bit 0)

Reverse rotation mode (see page 54)

After changing the Cn-02 setting, always turn the power OFF, then ON, to make the new
setting valid.
J Input Signals
The following table lists the minimum input signals required to conduct a test run. For details of each input signal, refer to the relevant page.

Signal Name

Pin
Number

/S-ON

1CN-40

P-OT

(forward
rotation
prohibited)

1CN-42

N-OT

50

(servo ON)

(reverse
rotation
prohibited)

1CN-43

Function
Switching between motor ON and OFF status. The
memory switch can be used to eliminate the need for
external short-circuit wiring (see page 131).
Overtravel limit switch
The memory switch can be used to eliminate the
need for external short-circuit wiring (see page 56).

APPLICATIONS OF Σ-SERIES
PRODUCTS

3

This chapter is prepared for readers who wish to learn more about the applications of Σ-series products after fully understanding Chapter 2 Basic Uses of
Σ-series Products. It explains how to set parameters for each purpose and
how to use each function. Read the applicable sections according to your requirements.

3.1 Setting Parameters According to Machine
Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1.1 Changing the Direction of Motor Rotation . . . . . . . . . . . . . . .
3.1.2 Setting the Overtravel Limit Function . . . . . . . . . . . . . . . . . .
3.1.3 Restricting Torque . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.2 Setting Parameters According to Host
Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2.1
3.2.2
3.2.3
3.2.4
3.2.5
3.2.6
3.2.7
3.2.8
3.2.9
3.2.10
3.2.11
3.2.12

Inputting Speed Reference . . . . . . . . . . . . . . . . . . . . . . . . . . .
Inputting Position Reference . . . . . . . . . . . . . . . . . . . . . . . . .
Using Encoder Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Using Contact I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . .
Using Electronic Gear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Using Contact Input Speed Control . . . . . . . . . . . . . . . . . . . .
Using Torque Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Using Torque Feed-forward Function . . . . . . . . . . . . . . . . . .
Using Torque Restriction by Analog Voltage Reference . . . .
Using the Reference Pulse Inhibit Function (INHIBIT) . . . . .
Using the Reference Pulse Input Filter Selection Function . .
Using the Analog Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.3 Setting Up the Σ SERVOPACK . . . . . . . . . . . .
3.3.1
3.3.2
3.3.3
3.3.4
3.3.5

Setting Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Setting the Jog Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Setting the Number of Encoder Pulses . . . . . . . . . . . . . . . . . .
Setting the Motor Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Adjusting the Encoder Supply Voltage . . . . . . . . . . . . . . . . . .

54
54
56
59

64
64
68
73
77
79
83
87
94
95
97
98
99

100
100
101
102
103
104

51

3

Chapter Table of Contents, Continued

3.4 Setting Stop Mode . . . . . . . . . . . . . . . . . . . . . . .
3.4.1
3.4.2
3.4.3
3.4.4

Adjusting Offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Using Dynamic Brake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Using Zero-Clamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Using Holding Brake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.5 Running the Motor Smoothly . . . . . . . . . . . . . .
3.5.1
3.5.2
3.5.3
3.5.4
3.5.5

Using the Soft Start Function . . . . . . . . . . . . . . . . . . . . . . . . .
Using the Smoothing Function . . . . . . . . . . . . . . . . . . . . . . . .
Adjusting Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Adjusting Offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Setting the Torque Reference Filter Time Constant . . . . . . . .

3.6 Minimizing Positioning Time . . . . . . . . . . . . . .

3

3.6.1
3.6.2
3.6.3
3.6.4
3.6.5
3.6.6

Using Autotuning Function . . . . . . . . . . . . . . . . . . . . . . . . . .
Setting Servo Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Using Feed-forward Control . . . . . . . . . . . . . . . . . . . . . . . . . .
Using Proportional Control . . . . . . . . . . . . . . . . . . . . . . . . . .
Setting Speed Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Using Mode Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.7 Forming a Protective Sequence . . . . . . . . . . . .
3.7.1
3.7.2
3.7.3
3.7.4
3.7.5
3.7.6
3.7.7
3.7.8

Using Servo Alarm Output and Alarm Code Output . . . . . . .
Using Servo ON Input Signal . . . . . . . . . . . . . . . . . . . . . . . . .
Using Positioning Complete Signal . . . . . . . . . . . . . . . . . . . .
Using Speed Coincidence Output Signal . . . . . . . . . . . . . . . .
Using Running Output Signal . . . . . . . . . . . . . . . . . . . . . . . .
Using OL Warning and Alarm Output Signals . . . . . . . . . . . .
Using Servo Ready Output Signal . . . . . . . . . . . . . . . . . . . . .
Handling of Power Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.8 Special Wiring . . . . . . . . . . . . . . . . . . . . . . . . . .
3.8.1
3.8.2
3.8.3
3.8.4
3.8.5
3.8.6
3.8.7
3.8.8

52

Wiring Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Wiring for Noise Control . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Using More Than One Servo Drive . . . . . . . . . . . . . . . . . . . .
Using Regenerative Resistor Units . . . . . . . . . . . . . . . . . . . . .
Using an Absolute Encoder . . . . . . . . . . . . . . . . . . . . . . . . . .
Extending an Encoder Cable . . . . . . . . . . . . . . . . . . . . . . . . .
Using SGDB SERVOPACK with High Voltage Line . . . . . . .
Connector Terminal Layouts . . . . . . . . . . . . . . . . . . . . . . . . .

105
105
106
107
108

113
113
114
114
115
115

117
117
117
119
119
120
121

127
127
130
131
134
136
138
140
141

142
142
144
149
151
152
162
164
166

Before Reading this Chapter
This chapter describes how to use each 1CN connector I/O signal for the SGDB SERVOPACK and how to set the corresponding parameter.
Refer to corresponding section described below as necessary.
• A list of I/O signals of 1CN connector : Appendix B List of I/O Signals
• Terminal arrangement for I/O signals of 1CN connector : Section 3.8.8 Connector Terminal
Layouts
• A list of parameters : Appendix C List of Parameters
• How to set parameters : Section 4.1.6 Operation in Parameter Setting Mode

3

Parameters are divided into the following two types.
Memory switch
Cn-01 and Cn-02

Set each bit to ON or OFF to select a function.

Constant setting
Cn-03 and later

Set a numerical value such as a torque limit
value or speed loop gain.

53

APPLICATIONS OF Σ-SERIES PRODUCTS
3.1.1 Changing the Direction of Motor Rotation

3.1

Setting Parameters According to Machine
Characteristics

This section describes how to set parameters according to the dimensions and performance
of the machine to be used.

3.1.1 Changing the Direction of Motor Rotation
This SERVOPACK provides a reverse rotation mode in which the direction of rotation can
be reversed without altering the servomotor wiring. With the standard setting, forward
rotation is defined as counterclockwise (ccw) rotation viewed from the drive end.

3

If reverse rotation mode is used, the direction of motor rotation can be reversed without
other items being changed. The direction (+/−) of axial motion is reversed.
Standard Setting

Forward Run Reference

Encoder output
from SERVOPACK

Reverse Rotation Mode

Encoder output
from SERVOPACK
PAO (Phase A)

PBO (Phase B)

Reverse Run Reference

PAO (Phase A)

PBO (Phase B)

Encoder output
from SERVOPACK
PAO (Phase A)

PBO (Phase B)

54

Encoder output
from SERVOPACK
PAO (Phase A)

PBO (Phase B)

3.1 Setting Parameters According to Machine Characteristics

J Setting Reverse Rotation Mode
Reverse rotation mode can be set in either of the following two ways. Normally, method 1
is easier to use.
Method 1: Setting Memory Switch
Set bit 0 of memory switch Cn-02 to select reverse rotation mode.
Cn-02 Bit 0

Rotation Direction
Selection

Factory
Setting: 0

For Speed/Torque Control
and Position Control

Set the direction of rotation.
Setting
0

1

Meaning
Forward rotation is
defined as
counterclockwise
rotation when viewed
from the drive end.
Forward rotation is
defined as clockwise
rotation when viewed
from the drive end.

(Standard
setting)

3

(Reverse
rotation
mode)

Method 2: Shorting the Wiring in the 2CN Connector
Reverse rotation mode can be set for the 2CN
connector for the encoder. This method is used
to standardize parameter settings without using
the memory switch.

SGDB SERVOPACK

SGMj servomotor
Encoder

In this case, reverse rotation
mode is set regardless of the
memory switch setting.
SGDB
SERVOPACK

Short 2CN-1 and 2CN-7 in
the 2CN connector.

55

APPLICATIONS OF Σ-SERIES PRODUCTS
3.1.2 Setting the Overtravel Limit Function

3.1.2 Setting the Overtravel Limit Function
The overtravel limit function forces the moving part of the machine to stop when it exceeds the movable range.
J Using the Overtravel Limit Function
To use the overtravel limit function, connect the following input signal terminals correctly.

→ Input P-OT 1CN-42

Forward Rotation Prohibited
(Forward Overtravel)

For Speed/Torque
Control and
Position Control

→ Input N-OT 1CN-43

Reverse Rotation Prohibited
(Reverse Overtravel)

For Speed/Torque
Control and
Position Control

Input terminals for overtravel limit switch.
For linear motion, connect a limit switch to prevent
damage to the machine.

3

Reverse
rotation side
SGMj
servomotor

Forward
rotation side

Limit switch

SGDB
SERVOPACK
1CN-42
1CN-43

P-OT

N-OT

ON: 1CN-42 is
at low level.
OFF: 1CN-42
is at high level.
ON: 1CN-43 is
at low level.
OFF: 1CN-43
is at high level.

Forward rotation allowed. Normal operation status.
Forward rotation prohibited (reverse rotation allowed).
Reverse rotation allowed. Normal operation status.
Reverse rotation prohibited (forward rotation allowed).

J Specifying whether Input Signals for Overtravel are to be Used
Use the following parameters (memory switch) to specify whether input signals for overtravel are to be used.
Cn-01 Bit 2
Cn-01 Bit 3

Use of P-OT Input Signal
Use of N-OT Input Signal

Factory
Setting: 0
Factory
Setting: 0

Specifies whether the P-OT input signal for prohibiting forward rotation at overtravel (1CN-42) is
to be used and whether the N-OT input signal for
prohibiting reverse rotation at overtravel
(1CN-43) is to be used.
Specifies “1” when external short-circuit wiring is
to be omitted.

56

For Speed/Torque Control
and Position Control
For Speed/Torque Control
and Position Control

SGDB SERVOPACK
1CN
-42
-43

The short-circuit wiring shown in the
figure can be omitted when P-OT and
N-OT are not used.

3.1 Setting Parameters According to Machine Characteristics

Bit

Setting

Meaning
Uses the P-OT input signal for prohibiting forward rotation. (Forward
rotation is allowed when 1CN-42 is at 0 V.)
Does not use the P-OT input signal for prohibiting forward rotation.
(Forward rotation is always allowed. This has the same effect as shorting
1CN-42 to 0 V.)

0
Bit 2
1

0

Uses the N-OT input signal for prohibiting reverse rotation. (Reverse
rotation is prohibited when 1CN-43 is open. Reverse rotation is allowed
when 1CN-43 is at 0 V.)

1

Does not use the N-OT input signal for prohibiting reverse rotation.
(Reverse rotation is always allowed. This has the same effect as shorting
1CN-43 to 0 V.)

Bit 3

J Setting the Motor Stopping Method
If the P-OT and N-OT input signals are used, set the following parameters to specify how
to stop the motor.
Cn-01 Bit 8
Cn-01 Bit 9

How to Stop Motor at
Overtravel
Operation to be Performed
when Motor Stops after
Overtravel

Factory
Setting: 0
Factory
Setting: 0

• Inputs signal for prohibiting forward rotation
(P-OT, 1CN-42)
• Inputs signal for prohibiting reverse rotation
(N-OT, 1CN-43)

Setting

Invalid for Torque Control

Overtravel
Stop mode
0
0

1

After stop

Stop by
dynamic brake
Releasing
dynamic brake

Bit 6
1

Bit 8

Specify how to stop the motor when either of the
above signals is input.

3

Invalid for Torque Control

Coasting to a
stop
0
Deceleration
stop

Servo OFF
Bit 9

1

Zero-clamp

Meaning
Stop the motor in the same way as when the servo is turned OFF.

Cn-01
bit 8

0
1

The motor is stopped by dynamic brake or coasts to a stop. Either of
these stop modes is selected by setting bit 6 of Cn-01.
Stop the motor by decelerating it with the preset torque.
Preset value: Cn-06 (EMGTRQ) emergency stop torque

If deceleration stop mode is selected, specify the operation to be done after the motor
stops.
Setting
Cn-01
Cn 01
bit 9

Meaning

0

Turns the servo OFF when the motor stops in deceleration stop mode.
Causes the motor to enter zero-clamp status after it stops in deceleration
stop mode.

1

In torque control mode, the motor stops in the same way as when the servo is turned OFF,
regardless of the bit 8 setting.

57

APPLICATIONS OF Σ-SERIES PRODUCTS
3.1.2 Setting the Overtravel Limit Function

Cn-06

EMGTRQ
Emergency Stop
Torque

Unit:
%

Setting
Range: 0 to
Maximum
Torque

Specifies the stop torque to be applied at overtravel when the input signal for prohibiting forward or
reverse rotation is to be used.
Specifies a torque value in terms of a percentage
of the rated torque.

Cn-01 Bit 6

3

Cn-01 Bit 7

How to Stop Motor at Servo
OFF
Operation to Be Performed
when Motor Stops after Servo
OFF

Factory
Setting:
Maximum
Torque

Input signal for
prohibiting
forward rotation
P-OT (1CN-42)

Setting
Cn-01
C 01
bit 6

0
1

Coasting to a
stop

Invalid for 2.0 kW or more

Servo OFF
Stop mode
0
1

After stop
Releasing
dynamic brake

0

Stop by
dynamic brake
Bit 6

• Servo alarm arises.

Specify how to stop the motor when one of the
above events occurs during operation.

Emergency
stop torque

Input signal for
prohibiting reverse
rotation
N-OT (1CN-43)

• Servo ON input signal (/S-ON, 1CN-40) is
turned OFF.

• Power is turned OFF.

Memory
switch

Stop by
dynamic brake

Factory
Setting: 0
Factory
Setting: 1

The SERVOPACK enters servo OFF status when:

Valid when Cn-01 bit 8
=1

Bit 7
1

Holding
dynamic brake

Coasting to a
stop

Dynamic brake is a function that
electrically applies brakes by using a
resistor to consume motor rotation
energy.

Meaning
Stops the motor by dynamic brake.
Causes the motor to coast to a stop.
The motor power is OFF and stops due to machine friction.

If dynamic brake stop mode is selected, specify the operation to be performed when the
motor stops.
Setting
Cn-01
bit 7

0
1

Meaning
Releases dynamic brake after the motor stops.
Does not release dynamic brake even after the motor stops.

Note For SERVOPACKs of 2.0 kW or more, bit 7 of Cn-01 can be set to 0 only.

58

3.1 Setting Parameters According to Machine Characteristics

3.1.3 Restricting Torque
The SERVOPACK can provide the following torque control:
• Torque restriction

Level 1: To restrict the maximum output torque to protect
the machine or workpiece
Level 2: To restrict torque after the motor moves the
machine to a specified position

• Torque control

Level 3: To always control output torque, not speed
Level 4: To alternately use speed control and torque
control

This section describes how to use levels 1 and 2 of the torque restriction function.
J How to Set Level 1: Internal Torque Limit

3

The maximum torque is restricted to the values set in the following parameters.

Cn-08

TLMTF
Forward Rotation
Torque Limit

Cn-09

TLMTR
Reverse Rotation
Torque Limit

Unit:
%
Unit:
%

Setting
Range: 0 to
800

Factory
Setting:
800

For Speed/Torque
Control and Position
Control

Setting
Range: 0 to
800

Factory
Setting:
800

For Speed/Torque
Control and Position
Control

Sets the maximum torque values for
forward rotation and reverse rotation,
respectively.
Sets these parameters when torque
must be restricted according to machine conditions.
This torque restriction function always
monitors torque, and outputs the signal
shown on the right when the limit value
is reached.

Output Signal for Torque Restriction Function
• /CLT
• Monitor mode (Un-06) bit 4
Parameter Setting:
(Cn-2D) = jj3, j3j, 3jj

Specifies a torque limit value in terms of
a percentage of the rated torque.
If a value higher than the maximum
torque is set, the maximum torque value is used.
Example of Use: Machine Protection
Torque limit
Motor speed

Note that too small a torque limit value will result in torque shortage at acceleration or deceleration.

Torque

59

APPLICATIONS OF Σ-SERIES PRODUCTS
3.1.3 Restricting Torque

• Using /CLT Signal
This section describes how to use contact output signal /CLT as a torque limit output signal.

I/O power
supply

SGDB SERVOPACK
Photocoupler Output
Per output:
Maximum operation
voltage: 30 VDC
Maximum output
current: 50 mA DC

Output → /CLT 1CN-*1

3

/CLT+
/CLT−

Torque Limit Output

For Speed/Torque
Control and
Position Control

This signal indicates whether motor output torque (current) is being restricted.
ON status: The circuit between 1CN-*1
and 1CN-*2
is closed.
1CN-*1
is at low level.

Motor output torque is being restricted.
(Internal torque reference is greater than the
preset value.)

OFF status: The circuit between 1CN-*1
and 1CN-*2 is open.
1CN-*1
is at high level.

Motor output torque is not being restricted.
(Internal torque reference is equal to or below
the preset value.)

Preset Value:

Cn-2D

Cn-08 (TLMTF)
Cn-09 (TLMTR)
Cn-18 (CLMIF) : P-CL input only
Cn-19 (CLMIR) : N-CL input only
Output Signal Selection

Factory
Setting: 210

For Speed/Torque Control
and Position Control

Specifies the terminal to which /CLT is to be output.
Setting
g

Output terminals (1CN-)

1s place = 3

*2
26

10s place = 3

27

28

100s place = 3

60

*1
25
29

30

1s place = 3
/CLT
Torque
detection

10s place = 3
100s place = 3

(1CN-25, 26)
(1CN-27, 28)
(1CN-29, 30)

3.1 Setting Parameters According to Machine Characteristics

J How to Set Level 2: External Torque Limit
First, use a contact input signal to make the torque
(current) limit value set in the parameter valid.
Torque limit can be set separately for forward and
reverse rotation.

SGDB SERVOPACK
Forward
rotation

Without
torque limit
Speed
Torque

/P-CL

To use this function, always set bit 2 of memory
switch Cn-02 to 0 (standard setting). The contact
input speed control function cannot be used.

1CN-45

With
torque limit
Speed
Torque

Reverse
rotation

Without
torque limit
Speed
Torque

/N-CL

1CN-46

With
torque limit
Speed
Torque

P-CL
P CL

N-CL
N CL

ON: 1CN-45 is at
low level.
OFF: 1CN-45 is at
high level.
ON: 1CN-46 is at
low level.
OFF: 1CN-46 is at
high level.

Torque restriction applies during forward rotation.
Torque restriction does not apply during forward
rotation.
Torque restriction applies during reverse rotation.

Limit value:
Cn-18

Limit value:
Cn-19

Torque restriction does not apply during reverse
rotation.
Output Signal for Torque Restriction Function

This torque restriction
function outputs the signal
shown on the right.

• /CLT
• Status indication mode bit data
• Monitor mode Un-05 bit 4

Parameter Setting:
Cn-2D = jj3, j3j, 3jj

Examples of Use:
• Forced stopping
• Holding workpiece by robot

Cn-18

CLMIF
Forward External
Torque Limit

Unit:
%

Setting
Range: 0 to
800

Factory
Setting:
100

For Speed/Torque
Control and Position
Control

Cn-19

CLMIR
Reverse External
Torque Limit

Unit:
%

Setting
Range: 0 to
800

Factory
Setting:
100

For Speed/Torque
Control and Position
Control

Sets a torque limit value when torque is restricted by external contact input.
This function is valid when Cn-2B is set to 0, 1, 2, 7, 8, 9, 10, 11.
When /P-CL (1CN-45) is input

Applies torque restriction as specified in Cn-18

When /N-CL (1CN-46) is input

Applies torque restriction as specified in Cn-19

For torque restriction by analog voltage reference, refer to Section 3.2.9 Using Torque
Restriction by Analog Voltage Reference.

61

3

APPLICATIONS OF Σ-SERIES PRODUCTS
3.1.3 Restricting Torque

• Using /P-CL and /N-CL Signals
This section describes how to use input signals /P-CL and /N-CL as torque limit input signals.
SGDB SERVOPACK

I/O power supply

Photocoupler

1CN-47

Host controller
/P-CL

1CN-45

/N-CL

5 mA

1CN-46

→ Input /P-CL 1CN-45

Forward External Torque Limit
Input (Speed Selection 1)

For Speed/Torque
Control and
Position Control

→ Input /N-CL 1CN-46

3

Reverse External Torque Limit
Input (Speed Selection 2)

For Speed/Torque
Control and
Position Control

These signals are for forward and reverse external torque (current) limit input.
This function is useful in forced stopping.

Output Signal for Torque
Restriction Function
• /CLT
• Status indication mode bit data
• Monitor mode Un-05 bit 4
• Parameter Setting:
Cn-2D = jj3, j3j, 3jj

P-CL
P CL

N-CL
N CL

ON: 1CN-45 is at
low level.
OFF: 1CN-45 is at
high level.
ON: 1CN-46 is at
low level.
OFF: 1CN-46 is at
high level.

Torque restriction applies during forward rotation.
Torque restriction does not apply during forward
rotation. Normal operation status.
Torque restriction applies during reverse rotation.

Limit value:
Cn-18

Limit value:
Cn-19

Torque restriction does not apply during reverse
rotation. Normal operation status.

The signal shown on the above are output while torque is being restricted.
Note This function is changed to another function depending on the setting of memory
switch Cn-2B (see below).

62

3.1 Setting Parameters According to Machine Characteristics

To use /P-CL and /N-CL as torque limit input signals, set the following constant.

Cn-2B

Control Mode Selection

Factory
Setting: 0

For Speed/Torque Control
and Position Control

Prohibits the contact input speed control function.

SGDB SERVOPACK
Run the
motor at
internally
set speed

If the contact input speed control function is used,
the contents of the input signals shown below will
change.

Contact
input

SGMj
servomotor

After this memory switch is reset, the meanings of the following signals will also
change:
Monitor mode (Un-05) bit 7 and bit 8
Setting

0, 1, 2,
7, 8, 9,
10, 11

Meaning

Does not use
the contact
input speed
control
function.

3

Input Signal

Used to switch between P control and
/P-CON (1CN-41) PI control and to perform other
functions.
/P-CL (1CN-45)

Used for forward external torque limit
input

/N-CL (1CN-46)

Used for reverse external torque limit
input

0: OFF, 1: ON
/P-CON

3, 4, 5, 6

Uses the contact
input speed
control function.

Direction of
rotation
0: Forward
1: Reverse

/P-CL

/N-CL

Speed Setting

0

0

0 reference and so on

0

1

Cn-1F (SPEED1)

1

1

Cn-20 (SPEED2)

1

0

Cn-21 (SPEED3)

63

APPLICATIONS OF Σ-SERIES PRODUCTS
3.2.1 Inputting Speed Reference

3.2

Setting Parameters According to Host Controller

This section describes how to connect a Σ-series Servo to a host controller and how to set
parameters.

3.2.1 Inputting Speed Reference
Input a speed reference by using the following input signal “speed reference input.” Since
this signal can be used in different ways, set the optimum reference input for the system
to be created.
SGDB SERVOPACK

3

1CN-9

Torque reference input
(analog voltage input)
Speed reference input
(analog voltage input)

Torque
reference

1CN-10

1CN-6

1CN-5

Speed
reference

↕P: Represents twisted-pair cables

→ Input V-REF

1CN-5

Speed Reference Input

→ Input SG

1CN-6

Signal Ground for Speed
Reference Input

Use these signals when speed control (analog
reference) mode is selected (Cn-2B is set to 0, 4,
7, 9, or 10).
For ordinary speed control, always wire the VREF and SG terminals.

Reference
speed

Standard
setting

Motor speed is controlled in proportion to the input
voltage between V-REF and SG.
J Standard Example:
Cn-03 = 500:

This setting means that 6 V is 3000 min−1

Examples:
+6 V input → 3000 min−1 in forward direction
+1 V input → 500 min−1 in forward direction
−3 V input → 1500 min−1 in reverse direction
Parameter Cn-03 can be used to change the voltage input range.

64

For Speed Control
Only
For Speed Control
Only

−1500

Input voltage (V)

−3000
−4500 Set the slope in

Cn-03 (VREFGN).

3.2 Setting Parameters According to Host Controller

J Example of Input Circuit
(See the figure on the right)

SGDB SERVOPACK
1/2 W or more
1CN-5

For noise control, always use twisted-pair
cables.

SG

1CN-6

Recommended Variable Resistor for Speed Setting:
Type 25HP-10B manufactured by Sakae Tsushin Kogyo Co., Ltd.
When position control is performed by a host controller such as a programmable controller, connect V-REF and SG to speed reference output terminals on the host controller. In this case, adjust
Cn-03 according to output voltage specifications.

Host controller

SERVOPACK

Speed
reference
output
terminals

1CN-5
1CN-6

/PAO 1CN-33
1CN-34
1CN-35
/PBO
1CN-36

Feedback
pulse input
terminals

3

↕P: Represents twisted-pair cables

The internal ¦12 V power supply can be used.
+12V

1CN-23

−12V

1CN-24

470Ω 1/2W or more

Maximum output current: 30mA
Voltage: 12V¦2V

Set parameter Cn-2B to select one of the following control modes.
Cn-2B

Control Mode Selection

Cn-2B
Setting

Factory
Setting: 0

Control Method
Speed Control
This is normal speed control.
• Speed reference is input from V-REF (1CN-5).
• /P-CON (1CN-41) signal is used to switch
between P control and PI control.

0

For Speed/Torque Control
and Position Control

1CN-41 is
open

P/PI
changeover

SGDB SERVOPACK
1CN-5
/P-CON
1CN-41

PI control

1CN-41 is
at 0 V

Speed
reference

P control

65

APPLICATIONS OF Σ-SERIES PRODUCTS
3.2.1 Inputting Speed Reference

Cn-2B
Setting

Control Method
Speed Control (Contact Reference) $ Speed
Control (Analog Reference)
This speed control allows switching between
contact and analog references.
• Analog reference is input from V-REF (1CN-5).
• /P-CL (1CN-45) and /N-CL (1CN-46) are used
to switch between contact and analog
references.

4

Open

Closed
Closed
Open

Open
Closed
Closed

• Speed reference is input from V-REF (1CN-5).
• /P-CON (1CN-41) is used to switch the control
mode between position/torque control and
speed control.
1CN-41 is
open
1CN-41 is
at 0 V

1CN-46

Control method
changeover

1CN-5

/P-CON

1CN-41

Speed control

• Speed reference is input from V-REF (1CN-5).
• /P-CON (1CN-41) signal is used to turn the
zero-clamp function ON or OFF.
1CN-41 is
open
1CN-41 is
at 0 V

SGDB SERVOPACK

Speed
reference

Position/Torque control

Zero-clamp Speed Control
This speed control allows the zero-clamp function
to be set when the motor stops.

66

/N-CL

1CN-45

Analog
reference
Contact
reference
f

Position/Torque Control $ Speed Control
This control mode can be switched between
position/torque control and speed control.

10

/P-CL

1CN-46

Open

7, 9

Contact
input
speed control
reference

1CN-5

• Contact input speed is selected.
1CN-45

3

SGDB SERVOPACK
Speed
reference V-REF

Turns zero-clamp function
OFF
Turns zero-clamp function
ON

SGDB SERVOPACK

Speed
reference

Zero-clamp

1CN-5
/P-CON
1CN-41

Zero clamp
Zero-clamp is performed when
the following two conditions are
met:
Condition 1: /P-CON is turned
ON.
Condition 2: Motor speed
drops below th
d
b l
the
preset value.
Preset value: Cn-0F (ZCLVL)

3.2 Setting Parameters According to Host Controller

• Using /P-CON Signal:
Proportional Control, etc.

→ Input /P-CON 1CN-41

For Speed Control
and Position
Control

The function of input signal /P-CON changes with Cn-2B setting.
SGDB SERVOPACK
Switching between P control and PI control
/P-CON

Switching between zero-clamp enabled mode and
zero-clamp prohibited mode
Switching between INHIBIT enabled mode and INHIBIT
prohibited mode
Switching the control mode

3

Changing the direction of rotation
Cn-2B

Cn-2B Setting
0, 1
2
3, 4, 5, 6
7, 8, 9
10
11

Meaning of /P-CON Signal
Switching between proportional (P) control and
proportional/integral (PI) control
(Not used)
Changing the direction of rotation during contact input speed
control
Switching the control mode
Switching between zero-clamp enabled and zero-clamp
prohibited modes
Switching between INHIBIT enabled and INHIBIT prohibited
modes

Adjust the speed reference gain using the following parameter.

Cn-03

TERMS

VREFGN Speed
Reference Gain

Unit:
(min−1)/
V

Setting
Range:
10 to
2000

For Speed Control
Only

Zero-clamp function
This function is used for a system in which the host controller does not form a position loop.
In this case, the stopping position may shift even if a speed reference is set to 0. If the zeroclamp function is turned ON, a position loop is internally formed so that the stopping position
is firmly “clamped.”

67

APPLICATIONS OF Σ-SERIES PRODUCTS
3.2.2 Inputting Position Reference

Sets the voltage range for speed reference input
V-REF (1CN-5). Sets this parameter according to
the output form of the host controller or external
circuit.

Reference
speed
(min−1)

Set this slope.
Reference
voltage (V)

The factory setting is as follows:
Rated speed ¦1%/6V

Motor Series

Factory Setting

SGMG (1500 min−1)

250

min−1)

167

SGMG (1000
SGMD

333

SGMS, SGM, SGMP

500

3
3.2.2 Inputting Position Reference
Input a position reference by using the following input signal “reference pulse input.”
Since there are several specifications for input signal, select reference input for the system to be created.
To use position control, set the following constant.
Cn-2B

Control Mode
Selection

Factory setting: 0

For Speed / Torque Control and
Position Control

Note Speed / Torque Control is selected at factory setting.
Cn-2B Setting
1

Control Mode
Position Control

J Move Reference by Pulse Input
Inputs a move reference by pulse
input.
Position reference can correspond
to the following three types of output form:
• Line driver output
• +12V Open collector output
• +5V Open collector output

68

SGDB SERVOPACK
Photocoupler
Reference pulse
input
Reference sign
input
Error counter
clear input

1CN-7
/PULS

1CN-8
1CN-11

/SIGN

1CN-12
1CN-15

/CLR

↕P: Represents twisted-pair cables

1CN-14

3.2 Setting Parameters According to Host Controller

Connection Example 1: Line Driver Output
Line Driver Used:

Host controller

SN75174 manufactured by
Texas Instruments Inc., or
MC3487 or equivalent.

SGDB SERVOPACK

Line driver

Photocoupler
1CN-7

/PULS 1CN-8

1CN-11
/SIGN 1CN-12
1CN-15
/CLR

1CN-14

Connection Example 2: Open Collector Output
Sets the value of limiting resistor R1 so that input current i falls within the following
range:

Host controller

SGDB SERVOPACK

i

1CN-7

Photocoupler

/PULS 1CN-8

Input Current i: 7 to 15 mA
Examples:

1CN-11

• When Vcc is 12 V,
R1 = 1 kΩ

/SIGN 1CN-12
1CN-15

• When Vcc is 5 V,
R1 = 180 Ω

/CLR

1CN-14

↕P: Represents twisted-pair cables

Note The signal logic for open collector output is as follows.
When Tr1 is ON

Equivalent to high level input

When Tr1 is OFF

Equivalent to low level input

The power supply inside the
SERVOPACK can be used.
If this power supply is used, it
will not be isolated from 0 V
in the SERVOPACK.

Host controller

SGDB SERVOPACK
Photocoupler
About 9mA
/PULS

1.5 V or less
when ON

/SIGN

/CLR

69

3

APPLICATIONS OF Σ-SERIES PRODUCTS
3.2.2 Inputting Position Reference

J Selecting the Reference Pulse Form

Use the following memory switch to select the reference pulse form to be used:

→ Input PULS
→ Input /PULS
→ Input SIGN
→ Input /SIGN

1CN-7
1CN-8
1CN-11
1CN-12

Reference Pulse Input

For Position Control Only

Reference Pulse Input

For Position Control Only

Reference Sign Input

For Position Control Only

Reference Sign Input

For Position Control Only

The motor only rotates at an angle proportional to the input pulse.

Cn-02 Bit 3

3

Cn-02 Bit 4
Cn-02 Bit 5

Reference Pulse Form
Selection
Reference Pulse Form
Selection
Reference Pulse Form
Selection

Factory
Setting: 0
Factory
Setting: 0
Factory
Setting: 0

Sets the form of a reference pulse that is externally output to the SERVOPACK.

For Position Control Only
For Position Control Only
For Position Control Only

Host
controller

Position SGDB SERVOPACK
reference
pulse
(1CN-7)

Sets the pulse form according to the host controller specifications.

(1CN-11)

Set also the input pulse logic in bit D of Cn-02.

Cn-02
Bit D

Bit
5

0

Bit
4

0

Bit
3

Input
Pulse
Multiplier

Reference
Pulse
Form
Sign +
pulse
train

0

Motor Forward Run
Reference

Motor Reverse Run
Reference

0
(Positive
logic
setting)

1

0

¢1

0

1

1

¢2

1

0

70

0

0

0

1

¢4

Twophase
pulse
train
with 90°
phase
difference
CW
pulse +
CCW
pulse

(1CN-7)

(1CN-11)

0

(1CN-7)

(1CN-11)

(1CN-7)
(1CN-11)

(1CN-7)
(1CN-11)

(1CN-7)

(1CN-7)

(1CN-11)

(1CN-11)

3.2 Setting Parameters According to Host Controller

Cn-02
Bit
5

Bit D

0

Bit
4

0

Bit
3

Input
Pulse
Multiplier

Reference
Pulse
Form
Sign +
pulse
train

0

Motor Forward Run
Reference

Motor Reverse Run
Reference

0

1

0

¢1

0

1

1

¢2

1

0

0

0

0

¢4

Twophase
pulse
train
with 90°
phase
difference
CW
pulse +
CCW
pulse

1

(1CN-7)

(1CN-11)

1
(Negative logset
ic setting)

(1CN-7)

(1CN-11)

(1CN-7)

(1CN-7)

(1CN-11)

(1CN-11)
(1CN 11)

(1CN-7)

(1CN-7)

(1CN-11)

(1CN-11)

3

Input Pulse Multiply Function:

When the reference form is two-phase pulse train
with 90° phase difference, the input pulse multiply
function can be used.

x4

Number of
motor move
pulses

x2
x1
Input reference pulse

(1CN-7)
(1CN-11)

The electronic gear function can also be used to
convert input pulses.

Example of I/O Signal Generation Timing
Servo ON

Release

t1 ≤ 30 ms
t2 ≤ 6 ms
(When parameter
Cn-12 is set to 0)
t3 ≥ 40 ms

Base block
1CN-11

Sign +
pulse train

1CN-7

t4, t5, t6 ≤ 2 ms
t7 ≥ 20 μs

PG pulse

/COIN

t7

Note The interval from the time the servo ON signal is turned ON until a reference pulse is
input must be at least 40 ms. Otherwise, the reference pulse may not be input.
The error counter clear (CLR) signal must be ON for at least 20 μs. Otherwise, it becomes invalid.

71

APPLICATIONS OF Σ-SERIES PRODUCTS
3.2.2 Inputting Position Reference

Allowable Voltage Level and Timing for Reference Pulse Input
Reference Pulse Form

Electrical Specifications

Sign + pulse train input
(SIGN + PULS signal)

The signs for each
reference pulse are as
follows:
¨: High level
©: Low level

Maximum reference
frequency: 450 kpps
¨ reference

© reference

90° different two-phase
pulse train
(phase A + phase B)
Maximum reference
frequency
x 1 multiplier:
450 kpps
x 2 multiplier:
400 kpps
x 4 multiplier:
200 kpps

3

Remarks

Phase A
Phase B

Phase B is 90°
behind phase B

Phase B is 90°
forward from phase B

CCW pulse + CW pulse

Parameter Cn-02 (bits 3,
4 and 5) is used to
switch the input pulse
multiplier mode.

CCW pulse

Maximum reference
frequency: 450 kpps

CW pulse

¨ reference

© reference

J Cleaning the Error Counter
The following describes how to clear the error counter.

→ Input

CLR 1CN-15

→ Input /CLR 1CN-14

Error Counter Clear Input
Error Counter Clear Input

Setting the CLR signal to high level does the following:
• Sets the error counter inside the SERVOPACK
to 0.
• Prohibits position loop control.

For Position
Control Only
For Position
Control Only

SGDB SERVOPACK
Clear
Position loop
error counter

Use this signal to clear the error counter from the
host controller.
Bit A of memory switch Cn-02 can be set so that the error counter is cleared only once
when the leading edge of an input pulse rises.

72

3.2 Setting Parameters According to Host Controller

Cn-02 Bit A

Error Counter Clear Signal
Selection

Factory
Setting: 0

For Position Control Only

Selects the pulse form of error counter clear signal CLR (1CN-15).
Setting
0

1

Meaning
Clears the error counter when the CLR
signal is set at high level. Error pulses
do not accumulate while the signal
remains at high level.
Clears the error counter only once when
the rising edge of the CLR signal rises.

1CN-15

Cleared state

1CN-15
Cleared only once at this point

3

3.2.3 Using Encoder Outputs
Encoder output signals divided inside the SERVOPACK can be output externally. These
signals can be used to form a position control loop in the host controller.
This output is
explained here.

SGMj
servomotor
encoder

TERMS

SGDB
SERVOPACK

Phase A
Phase B
Phase C

Frequency
dividing
circuit

Host
controller

Phase A
Phase B
Phase C

Divided (or dividing)
“Dividing” means converting an input pulse train from the encoder mounted on the motor
according to the preset pulse density and outputting the converted pulse. The unit is pulses
per revolution.

73

APPLICATIONS OF Σ-SERIES PRODUCTS
3.2.3 Using Encoder Outputs

The output circuit is for line driver output. Connect each signal line according to the following circuit diagram.
SGDB
SERVOPACK

Host controller
Line receiver

Phase A

1CN-33
1CN-34

Phase B

1CN-35
1CN-36

Phase C

Phase A
/PAO

Phase B
/PBO

1CN-19
1CN-20

Phase C
/PCO

Choke
coil
1CN-1

3

Smoothing
capacitor

1CN-50

Line receiver used: SN75175 manufactured by Texas
Instruments Inc. or MC3486 (or
equivalent)
R (termination resistor):
220 to 470 Ω
C (decoupling capacitor):
0.1 μF

↕P: Represents twisted-pair cables

J I/O Signals
I/O signals are described below.

Output →

PAO 1CN-33

Output →

/PAO 1CN-34

Output →

PBO 1CN-35

Output →

/PBO 1CN-36

Output →

PCO 1CN-19

Output →

/PCO 1CN-20

Encoder Output
Phase-A
Encoder Output
Phase-/A
Encoder Output
Phase-B
Encoder Output
Phase-/B
Encoder Output
Phase-C
Encoder Output
Phase-/C

For Speed/Torque Control
and Position Control
For Speed/Torque Control
and Position Control
For Speed/Torque Control
and Position Control
For Speed/Torque Control
and Position Control
For Speed/Torque Control
and Position Control
For Speed/Torque Control
and Position Control

Divided encoder signals are output.
Always connect these signal terminals when a position loop is formed in the host controller to perform position control.
Set a dividing ratio in the following parameter.
Dividing ratio setting

Cn-0A PGRAT

The dividing ratio setting is not relevant to the gear ratio setting (Cn-24, 25) for the electronic gear function of the SERVOPACK when used for position control.

74

3.2 Setting Parameters According to Host Controller

Output Phase Form
Incremental Encoder
Forward rotation

Reverse rotation
Phase A

Phase A

Phase B

Phase B

Phase C

Phase C

Absolute Encoder
Forward rotation

Reverse rotation
Phase A

Phase A

Phase B

Phase B

Phase C

Phase C

→ Input SEN

1CN-4

SEN Signal Input

→ Input SG

1CN-2

Signal Ground

Output →

PSO 1CN-48

Output →

/PSO 1CN-49

→ Input BAT

1CN-21

→ Input BAT0 1CN-22

Encoder Output
Phase-S
Encoder Output
Phase-/S
Battery (+)
Battery (−)

3

For Speed/Torque Control
Only
For Speed/Torque Control
Only
For Speed/Torque Control
and Position Control
For Speed/Torque Control
and Position Control
For Speed/Torque Control
and Position Control
For Speed/Torque Control
and Position Control

Use these signals (SEN to BAT0) for absolute encoders. For details, refer to Section
3.8.5 Using an Absolute Encoder.

Output → SG 1CN-1

Signal Ground

Output → FG 1CN-50

Frame Ground

For Speed/Torque Control
and Position Control
For Speed/Torque Control
and Position Control

SG: Connect to 0 V on the host controller.
FG: Connect to the cable shielded wire.

75

APPLICATIONS OF Σ-SERIES PRODUCTS
3.2.3 Using Encoder Outputs

J Selecting the Encoder Type
Use the following memory switch to specify the type of the encoder to be used.
Cn-01 Bit E

Encoder Type Selection

Factory
Setting: 0

For Speed/Torque Control
and Position Control

Sets the encoder type according to the servomotor type as shown in the table.
After changing the memory switch setting, always turn the power OFF, then ON.
Motor Type
encoder
specifications
2

Setting

Incremental encoder:
8192 pulses per revolution
Incremental encoder:
2048 pulses per revolution
Incremental encoder:
4096 pulses per revolution
Absolute encoder:
1024 pulses per revolution
Absolute encoder:
8192 pulses per revolution

3
6

3

Number of Encoder Pulses Per Revolution (P/R)

W
S

0

1

J Setting the Pulse Dividing Ratio
Set the pulse dividing ratio in the following parameter.
PGRAT
Dividing Ratio Setting

Cn-0A

Unit:
P/R

Setting
Range: 16
to 32768

Sets the number of output pulses for PG output
signals (PAO, /PAO, PBO and /PBO).

For Speed/Torque
Control and Position
Control

Pulses from motor encoder (PG) are divided by
the preset number of pulses before being output.

Output terminals:
PAO (1CN-33)
/PAO (1CN-34)
PBO (1CN-35)
/PBO (1CN-36)

SGDB
SERVOPACK

SGMj
servomotor
encoder

Phase A

Phase A

Frequency
dividing

Phase B

Phase B output

The number of output pulses per revolution is set in this parameter. Set this value according to the reference unit of the machine or controller to be used.
The setting range varies according to the encoder used.
Setting example:

Preset value: 16
1 revolution

Motor Type
encoder
specifications

Number of Encoder Pulses Per Revolution

Setting Range

2

Incremental encoder: 8192 pulses per revolution

16 to 8192

3

Incremental encoder: 2048 pulses per revolution

16 to 2048

6

Incremental encoder: 4096 pulses per revolution

16 to 4096

W

Absolute encoder: 1024 pulses per revolution

16 to 1024

S

Absolute encoder: 8192 pulses per revolution

16 to 8192

After changing the parameter setting, always turn the power OFF, then ON.

76

3.2 Setting Parameters According to Host Controller

3.2.4 Using Contact I/O Signals
J Contact Input Signal Terminal Connections
These signals are used to control SGDB SERVOPACK operation. Connect these signal
terminals as necessary.
SGDB SERVOPACK
I/O power
supply

Photocoupler
1CN-47

Host controller
/P-CL

/N-CL

/S-ON

/P-CON

1CN-45

1CN-46

1CN-40

3

1CN-41

1CN-42

1CN-43
/ALMRST

1CN-44

Note Provide an external I/O power supply separately.
There are no power terminals available from the SGDB SERVOPACK outputs
signals externally.
External Power Supply: 24 1 VDC
50 mA or more
Yaskawa recommends that this external power supply be the same type as for the
output circuit.

→ Input +24VIN 1CN-47

I/O Power Supply

This external power supply input terminal is common to the following contact input signals:
Contact Input Signals: /P-CL
/N-CL
/S-ON
/P-CON
P-OT
N-OT
/ALMRST

(1CN-45)
(1CN-46)
(1CN-40)
(1CN-41)
(1CN-42)
(1CN-43)
(1CN-44)

For Speed/Torque
Control and
Position Control
SGDB SERVOPACK
I/O power
supply
1CN-47

Connect an external I/O power supply.

77

APPLICATIONS OF Σ-SERIES PRODUCTS
3.2.4 Using Contact I/O Signals

J Contact Output Signal Terminal Connections

These output signals are used
to indicate SGDB SERVOPACK
operation status.

Photocoupler output

SGDB SERVOPACK

I/O power
supply

Photocoupler

/V-CMP+

Per output
Maximum operational
voltage: 30 VDC
Maximum output
current: 50 mA DC

/V-CMP−
/TGON+
/TGON−
/S-RDY+
/S-RDY−

Open collector output

3

Per output
Maximum operational
voltage: 30 VDC
Maximum output
current: 20 mA DC
Host
controller

Note Provide an external I/O power supply separately.
There are no power terminals to which the SGDB SERVOPACK outputs signals
externally.
Yaskawa recommends that this external power supply be the same type as for the
input circuit.

78

3.2 Setting Parameters According to Host Controller

3.2.5 Using Electronic Gear
The electronic gear function enables the motor travel distance per input reference pulse
to be set to any value. It allows the host controller to perform control without having to
consider the machine gear ratio and the number of encoder pulses.
When Electronic Gear Function
is Not Used

When Electronic Gear Function
is Used
Workpiece Reference
unit: 1 μm

Workpiece

Number of
encoder
pulses: 2,048

Number of
encoder
pulses: 2,048

Ball screw
pitch: 6 mm

Ball screw
pitch: 6 mm

Machine conditions and reference unit
must be defined for the electronic gear
function beforehand.

To move a workpiece 10 mm :

3

To move a workpiece 10 mm:

One revolution is equivalent to 6 mm, so
10
6 = 1.6666 (revolutions)

Reference unit is 1 μm, so
10 mm
1 μm = 10,000 pulses

2048 x 4 (pulses) is equivalent to one revolution, so
1.6666 x 2,048 x 4 = 13,653 (pulses)
A total of 13653 pulses must be input as a reference.
The host controller needs to make this calculation.

J Setting the Electronic Gear
Calculate the electronic gear ratio (B/A) according to the procedure below and set the
value in Cn-24 and Cn-25.
1. Check the machine specifications.
Items related to electronic gear:
− Gear ratio
− Ball screw pitch
− Pulley diameter

Ball screw pitch
Gear ratio

2. Check the number of encoder pulses for the SGMj servomotor.
Motor Type
encoder
specifications
2
3
6
W
S

Encoder Type

Incremental encoder

Absolute encoder

Number of Encoder
Pulses Per Revolution
(P/R)
8192
2048
4096
1024
8192

Same as parameter Cn-11 settings.

79

APPLICATIONS OF Σ-SERIES PRODUCTS
3.2.5 Using Electronic Gear

3. Determine the reference unit to be used.
Reference unit is the minimum unit of position
data used for moving the load.
(Minimum unit of reference from host controller)

To move a table in 0.001 mm units
Reference unit: 0.001 mm

Examples:
0.01 mm, 0.001 mm, 0.1°, 0.01 inch
Determine the reference unit according to
machine specifications and positioning
accuracy.

Reference input of one pulse moves the load
by one reference unit.

Example: When reference unit is 1 μm
If a reference of 50,000 pulses is input, the load moves 50 mm (50,000 x 1 μm).
4. Determine the load travel distance per revolution of load shaft in reference units.

3

Load travel distance per revolution of load shaft (in reference units)

=

Load travel distance per revolution of load shaft (in unit of distance)
Reference unit

Example: When ball screw pitch is 5 mm and reference unit is 0.001 mm
5/0.001 = 5,000 (reference units)
Ball Screw

Disc Table

Belt & Pulley
Load shaft

Load shaft
Load shaft

P: Pitch
1 revolution
P
=
Reference unit

1 revolution
=

360°
Reference unit

D: Pulley diameter
1 revolution
πD
=
Reference unit



5. Determine the electronic gear ratio B .
A
If the load shaft makes “n” revolutions when the motor shaft makes “m” revolutions,
the gear ratio of motor shaft and load shaft is n .
m
Electronic gear ratio

B 
A

=
Number of encoder pulses x 4

Travel distance per revolution of load shaft (in reference units)

NOTE

×m
n

Make sure that the electronic gear ratio meets the following condition:
0.01 ≤ Electronic gear ratio

B≤ 100
A

If the electronic gear ratio is outside this range, the SERVOPACK does not work properly. In this case, modify the load configuration or reference unit.

80

3.2 Setting Parameters According to Host Controller

6. Set the electronic gear ratio in the parameters below.



Reduce the electronic gear ratio B to their lowest terms so that both A and B are an
A
integer smaller than 65535, then set A and B in the following parameters.

B 
A

Cn-24

RATB Electronic gear ratio (numerator)

Cn-25

RATA Electronic gear ratio (denominator)

This is all that is required to set the electronic gear.

Cn-24

RATB
Electronic Gear Ratio
(Numerator)

Unit:
None

Setting
Range: 1
to 65535

Factory
Setting: 4

For Position
Control Only

Cn-25

RATA
Electronic Gear Ratio
(Denominator)

Unit:
None

Setting
Range: 1
to 65535

Factory
Setting: 1

For Position
Control Only

Set the electronic gear ratio according to machine
specifications.

=

Electronic gear ratio B
A

Cn-24
Cn-25

Input
reference
pulse

SGDB
SERVOPACK
Electronic gear

3

SGMj
servomotor

B = [(Number of encoder pulses) x 4] x [Motor shaft rotating speed]
A = [Reference unit (load travel distance per revolution of load shaft)] x [Load shaft
rotating speed]
Note that the parameter settings must meet the following condition:
0.01 ≤ B ≤ 100
A



81

APPLICATIONS OF Σ-SERIES PRODUCTS
3.2.5 Using Electronic Gear

J Examples of Setting an Electronic Gear Ratio for Different Load Mechanisms
Ball Screw
Reference unit: 0.001 mm

Travel distance per
= 6mm = 6000
0.001mm
revolution of load shaft



Electronic gear ratio B = 2048 × 4 × 1 = Cn-24
6000 × 1
Cn-25
A

Load shaft

Preset
values

Ball screw
Incremental
pitch: 6 mm
encoder:
2048 pulses per revolution

Disc Table

Travel distance per
revolution of load shaft

Reference unit:
0.1°

Gear ratio:
3:1

Reference unit: 0.0254 mm
Load shaft
Gear ratio:
2.4 : 1

Pulley diameter:
100 mm

Absolute encoder:
1024 pulses per revolution

Cn-25

6000

= 360° = 3600
0.1°



Preset
values

Incremental encoder:
2048 pulses per revolution

Belt & Pulley

8192

Electronic gear ratio B = 2048 × 4 × 3 = Cn-24
3600 × 1
Cn-25
A

Load shaft

3

Cn-24

Cn-24

24576

Cn-25

3600

Travel distance per
= 3.14 x 100mm = 12362
0.0254mm
revolution of load shaft



Electronic gear ratio B = 1024 × 4 × 2.4 = Cn-24
12362 × 1
Cn-25
A
= 9830.4 = 49152
12362
61810

Preset
values

Cn-24

49152

Cn-25

61810

J Control Block Diagram for Position Control

SGDB SERVOPACK for position control

Differentiation

Feed−
forward
gain

Primary
lag filter

Bias
/COIN
signal

Reference
pulse
Error
counter

Speed
loop

SGMj
servomotor

Current
loop

Smoothing

PG signal
output

82

Encoder
Frequency
dividing

3.2 Setting Parameters According to Host Controller

3.2.6 Using Contact Input Speed Control
The contact input speed control function provides easy-to-use speed control. It allows
the user to initially set three different motor speeds in parameters, select one of the
speeds externally by contact input and run the motor.
SGDB SERVOPACK
/P-CON

Contact
input

/P-CL
/N-CL

1CN-41
1CN-45
1CN-46

SGMj
servomotor
Speed selection

No external speed setting
device or pulse generator is
required.

The motor is operated at the
speed set in the parameter.

3

Parameters

J Using the Contact Input Speed Control Function
To use the contact input speed control function, perform Steps a) to c).
1. Set memory switch Cn-02 as follows.

Cn-2B

Control Mode Selection

Factory
Setting: 0

Enables the contact input speed control function.
If the contact input speed control function is
used, the contents of the input signals shown below will change.

For Speed/Torque Control
and Position Control
SERVOPACK
Run the
motor at
internally
set
Contact input speed

Servomotor

When this memory switch is reset, the meanings of the following signals will also
change:
Monitor mode (Un-05) bit 7 and bit 8

83

APPLICATIONS OF Σ-SERIES PRODUCTS
3.2.6 Using Contact Input Speed Control

Setting

Meaning

0, 1, 2,
7, 8, 9,
7 8 9
10,
10 11

Does not use
the contact
input speed
control function.
Uses the
contact input
speed control
co t ol
function.

3, 4, 5,
6

3

Note In
the
case
of
the posi
position control type,
the referrefer
ence
pulse inin
hibit function (INHIBIT)
cannot be
used.

Input Signal
/P-CON (1CN-41)

Used to switch between P control and PI
control and to perform other functions.

/P-CL (1CN-45)

Used for forward external current limit input

/N-CL (1CN-46)

Used for reverse external current limit input
0: OFF, 1: ON

/P-CON

/P-CL

/N-CL

Speed Setting

Direction
of rotation

0

0

0 reference and so on

0: Forward
1: Reverse

0

1

Cn-1F, SPEED1

1

1

Cn-20, SPEED2

1

0

Cn-21, SPEED3

2. Set three motor speeds in the following parameters.
Cn-1F

SPEED1
1st Speed (Contact
Input Speed Control)

Unit:

Setting
Range: 0 to
10000

Factory
Setting:
100

For Speed Control only

Cn-20

SPEED2
2nd Speed (Contact
Input Speed Control)

Unit:

Setting
Range: 0 to
10000

Factory
Setting:
200

For Speed Control only

Cn-21

SPEED3
3rd Speed (Contact
Input Speed Control)

Unit:

Setting
Range: 0 to
10000

Factory
Setting:
300

For Speed Control only

min−1

min−1

min−1

Use these parameters to set motor speeds
when the contact input speed control function
is used.
If a value higher than the maximum speed is
set, the maximum speed value is used.
Speed selection input signals /P-CL (1CN-45)
and /N-CL (1CN-46), and rotation direction
selection signal /P-CON (1CN-41) enable the
motor to run at the preset speeds.

Contact input speed control
SERVOPACK

Contact
input

Run the
motor at
internally
set speed

Servomotor

3. Set the soft start time.

Cn-07

Unit:
ms

Setting
Range: 0
to 10000

Factory
Setting: 0

For Speed Control only

Cn-23

84

SFSACC
Soft Start Time
(Acceleration)
SFSDEC
Soft Start Time
(Deceleration)

Unit:
ms

Setting
Range: 0
to 10000

Factory
Setting: 0

For Speed Control only

3.2 Setting Parameters According to Host Controller

In the SERVOPACK, a speed reference is multiplied by the preset acceleration or deceleration value to provide speed control.
When a progressive speed reference is input
or contact input speed control is used, smooth
speed control can be performed. (For normal
speed control, set “0” in each parameter.)

Speed
reference
Soft start
Maximum
speed

SERVOPACK
contact input
speed
reference

Cn-07: Set this time interval.

Maximum
speed

Set the following value in each parameter.
Cn-23: Set this time interval.

• Cn-07: Time interval from the time the motor starts until it reaches the maximum
speed
• Cn-23: Time interval from the time the motor is running at the maximum speed until it
stops
J Operating by Contact Input Speed Control Function

3

Contact input speed control performs the following operation.
The following input signals are used to start and stop the motor.

→ Input /P-CL 1CN-45

Speed Selection 1 (Forward
External Torque Limit Input)

For Speed/Torque
Control and
Position Control

→ Input /N-CL 1CN-46

Speed Selection 2 (Reverse
External Torque Limit Input)

For Speed/Torque
Control and
Position Control

When Contact Input Speed Control is used:
Contact Signal
/P-CON

/P-CL

Parameter
/N-CL

Cn-2B

Selected Speed

3
4

Direction of
rotation
0: Forward
rotation
1: Reverse
rotation

Pulse reference input (position
control)

6

0

Analog speed reference input
(V-REF)

5

−−−−

Stopped by internal speed reference 0

Analog torque reference input
(torque control)

0

0

1

1

1

1

SPEED 1 (Cn-1F)

0

Common to 3, 4, 5 and
6

SPEED 2 (Cn-20)
SPEED 3 (Cn-21)

−−−−: Not used
Modes Other Than Contact Input Speed Control
Input signals are used as external torque limit input.

85

APPLICATIONS OF Σ-SERIES PRODUCTS
3.2.6 Using Contact Input Speed Control

Input signal /P-CON is used to specify the direction of motor rotation.
Proportional Control, etc.

→ Input /P-CON 1CN-41

For Speed/Torque
Control and
Position Control

When Contact Input Speed Control is used:
Use input signal /P-CON to specify the direction of motor rotation.
/P-CON

Meaning

1

Reverse rotation

0

Forward rotation

0: OFF (high level), 1: ON (low level)
Modes Other Than Contact Input Speed Control
/P-CON signal is used for proportional control, zero-clamp and torque/speed control
changeover.

3

The figure below illustrates an example of operation in contact input speed control mode.
Using the soft start function reduces physical shock at speed changeover.
When Contact Input Speed Control is Used
Motor speed

3rd speed

Set acceleration and
deceleration values in Cn-07
and Cn-23 (soft start time).

2nd speed
1st speed

Stopped

Stopped
Stopped
1st speed
2nd speed
3rd speed

/P-CL

OFF

ON

ON

OFF

OFF

ON

ON

OFF

OFF

ON

ON

OFF

OFF

ON

ON

OFF

OFF

ON

/N-CL

OFF

ON

ON

OFF

OFF

OFF

OFF

OFF

/P-CON

86

ON

3.2 Setting Parameters According to Host Controller

Note When the parameter Cn-2B is set to 5, the soft start function works only in contact
input speed control mode. The soft start function is not available when pulse reference input is used.
If contact input speed control mode is switched to pulse reference input mode
when the motor is running at the 1st, 2nd or 3rd speed, the SERVOPACK does not
receive a pulse reference until positioning complete signal /COIN is output.
Always start outputting a pulse reference from the host controller after a positioning complete signal is output from the SERVOPACK.
Signal Generation Timing for Position Control Type
Motor speed
0 min−1

/COIN

Pulse reference

3

/N-CL
/P-CL
Selected speed

1st speed

2nd speed

3rd speed

Pulse reference

1st speed

The above figure illustrates signal generation timing when the soft start function is
used.
The value of t1 is not influenced by use of the soft start function.
A maximum of 6 ms delay occurs when /P-CL or /N-CL signal is read.

3.2.7 Using Torque Control
The SERVOPACK can provide the following torque control:
• Torque restriction

Level 1: To restrict the maximum output torque to protect
the machine or workpiece
Level 2: To restrict torque after the motor moves the
machine to a specified position

• Torque control

Level 3: To always control output torque, not speed
Level 4: To switch between torque control and other
control

This section describes how to use levels 3 and 4 of the torque control function.

87

APPLICATIONS OF Σ-SERIES PRODUCTS
3.2.7 Using Torque Control

J Selecting Torque Control
Use the following parameter to select level 3 or level 4 torque control.

Cn-2B

Control Mode Selection

Factory
Setting: 0

For Speed/Torque Control
and position Control

This is dedicated torque control.
A motor torque reference value is externally input into the SERVOPACK to control
torque.
Examples of Use: Tension control
Pressure control
Cn-2B

Control Mode
SERVOPACK

Torque Control

3

This is a dedicated torque control mode.
• A torque reference is input from T-REF
(1CN-9).

Torque
reference
Speed limit

• /P-CON is not used.

2

• Speed reference input V-REF (1CN-5) can
be used as speed limit when bit 2 of Cn-02
is set to 1.
• Parameter Cn-14 can be used for maximum
speed control.
Example of Use:
Tension control
Tension

SGDB
SERVOPACK

Torque Control $ Speed Control (Analog
Reference)
Torque control and speed control can be
switched.
• A speed reference or speed limit value is
input from V-REF (1CN-5).

9

• T-REF (1CN-9) inputs a torque reference,
torque feed-forward reference or torque limit
value depending on the control mode used.
• /P-CON (1CN-41) is used to switch between
torque control and speed control.
When 1CN-41 is
open
When 1CN-41 is
at 0 V

88

Torque
control
Speed
control

SERVOPACK
Speed
reference
1CN-5
Torque
reference
Switching
between
speed
and
torque
reference

1CN-9
/P-CON

1CN-11

3.2 Setting Parameters According to Host Controller

Cn-2B

Control Mode
In the Torque Control mode (/P-CON is OFF):
• T-REF reference controls torque.
• V-REF can be used to limit motor speed.
(when bit 2 of Cn-02 is 1)
V-REF voltage (+) limits motor speed during
forward or reverse rotation.
• Parameter Cn-14 can be used to limit the
maximum motor speed.

Motor speed

Principle of Speed Restriction:
When the speed exceeds the speed
limit, negative feedback of torque
proportional to the difference between
the current speed and the limit speed is
performed to return the speed to within
the normal speed range. Therefore, the
actual motor speed limit value has a
certain range depending on the load
conditions.
9

Speed limit range
V-REF

3

In the Speed Control mode (/P-CON is ON):
Values set in bit 9 of parameter Cn-02 and bit 8 of Cn-02 determine the
following:
Parameter
Cn-02

Cn-02

Bit 9

Bit 8

0

0

Speed
Reference
p
Input
(V-REF)
(V REF)
(1CN-5, 6)

Torque
Input
(T-REF)
(1CN-9, 10)

Remarks

Speed control
Speed
reference

Cannot be
used

Speed control with torque
feed-forward
1

−−−−
Speed
reference

0

1

Torque
feed-forward

Speed control with torque
limit by analog voltage
reference
Speed
reference

Torque limit
value

Any value can be set in bit 8
of Cn-02 (0 and 1 have the
same effect).
For details of speed control
with torque feed-forward,
refer to Section 3.2.8 Using
Torque Feed-forward
Function.
For details of speed control
with torque limit by analog
voltage reference, refer to
Section 3 2 9 Using Torque
3.2.9
Restriction by Analog Voltage
Reference.

89

APPLICATIONS OF Σ-SERIES PRODUCTS
3.2.7 Using Torque Control

Cn-2B

Control Mode
Position Control $ Torque Control
This mode allows switching between position control and torque control.
• /P-CON (1CN-41) is used to switch the control mode between position
control and torque control.

8

When 1CN-41 is
open
When 1CN-41 is
at 0 V

Position
control
Torque
control

Speed Control (Contact Reference) $ Torque Control

This mode allows switching between speed control (contact
reference) and torque control.
• /P-CL (1CN-45) and /N-CL (1CN-46) are used to switch the control mode
between speed control (contact reference) and torque control.
6

3

1CN-45 1CN-46
Open

Open

Open

Closed

Closed

Closed

Closed

Open

Torque
control
Speed
p
control
l
(contact
reference)

J Input Signals
The following input signals perform torque control.
SGDB SERVOPACK

1CN-9

Torque reference input
(Analog voltage input)

1CN-10
1CN-5

Speed limit input
(Analog voltage input)

1CN-6

Torque
reference
Speed
reference

↕P: Represents twisted-pair cables

→ Input T-REF 1CN-9

Torque Reference Input

→ Input SG

Signal Ground for Torque
Reference Input

1CN-10

These signals are used when torque control is selected.
Motor torque is controlled so that it is proportional
to the input voltage between T-REF and SG.
Standard Setting
Cn-13 = 30: This setting means that 3 V is equivalent to rated torque.

90

For Speed/Torque
Control Only
For Speed/Torque
Control Only

Reference
torque
(%)

Standard
setting

Input voltage
(V)
Set the
slope in
Cn-13
(TCRFGN).

3.2 Setting Parameters According to Host Controller

Examples:

+3 V input → Rated torque in forward direction
+9 V input → 300% of rated torque in forward direction
−0.3 V input → 10% of rated torque in reverse direction

Parameter Cn-13 can be used to change the voltage input range.
Example of Input Circuit:
See the figure on the right.

SGDB
SERVOPACK
1/2 W or more

1CN-9

• For noise control, always use twistedpair cables.

1CN-10

• Example of Variable Resistor for Speed Setting:
Type 25HP-10B manufactured by Sakae Tsushin Kogyo Co., Ltd.

→ Input V-REF

1CN-5

→ Input SG

1CN-6

Speed Reference Input (or
Speed Limit Input)
Signal Ground for Speed
Reference Input

These signals are used when speed control is selected.
For normal speed control, always connect these
signal terminals.

For Speed/Torque
Control Only
For Speed/Torque
Control Only

Reference
speed (min−1)

Standard
setting

−1500
−3000

Motor speed is controlled so that it is proportional
to the input voltage between V-REF and SG.

−4500

Input voltage
(V)
Set the slope
in Cn-03
(VREFGN).

Standard Example
Cn-03 = 500: This setting means that 6 V is equivalent to 3000 min−1.
Examples:

+6 V input → 3000 min−1 in forward direction
+1 V input → 500 min−1 in forward direction
−3 V input → 1500 min−1 in reverse direction

Parameter Cn-03 can be used to change the voltage input range. (This is also applicable
to speed restriction.)
Example of Input Circuit:
See the figure on the right.

SGDB
SERVOPACK
1/2 W or more

• For noise control, always use twistedpair cables.

1CN-5
1CN-6

• Example of Variable Resistor for Speed Setting:
Type 25HP-10B manufactured by Sakae Tsushin Kogyo Co., Ltd.

91

3

APPLICATIONS OF Σ-SERIES PRODUCTS
3.2.7 Using Torque Control

• Using /P-CON Signal

→ Input /P-CON

1CN-41

Proportional Control, etc.

For Speed/Torque
Control and
Position Control

• The function of this input signal varies according
to the Cn-2B setting.
SGDB SERVOPACK
Switching between P control and PI control
Switching between zero-clamp enabled
mode and zero-clamp prohibited mode

/P-CON

Switching between INHIBIT enabled mode
and INHIBIT prohibited mode
Switching the control mode

3

Changing the direction of rotation

Cn-2B

Cn-2B
Setting

Switching between P control
and PI control.

0, 1
2

(Not used)

3, 4, 5, 6
7, 8, 9

Meaning of /P-CON Signal

Switching the direction of
rotation when contact input
speed control mode is selected.
Switching the control mode.

10

Switching between zero-clamp
enabled and zero-clamp
prohibited modes.

11

Switching between INHIBIT
enabled and INHIBIT prohibited
modes.

J Parameters
Set the following parameters for torque control according to the servo system used.

Cn-13

TCRFGN
Torque Reference
Gain

Unit:
Setting
0.1 V/Rated Range:
Torque
10 to 100

Sets the voltage range of torque reference input
T-REF (1CN-9) according to the output form of the
host controller or external circuit.
The factory setting is 30, so the rated torque is 3 V
(30 x 0.1).

92

Factory
Setting:
30

For Speed/Torque
Control Only

Reference torque
Rated torque

Reference
voltage (V)
Set this reference voltage.

3.2 Setting Parameters According to Host Controller

Cn-14

TCRLMT
Speed Limit for Torque
Control

Unit:

min−1

Setting
Range: 0 to
10000

Sets a motor speed limit value in torque control
mode.

Factory
Setting:
10000

For Speed/Torque
Control Only

Speed Control Range for Torque Control
Motor speed
TCRLMT
Torque
control
range

This parameter is used to prevent machine overspeed during torque control.

Cn-03

VREFGN
Speed Reference
Gain

Unit:

(min−1)/V

Torque

Setting
Range: 0
to 2000

Sets the voltage range of speed reference input VREF (1CN-5) according to the output form of the−1
host controller or external circuit.

For Speed/Torque
Control Only

Reference
speed
(min−1)

Set this
slope.

3

Reference
voltage (V)

The factory setting is rated speed ¦1%/6V.
Motor Series

Factory Setting

SGMG (1500 min−1)

250

min−1)

167

SGMG (1000
SGMD

333

SGMS, SGM, SGMP

500

93

APPLICATIONS OF Σ-SERIES PRODUCTS
3.2.8 Using Torque Feed-forward Function

3.2.8 Using Torque Feed-forward Function
For speed control (analog reference) only.
The torque feed-forward function reduces positioning time. It differentiates a speed reference at the host controller (prepared by the customer) to generate a torque feed-forward
reference, then sends this torque feed-forward reference and the speed reference to the
SERVOPACK.
Too high a torque feed-forward value will result in overshoot or undershoot. To prevent
this, set the optimum value while observing system response.
Connect a speed reference signal line and torque feed-forward reference signal line from
the host controller to V-REF (1CN-5, 1CN-6) and T-REF (1CN-9, 1CN-10), respectively.

3

Schematic Block Diagram for Torque Feed-forward Control
Host controller

SERVOPACK
Servomotor

Differen
tiation
Current
loop

Position
reference
Integration
(Cn-05)
Speed
calculation

Encoder

Frequency
dividing

KP: Position loop gain
KFF: Feed-forward gain

J How to Use Torque Feed-forward Function
To use the torque feed-forward function, set the following memory switch to 1.

Cn-02 Bit 9

Selection of Torque
Feed-forward Function

Factory
Setting: 0

For Speed/Torque Control
Only

Enables the torque feed-forward function.
To use the torque feed-forward function, input a speed reference to the V-REF terminal
and a torque feed-forward reference to the T-REF terminal.
The host controller must generate a torque feed-forward reference.
Setting

Meaning

0

94

Does not use the torque feed-forward function.

1

Uses the torque feed-forward function.

3.2 Setting Parameters According to Host Controller

• This function cannot be used with the function for torque restriction by analog voltage
reference, described in Section 3.2.9 Using Torque Restriction by Analog Voltage Reference.
• For parameters and control modes, refer to Appendix C List of Parameters.
J Setting a Torque Feed-forward Value in Parameter Cn-13
The factory setting is Cn-13 = 30. If, for example, the torque feed-forward value is 3 V,
torque is restricted to 100% (rated torque).

Cn-13

TCRFGN
Torque Reference
Gain

Unit: 0.1
V/Rated
Torque

Setting
Range:
10 to 100

Factory
Setting:
30

For Speed/Torque
Control Only

3.2.9 Using Torque Restriction by Analog Voltage Reference

3

For speed control (analog reference) only.
This function restricts torque by assigning the T-REF terminal (1CN-9, 1CN-10) a torque
limit value in terms of analog voltage. Since torque reference input terminal T-REF is
used as an input terminal, this function cannot be used for torque control.
Schematic Block Diagram for Torque Restriction by Analog Voltage Reference

Torque limit value

Speed reference

Speed loop
gain (Cn-04)

Integration
(Cn-05)

Torque
reference

Torque limit value

Speed feedback

J How to Use Torque Restriction by Analog Voltage Reference
To use this torque restriction function, set the following memory switch to 1.

Cn-02 Bit 8

Torque Restriction by Analog
Voltage Reference

Factory
Setting: 0

For Speed/Torque Control
Only

Enables this torque restriction function.
To use this function, input a speed reference to the V-REF terminal and a torque limit value to the T-REF terminal.

95

APPLICATIONS OF Σ-SERIES PRODUCTS
3.2.9 Using Torque Restriction by Analog Voltage Reference

This function cannot be used for torque control.
Torque restriction cannot be set separately for forward and reverse rotation. (The same
setting applies to both forward and reverse rotation.)
Setting

Meaning

0

Does not use the T-REF terminal as a torque limit value input terminal.

1

Uses the T-REF terminal as a torque limit value input terminal.

• This function cannot be used with the torque feed-forward function described in Section
3.2.8 Using Torque Feed-forward Function.
• For parameters and control modes, refer to Appendix C List of Parameters.
J Setting a Torque Limit Value in Parameter Cn-13

3

The factory setting is Cn-13 = 30. If, for example, the torque limit value is 3 V, torque is
restricted to 100% (rated torque).

Cn-13

96

TCRFGN
Torque Reference
Gain

Unit: 0.1 V/
Rated
Torque

Setting
Range:
10 to 100

Factory
Setting:
30

For Speed/Torque
Control Only

3.2 Setting Parameters According to Host Controller

3.2.10 Using the Reference Pulse Inhibit Function (INHIBIT)
This function causes the SERVOPACK to stop counting input reference pulses in position control mode.
While this function is being used, the motor remains in servo locked (clamped) status.
The /P-CON signal is used to enable or prohibit this function.
When this function is used, therefore, the /P-CON signal cannot be used to switch between proportion (P) control and proportional/integral (PI) control for speed loop. (PI control is always used.)

Schematic Block Diagram for INHIBIT Function
SGDB SERVOPACK

Cn-2B

3

1

Reference pulse

Error
counter

11
/P-CON
/P-CON

Feedback pulse

J How to Use Reference Pulse Inhibit Function: INHIBIT
To use the INHIBIT function, set the Cn-2B constant as follows.

Control Mode Selection

Cn-2B

Factory
Setting: 0

For Position Control Only

Enables the INHIBIT function.

Setting
0

1

Meaning
Does not use the INHIBIT function.
Reference pulses are always counted.
Uses the INHIBIT function.
/P-CON signal is used to enable or prohibit the INHIBIT function.
/P-CON
Meaning
OFF
Counts reference pulses.
Prohibits the SERVOPACK from counting
reference pulses.
ON
The motor remains in servo locked (clamped)
status.

97

APPLICATIONS OF Σ-SERIES PRODUCTS
3.2.11 Using the Reference Pulse Input Filter Selection Function

J Relationship between INHIBIT Signal and Reference Pulse

/INHIBIT signal
(/P-CON)

Reference pulse

Input reference pulses
are not counted
during this period.

t1, t2 ²

0.5 ms

3.2.11 Using the Reference Pulse Input Filter Selection Function
This function selects a reference pulse input filter inside the SERVOPACK according to
the output form of reference pulses from the host controller.

3

J How to Use Reference Pulse Input Filter
Set the following memory switch according to the output form of reference pulses from
the host controller:

Cn-02 Bit F

Reference Pulse Input Filter
Selection Function

Factory
Setting: 0

For Position Control Only

Sets the memory switch according to the output form (line driver or open collector) of reference pulses from the host controller.
Setting
0
1

Meaning
Output form of reference pulses from host controller: Line driver output (maximum
frequency of reference pulse: 450 kpps)
Output form of reference pulses from host controller: Open collector output
(maximum frequency of reference pulse: 200 kpps)

For open collector output, the wire length must be as short as possible (maximum 3 m).

98

3.2 Setting Parameters According to Host Controller

3.2.12 Using the Analog Monitor
The following two analog voltage monitor signals are output.

Output → TRQ-M 1CN-16

Torque Monitor

Output → VTG-M 1CN-17

For Speed/Torque Control
and Position Control
For Speed/Torque Control
and Position Control

Speed Monitor

The following memory switch is used to modify the signal specifications.
Bit 6
Bit 7

Cn-02

Bit E

TRQ-M Specifications

Factory
Setting: 0
Factory
Setting: 0
Factory
Setting: 0

VTG-M Specifications
Error Pulse Monitor Level
Changeover

3

TRQ-M
Cn-02 Bit 6

Control Mode

Specifications

0

−−−−

Torque monitor
(2V/100% torque)
(Undefined)
Speed reference monitor*
Reference pulse speed
monitor*

1

Torque control
Speed control
Position control

VTG-M
Cn-02 Bit 7
0
1

*

Control Mode
−−−−
Speed/torque
control
Position control

Specifications
Speed monitor*
(Undefined)
Error pulse
monitor

Cn-02 bit E = 0: 0 .05 V/1
reference unit
Cn-02 bit E = 1: 0.05 V/100
reference units

For the SGMG and SGMD series, the unit is 2V/1000 min−1.
For the SGMS, SGM and SGMP series, the unit is 1V/1000 min−1.

Analog monitor can also be available with exclusive-use cable (type: DE9404559) from
5CN connector.
White
Red

Black
Black

Signal Name

Contents

Red

VTG-M

White

5CN

Cable Color

TRQ-M

Black (x2)

GND

Speed/error pulse
monitor
Torque/speed
reference monitor
Grounding

99

APPLICATIONS OF Σ-SERIES PRODUCTS
3.3.1 Setting Parameters

3.3

Setting Up the Σ SERVOPACK
This section describes how to set parameters to operate the SGDB SERVOPACK.

3.3.1 Setting Parameters
Σ-series SERVOPACKs provide many functions, and have parameters to allow the user
to specify each function and perform fine adjustment.
SGDB SERVOPACK
Parameters

3

Digital Operator is used to set
parameters.

Parameters are divided into the following two types.
Memory switch
Cn-01, Cn-02
Parameter setting
Cn-03 and later

Parameter
Cn-01
Cn-02
Cn-03
Cn-..
Cn-..
Cn-2D

Each bit of this switch is turned ON or OFF to specify a
function.
A numerical value such as a torque limit value or speed
loop gain is set in this parameter.

Name and Code
Memory switch
Memory switch
VREFGN
...
...
OUTSEL

Remarks
Each bit number has a
switch (ON/OFF).

Speed reference gain
...
...
Output signal selection

Parameter setting

For a list of parameters, refer to Appendix C List of Parameters.
For details of how to set parameters, refer to Section 4.1.6 Operation in Parameter Setting Mode

100

3.3 Setting Up the Σ SERVOPACK

3.3.2 Setting the Jog Speed
Use the following parameter to set or modify a motor speed when operating the Σ-series
Servo from a Digital Operator:

Cn-10

JOGSPD
Jog Speed

Unit:

min−1

Setting
Range: 0
to 10000

This parameter is used to set a motor speed when
the motor is operated using a Digital Operator.

Factory
Setting:
500

For Speed/Torque
Control and Position
Control

Operation Using Digital Operator

If a value higher than the maximum speed is set,
the maximum speed value is used.

3

101

APPLICATIONS OF Σ-SERIES PRODUCTS
3.3.3 Setting the Number of Encoder Pulses

3.3.3 Setting the Number of Encoder Pulses
To ensure that the Σ-series Servo System operates properly, set the type of the encoder
to be used and the number of encoder pulses per revolution in the following parameters:

Cn-01 Bit E

Encoder Type Selection

Factory
Setting: 0

For Speed/Torque Control
and Position Control

Set the encoder type according to the servomotor type to be used.
After changing the memory switch setting, turn the power OFF, then ON.
Motor Type
encoder
specifications
2
3
6
W

3

S

Number of Encoder Pulses Per Revolution

Incremental encoder: 8192 pulses per revolution
Incremental encoder: 2048 pulses per revolution
Incremental encoder: 4096 pulses per revolution
Absolute encoder: 1024 pulses per revolution
Absolute encoder: 8192 pulses per revolution

PULSNO
Number of
Encoder Pulses

Cn-11

Preset Value

Unit: Pulses
Per Revolution

Setting
Range:
Number of
Encoder
Pulses

0

1

For Speed/Torque
Control and
Position Control

Set the number of encoder pulses according to the servomotor type to be used. If this
parameter is set incorrectly, system operation cannot be guaranteed.
After changing the memory switch setting, turn the power OFF, then ON.
Motor Type
encoder
specifications

Number of Encoder Pulses Per Revolution

Preset Value

2

8192

3

Incremental encoder: 2048 pulses per revolution

2048

6

Incremental encoder: 4096 pulses per revolution

4096

W

Absolute encoder: 1024 pulses per revolution

1024

S

102

Incremental encoder: 8192 pulses per revolution

Absolute encoder: 8192 pulses per revolution

8192

3.3 Setting Up the Σ SERVOPACK

3.3.4 Setting the Motor Type
To ensure that the Σ-series Servo System operates properly, set the type of the servomotor to be used in the following parameter.

Cn-2A

Motor Selection

For Speed/Torque Control
and Position Control

Set this memory switch according to the servomotor type to be used.
After changing the parameter setting, turn the power OFF, then ON.
Group
05

SERVOPACK Type

Motor Type

Cn-2A Setting

SGMG-03AjB
SGM-04A
SGMP-04A

75

SGDB-03ADM
SGDB-05AD
SGDB-05ADP
SGDB-05ADG
SGDB-07ADM
SGDB-10AD
SGDB-10ADP
SGDB-10ADG
SGDB-10ADM
SGDB-10ADS
SGDB-15ADM
SGDB-15ADG
SGDB-15ADP
SGDB-15ADS
SGDB-20ADG
SGDB-20ADM
SGDB-20ADS
SGDB-30ADD
SGDB-30ADG
SGDB-30ADM
SGDB-30ADS
SGDB-44ADD
SGDB-44ADG
SGDB-44ADM
SGDB-44ADS
SGDB-50ADD
SGDB-50ADS
SGDB-60ADG
SGDB-60ADM
SGDB-75ADG

SGMS-15AjA
SGMG-20AjA
SGMG-20AjB
SGMS-20AjA
SGMD-22AjA
SGMG-30AjA
SGMG-30AjB
SGMS-30AjA
SGMD-32AjA
SGMG-44AjA
SGMG-44AjB
SGMS-40AjA
SGMD-40AjA
SGMS-50AjA
SGMG-55AjA
SGMG-60AjB
SGMG-75AjA

171
106
126
142
172
107
127
143
173
163
174
144
128
164
145
175
165
155
146
176
166
156
147
177
167
157
168
148
178
149

1A

SGDB-1AADG

SGMG-1AAjA

140

1E

SGDB-1EADG

SGMG-1EAjA

150

10

15

20

30

44

60

SGMG-05AjA
SGMG-06AjB
SGM-08A
SGMP-08A
SGMG-09AjA
SGMG-09AjB
SGMS-10AjA
SGMG-12AjB
SGMG-13AjA
SGMP-15A

3

The motor type used can be changed within the same group by altering the Cn-2A setting.

103

APPLICATIONS OF Σ-SERIES PRODUCTS
3.3.5 Adjusting the Encoder Supply Voltage

3.3.5 Adjusting the Encoder Supply Voltage
The encoder power voltage at the encoder input part must be between 4.75 and 5.25 V. If
the encoder cable is long, adjust the encoder supply voltage by setting the following parameter.

Cn-2C

Encoder Power
Voltage
Adjustment

Unit: 0.1 mV

Factory Setting: 52500 For Speed/Torque
Control and
Position Control

The following values apply to standard cables:
Length of cables

3m

5m

10 m

15 m

20 m

Encoder
15-bit absolute encoder
12-bit absolute encoder
Incremental encoder

3

52500

55000
54000

57000
55500

Note that the system may fail to operate normally or break down if the setting is too high or
too low.

104

3.4 Setting Stop Mode

3.4

Setting Stop Mode

This section describes how to stop the motor properly.

3.4.1 Adjusting Offset
J “Why Does not the Motor Stop?”
When 0 V is specified as reference voltage for speed/torque control (analog reference),
the motor may rotate at a very slow speed and fail to stop. This happens when reference
voltage from the host controller or external circuit has a slight reference offset (in mV
units). If this offset is adjusted to 0 V, the motor will stop.

3

When reference voltage from the host
controller or external circuit has an offset

Reference
voltage

Offset

Reference
voltage

Reference
speed or
reference torque

Offset is corrected
by the
SERVOPACK.
Reference speed
or reference torque

Offset adjustment

J Adjusting the Reference Offset
The following two methods can be used to adjust the reference offset to 0 V.
Automatic adjustment of reference
offset
Manual adjustment of reference
offset

NOTE

Reference offset is automatically adjusted to 0 V.
Reference offset can be intentionally set to a
specified value.

If a position control loop is formed in the host controller, do not use automatic adjustment
in 1. Always use manual adjustment in 2.

105

APPLICATIONS OF Σ-SERIES PRODUCTS
3.4.2 Using Dynamic Brake

For detailed adjustment procedures, refer to the following sections.
Adjustment Method
Automatic adjustment of reference
offset

Section 4.2.4 Reference Offset Automatic Adjustment

Manual adjustment of reference
offset

Section 4.2.5 Reference Offset Manual Adjustment
Mode

3.4.2 Using Dynamic Brake
To stop the servomotor by applying dynamic brake (DB), set desired values in the following memory switch. If dynamic brake is not used, the servomotor will stop naturally
due to machine friction.
Cn-01Bit 6

3

Cn-01Bit 7

How to Stop Motor When
Servo is Turned OFF
Operation to Be Performed
When Motor Stops After
Servo is Turned OFF

Factory
Setting: 0

The SERVOPACK enters servo OFF status when:

For Speed/Torque Control
and Position Control
For Speed/Torque Control
and Position Control

Servo OFF

• Servo ON input signal (/S-ON, 1CN-40) is
turned OFF
• Servo alarm arises
• Power is turned OFF

After stop
Stop mode
Stop by
dynamic
brake
Bit 6
Coasting
to a stop

Specify how to stop the motor when one of the
above events occurs during operation.
Setting

Releasing
dynamic brake
Bit 7
Holding
dynamic brake

Meaning

0
1

Cn-01 bit 6

Stops the motor by dynamic brake.
Causes the motor to coast to a stop.
The motor power is OFF and stops due to machine friction.

If dynamic brake stop mode is selected, specify the operation to be performed when
the motor stops.
Setting
Cn-01
Cn 01 bit 7

Meaning

0

Releases dynamic brake after the motor stops.

1

Does not release dynamic brake even after the motor stop.

For 2.0 kW type, bit 7 of Cn-01 can be set to 0 only.

TERMS

Dynamic brake (DB)
One of the general methods to cause a motor sudden stop.
“Dynamic brake” suddenly stops a servomotor by shorting its
electrical circuit.
This dynamic brake circuit is incorporated in the SERVOPACK.

106

SERVOPACK

Servomotor

3.4 Setting Stop Mode

3.4.3 Using Zero-Clamp
The zero-clamp function is used for a system in which the host controller does not form a
position loop by speed reference input.
In other words, this function is used to cause the motor to stop and enter a servo locked
status when the input voltage of speed reference V-REF is not 0 V. When the zero-clamp
function is turned ON, an internal position loop is temporarily formed, causing the motor
to be clamped within one pulse. Even if the motor is forcibly rotated by external force, it
returns to the zero-clamp position.
Speed reference less than
Cn-29 setting is ignored

Stops
instantaneously

Host controller
Speed reference

3
J Setting Memory Switch
Set the following memory switch so that input signal P-CON can be used to enable or
disable the zero-clamp function.

Cn-2B

Control Mode Selection

→ Input /P-CON 1CN-41

Cn-2B

10

Factory
Setting:0

For Speed Control Only

Proportional Control, etc.

For Speed/Torque
Control and
Position Control

Control Mode
Zero-clamp Speed Control
This speed control allows the
zero-clamp function to be set when
the motor stops.
D A speed reference is input from
V-REF (1CN-5).
D /P-CON (1CN-41) is used to turn
the zero-clamp function ON or OFF.
/P-CON
(1CN-41) is
open (OFF)

Turns
zero-clamp
function OFF

/P-CON
(1CN-41) is
closed (0V)

Turns
zero-clamp
function ON

SGDB SERVOPACK
Speed reference
Zero-clamp

1CN-5
/P-CON

1CN-41

Zero-clamp is performed when the
following two conditions are met:
/P-CON signal is closed.
/P CON
Motor speed is below the value set
in Cn-29 (ZCLVL).

107

APPLICATIONS OF Σ-SERIES PRODUCTS
3.4.4 Using Holding Brake

J Settings
Set in the following parameter the motor speed level at which zero-clamp is to be performed:

Cn-29

ZCLVL
Zero-Clamp Level

Unit:

min−1

Setting Range:
0 to 10000

Factory
Setting:
10

For Speed Control
Only

If zero-clamp speed control is selected, set the motor speed level at which zero-clamp is
to be performed. If a value higher than the maximum motor speed is set, the maximum
speed value is used.
Conditions for Zero-clamp
Zero-clamp is performed when all the following conditions are met:

3

• Zero-clamp speed control is selected (Parameter Cn-2B=10).
• /P-CON (1CN-41) is turned ON (0 V).
• Motor speed drops below the preset value.
V-REF speed reference
Speed
Preset value for
zero-clamp
/P-CON input
Zero-clamp being
performed

Time
Open (OFF)

Closed (ON)

3.4.4 Using Holding Brake
Holding brake is useful when a servo drive is used
to control a vertical axis. A servomotor with brake
prevents the movable part from dropping due to
gravitation when the system power is turned OFF.

Servomotor

Holding brake
Prevents movable
part from shifting
due to gravitation
when power is
turned OFF

108

3.4 Setting Stop Mode

When using the holding brake, turn ON and OFF the brake with the following timing because a delay occurs. The brake interlock is useful for adjusting the timing.
SERVOPACK
control power supply

OFF

SERVOPACK
main power supply

OFF

Servo ON
Holding brake power supply

ON
ON
*1

OFF

ON

OFF

ON

Brake contact part
(Lining)
Speed reference

Open
*2

*2

*6
200ms to 1.0 s

0V

Motor rotation
*4
t0
*3

3

t1

*5
t0+t1

200ms or more

* 1 Apply the holding brake at the same time as the Servo ON.
* 2 The mechanical contact takes 180 ms max. to be opened when the brake is turned ON and 100 ms max. to be closed when turned
OFF.
* 3 Allow 200 ms or more between the moment when the brake is turned ON and when the speed reference is input.
* 4 to indicates the motor stopping time. The table below shows the fomula.
* 5 Do not turn OFF the brake power supply before the motor stops. Normally, to + t1 is approx. 1 to 2 seconds.
* 6 In 0.2 to 1.0 seconds after turning OFF the brake power supply, turn OFF the servo ON.

Using SI Units
t o=

(J M+ J L ) × N M
(s)
(T P + T L)

Using Gravitational Units
t o=

(GD 2 + GD2L) × N M
M
(s)
375 × (TP + TL )

JM : Rotor moment of inertia (kg¡m2)

2
GD M : Motor GD 2(kg¡m2)

JL : Load moment of inertia (kg¡m2)

GD 2 : Load GD 2(kg¡m2)
L

N M : Motor speed (min−1)

N M : Motor speed (min−1)

TP : Motor deceleration torque (N¡m)

TP : Motor deceleration torque (kg¡m)

TL : Load torque (N¡m)

TL : Load torque (kg¡m)

NOTE

The built-in brake in servomotor with brake is a de-energization operation type, which is
used for holding purposes only and cannot be used for braking purposes. Use the holding
brake only to retain a stopped motor. Brake torque is more than about 120% of the rated
motor torque.

109

APPLICATIONS OF Σ-SERIES PRODUCTS
3.4.4 Using Holding Brake cont.

J Connection Example
Use SERVOPACK contact output-signal /BK and brake power supply to form a brake
ON/OFF circuit.
An example of standard wiring is shown below.
SGMj servomotor
with brake

SGDB SERVOPACK

Power supply

/BK+
Motor plug
/BK−

3

Blue or
yellow

Red

White

Black
Brake power supply

BK-RY: Brake control relay

Output → /BK

Brake power supply has two types (200 V, 100 V).

Brake Interlock Output

For Speed/Torque
Control and
Position Control

This output signal controls the brake when a motor with brake is used. This signal terminal need not be connected when a motor without brake is used.
Related Parameters
Cn-12

Time delay from brake signal until servo OFF

Cn-15

Speed level for brake signal output during operation

Cn-16

Output timing of brake signal during motor operation

ON Status:
Circuit is closed or signal is at low level.

Releases the brake.

OFF Status:
Circuit is open or signal is at high level.

Applies the brake.

Set the following parameter to specify the 1CN pin to which the BK signal is output.

Cn-2D

OUTSEL Output Signal Selection

Setting
Range:
110 to
666

Factory
Setting:
210

For
Speed/Torque
Control and
Position Control

This parameter is used to select a function signal as the 1CN output signal.
1s place
10s place

Select the 1CN-27 and 1CN-28 (/TGON) functions.

100s place

110

Select the 1CN-25 and 1CN-26 (/COIN, /V-CMP) functions.
Select the 1CN-29 and 1CN-30 (/S-RDY) functions.

3.4 Setting Stop Mode

Example:/BK is output to 1CN-27 and 1CN-28.
Cn-2D=j4j
Preset
value

Function

0

/COIN, /V-CMP
(Can be allocated to 1CN-25 and 1CN-26 only.)

1

/TGON

2

/S-RDY

3

/CLT

4

/BK

5

Overload warning

6

Overload alarm

J Brake ON Timing
If the machine moves slightly due to gravity when the brake is applied, set the following
parameter to adjust brake ON timing:

Cn-12

BRKTIM

Time delay from the
time a brake signal is
output until servo OFF
status occurs

Unit:
10 ms

This parameter is used to set output timing of
brake control signal /BK and servo OFF operation
(motor output stop) when SGMj servomotor with
brake is used.

Setting
Range:
0 to 50

Factory
Setting:
0

For
Speed/Torque
Control and
Position Control

Brake Timing when Motor is in Stopped Status
/S-ON input
(1CN-40)
/BK output
Servo ON/OFF
operation (motor
ON/OFF status)

Servo ON

Servo OFF

Release
brake

Apply brake

Motor is ON

Motor is
OFF

BRKTIM

With the standard setting, the servo is turned OFF when /BK signal (brake operation) is
output. The machine may move slightly due to gravitation. This movement depends on
machine configuration and brake characteristics. If this happens, use this parameter to
delay servo OFF timing to prevent the machine from moving.
For brake ON timing during motor operation, use Cn-15 and Cn-16.

111

3

APPLICATIONS OF Σ-SERIES PRODUCTS
3.4.4 Using Holding Brakecont.

J Settings
Set the following parameters to adjust brake ON timing so that holding brake is applied
when the motor stops.

Cn-15

Cn-16

BRKSPD

Speed Level at which
Unit:
Brake Signal Is Output min−1
during Motor Operation

Setting
Factory
Range:
Setting:
0 to 10000 100

For
Speed/Torque
Control and
Position
Control

BRKWAI

Output Timing of Brake Unit:
Signal during Motor
10 ms
Operation

Setting
Range: 10
to 100

For
Speed/Torque
Control and
Position
Control

Cn-15 and Cn-16 are used for SGMj servomotors with brake. Use these parameters to set
brake timing used when the servo is turned OFF
by input signal /S-ON (1CN-40) or alarm occurrence during motor rotation.

3

Factory
Setting:
50

Brake Timing when Motor is in Stopped Status

Power OFF by
/S-ON input
(1CN-40) or
alarm
occurrence

Servo ON

Motor speed
(min−1)

Brakes for SGMj servomotors are designed as
holding brakes. Therefore, brake ON timing when
the motor stops must be appropriate. Adjust the
parameter settings while observing machine operation.

Servo OFF
Stop by dynamic
brake or coasting
to a stop (Cn-01
bit 6)

BRKSPD
(Cn-15)

/BK output

Release
brake

Apply brake

BRKWAI
(Cn-16)
When this time elapses, /BK signal is output.

• Conditions for /BK signal output during motor
operation. The circuit is opened in either of the
following situations.
1

Motor speed drops below the value set in Cn-15 (BRKSPD) after servo OFF occurs.

2

The time set in Cn-16 (BRKWAI) has elapsed since servo OFF occurred.

If a value higher than the maximum speed is set, the maximum speed value is used.

112

3.5 Running the Motor Smoothly

3.5

Running the Motor Smoothly

This section explains how to run the servomotor smoothly.

3.5.1 Using the Soft Start Function
The soft start function adjusts progressive speed reference input inside the SERVOPACK so that acceleration and deceleration can be as constant as possible. To use this
function, set the following parameters.

Cn-07

Cn-23

SFSACC
Soft Start Time (Acceleration)

Unit:
ms

SFSDEC
Soft Start Time (Deceleration)

Unit:
ms

Setting
Range:
0 to
10000
Setting
Range:
0 to
10000

In the SERVOPACK, a speed reference is multiplied by the acceleration or deceleration value set
in Cn-07 or Cn-23 to provide speed control.
Smooth speed control can be achieved when progressive speed references are input or when contact input speed control is used. Normally, set
these to “0”.
Set these parameters as follows.

Factory
Setting:
0

For Speed Control
Only

Factory
Setting:
0

For Speed Control
Only

Speed
reference
Soft start

SGDB
SERVOPACK
internal speed
reference

Maximum
speed

Cn-07: Set this time interval.
Maximum
speed

Cn-23: Set this time interval.

Cn-07: Time interval from the time the motor starts until the maximum speed is
reached
Cn-23: Time interval from the time the motor is running at the maximum speed until it
stops

113

3

APPLICATIONS OF Σ-SERIES PRODUCTS
3.5.3 Adjusting Gain

3.5.2 Using the Smoothing Function
The smoothing function adjusts constant-frequency reference input inside the SERVOPACK so that acceleration and deceleration can be as constant as possible. To use this
function, set the following parameter.
ACCTME
Cn-26

Position Reference
Unit:
Acceleration/Deceleration 0.1 ms
Time Constant
(Smoothing)

This function performs acceleration/deceleration
processing for input reference pulses (primary lag
characteristics).
This function prevents the motor from running at
progressive speeds in the following cases:

3

• When the host controller which outputs references cannot perform acceleration/deceleration processing
• When reference pulse frequency is too low

Setting
Range:
0 to 640

Reference
pulse

Factory
Setting:
0

For
Position
Control
Only

SERVOPACK
Servomotor
Accelerati
on/decele
ration

Reference
pulse
frequency

Apply acceleration/deceleration
processing
Cn-26 (ACCTME)

Reference
pulse
frequency

• When reference electronic gear ratio is too high (more than 10 times)
This function does not change the travel distance (number of pulses).

3.5.3 Adjusting Gain
If speed loop gain or position loop gain exceeds the allowable limit for the servo system
including the machine to be controlled, the system will vibrate or become too susceptible.
Under such conditions, smooth operation cannot be expected. Reduce each loop gain
value to an appropriate value.
For servo gain adjustment, refer to the following section:
Section 3.6.2 Setting Servo Gain

114

3.5 Running the Motor Smoothly

3.5.4 Adjusting Offset
If reference voltage from the host controller or external circuit has an offset in the vicinity
of 0 V, smooth operation cannot be expected. Adjust the reference offset to 0 V.
When Reference Voltage from Host Controller or External Circuit has an Offset
Offset

Reference
voltage

Reference
voltage
Reference
speed or
reference
torque

Offset is corrected by
the SERVOPACK.
Reference
speed or
reference
torque

Offset adjustment

The following two methods are available to adjust the reference offset to 0 V.
Automatic adjustment of reference
offset
Manual adjustment of reference offset

NOTE

Reference offset is automatically adjusted.
Reference offset can be intentionally set to a
specified value.

3

If a position control loop is formed in the host controller, do not use automatic adjustment.
Always use manual adjustment.
For detailed adjustment procedures, refer to the following sections:
Adjustment Method
Automatic adjustment of reference
offset

Section 4.2.4 Reference Offset Automatic
Adjustment

Manual adjustment of reference offset

Section 4.2.5 Reference Offset Manual Adjustment
Mode

3.5.5 Setting the Torque Reference Filter Time Constant
If the machine causes vibration, possibly resulting from the servo drive, adjust the following filter time constant. Vibration may stop.

Cn-17

TRQFIL Torque Reference
Filter Time Constant

Unit:
100 µs

Setting
Range:
0 to 250

For Speed/Torque
Control and
Position Control

Cn-17 is a torque reference filter time constant for the SGDB SERVOPACK. The smaller
the value, the higher the torque control response. There is, however, a certain limit depending on machine conditions.
With the standard setting, the machine may cause vibration resulting from the servo
drive. In this case, increase the constant setting. Vibration may stop. Vibration can be
caused by incorrect gain adjustment, machine problems and so on.

115

APPLICATIONS OF Σ-SERIES PRODUCTS
3.5.5 Setting the Torque Reference Filter Time Constant cont.

J Switching Torque Reference Filter
The following memory switch can be used to switch between the primary and secondary
torque reference filters. The filter to be used depends on machine characteristics. If
vibration occurs, select the appropriate filter by changing the memory switch setting.

Cn-02 Bit C

Torque Reference Filter
Selection

0: Primary filter
1: Secondary filter

3

116

Factory
Setting:
0

For Speed/Torque
Control and
Position Control

3.6 Minimizing Positioning Time

3.6

Minimizing Positioning Time

This section describes how to minimize positioning time.

3.6.1 Using Autotuning Function
If speed loop gain and position loop gain for the servo system are not set properly, positioning may become slow. Techniques and experience are required to set these servo
gain values according to machine configuration and machine rigidity.
Σ-series SERVOPACKs have an autotuning function that automatically measures machine characteristics and sets the necessary servo gain values. With this function, even
first-time servo users can easily perform tuning for servo gain. Servo gain values are set
in parameters.
The following parameters can be automatically set by the autotuning function.
Parameter

Meaning

Cn-04

Speed loop gain

Cn-05

Speed loop integration time constant

Cn-1A

Position loop gain

For details of how to perform autotuning, refer to Section 4.2.3 Autotuning

3.6.2 Setting Servo Gain
Check and reset the servo gain when:
• Automatically set servo gain values need to be checked after autotuning.
• Each servo gain value checked as described above is to be directly set for another
SERVOPACK.
• Response performance needs to be further enhanced after autotuning, or servo gain
values need to be reset for a system with lower response performance.

117

3

APPLICATIONS OF Σ-SERIES PRODUCTS
3.6.2 Setting Servo Gain cont.

J Setting Speed Loop
Set the following parameters related to speed loop as necessary.

Cn-04

LOOPHZ
Speed Loop Gain (Kv)

Unit:
Hz

Setting
Range: 1
to 2000

Factory
Setting:
80

For Speed/Torque
Control and Position
Control

Cn-05

PITIME
Speed Loop Integration
Time Constant (Ti)

Unit:
0.01
ms

Setting
Range:
200 to
51200

Factory
Setting:
2000

For Speed/Torque
Control and Position
Control

Cn-04 and Cn-05 are a speed loop gain and an integration time constant for the SERVOPACK,
respectively.
The higher the speed loop gain value or the smaller the speed loop integration time constant value,
the higher the speed control response. There is,
however, a certain limit depending on machine
characteristics.

3

Speed
reference

Speed loop gain

Speed feedback

Note If the Cn-28 constant is set, the
maximum allowable Cn-04 setting
may become smaller than 2000.

The unit of speed loop gain (Kv) is Hz, but this value is obtained when JM equals JL.
Therefore, the value must be converted using load J (= JL) as follows:
Kv value =

setting × 2
1 + J L∕J L

These parameters are automatically set by the autotuning function.
The unit of speed loop integration time constant Cn-05 (Ti) can be changed to 0.01 ms.
J Setting Position Loop
Set the following parameters related to position loop as necessary.

Cn-1A

POSGN
Position Loop Gain (Kp)

Unit:
1/s

Setting
Range: 1
to 200

This parameter is a position loop gain for the SERVOPACK.

Factory
Setting:
40
Position
reference

Increasing the position loop gain value provides
position control with higher response and less
error. However, there is a certain limit depending
on machine characteristics. This gain is also valid
for zero clamp operation.
This parameter is automatically set by the autotuning function.

118

For Position Control
Only

Position loop gain

Position feedback

3.6 Minimizing Positioning Time

Cn-1E

OVERLV
Overflow

Unit: 256
References

Setting
Range: 1
to 32767

Set in this parameter the error pulse level at which
a position error pulse overflow alarm (alarm A.31)
is detected.

Factory
Setting:
1024

For Position Control
Only

(Alarm A.31)

Error pulse

If the machine permits only a small position loop
gain value to be set in Cn-1A, an overflow alarm
may arise during high-speed operation. In this
case, increase the value set in this parameter to
suppress alarm detection.

Cn-1E
OVERLV

Normal control

(Alarm A.31)

3.6.3 Using Feed-forward Control
Feed-forward control shortens positioning time. To use feed-forward control, set the following parameter.

Cn-1D

FFGN
Feed-forward Gain

Unit:
%

Setting
Range: 0
to 100

This parameter is set to apply feed-forward frequency compensation to position control inside
the SERVOPACK.
Use this parameter to shorten positioning time.
Too high a value may cause the machine to
vibrate. For ordinary machines, set 80% or less in
this constant.

Factory
Setting: 0

Reference
pulse

For Position Control
Only

Differe
ntiation

Feedback pulse

3.6.4 Using Proportional Control
If parameter Cn-2B is set to 0 or 1 as shown below, input signal /P-CON serves as a PI/P
control changeover switch.
• PI Control: Proportional/Integral control

TERMS

Feed-forward control
Control for making necessary corrections beforehand to prevent the control system from
receiving the effects of disturbance.
Using feed-forward control increases effective servo gain, enhancing response performance.

119

3

APPLICATIONS OF Σ-SERIES PRODUCTS
3.6.5 Setting Speed Bias

• P Control: Proportional control
Cn-2B

Control Mode Selection

Cn-2B

0, 1

Factory
Setting: 0

For Speed Control and
Position Control

Control Mode
Speed Control, Position Control
This is normal speed control or position
control.
D Signal P-CON (1CN-41) is used to switch
between P control and PI control.
P-CON (1CN-41) PI control
is open (OFF)
P-CON (1CN-41) P control
is closed (0V)

SGDB
SERVOPACK

P/PI
changeover

3
J How To Use Proportional Control
Proportional control can be used in the following two ways.
• When operation is performed by sending speed references from the host controller to
the SERVOPACK, the host controller can selectively use P control mode for particular
conditions only. This method can prevent the occurrence of overshoot and also shorten
settling time. For particular conditions, refer to Section 3.6.6 Using Mode Switch.
• If PI control mode is used when the speed reference has a reference offset, the motor
may rotate at a very slow speed and fail to stop even if 0 is specified as a speed reference. In this case, use P control mode to stop the motor.

3.6.5 Setting Speed Bias
The settling time for positioning can be reduced by assigning bias to the speed reference output part in the SERVOPACK. To assign bias, use the following constant.

Cn-1C

BIASLV
Bias

Unit:

min−1

Setting
Range: 0
to 450

Factory
Setting: 0

This parameter is set to assign an offset to a
speed reference in the SGDB SERVOPACK. (In
position control mode)
Use this constant to reduce the settling time.
Set this parameter according to machine conditions.

120

For Position Control
Only

Contact input
reference

Error pulse

3.6 Minimizing Positioning Time

3.6.6 Using Mode Switch
Use the mode switch for the following purposes:
• To prevent overshoot during acceleration or deceleration (for speed control).
• To prevent undershoot during positioning in order to reduce settling time (for position
control).
Overshoot
Speed

Actual motor
operation
Reference
Time

3

Undershoot
Settling time

In other words, the mode switch is a function that automatically switches the speed control mode inside the SERVOPACK from PI control to P control while certain conditions
are being established.
NOTE

TERMS

The mode switch is used to fully utilize performance of a servo drive to achieve very highspeed positioning. The speed response waveform must be observed to adjust the mode
switch.
For normal use, the speed loop gain and position loop gain set by autotuning provide sufficient speed/position control.
Even if overshoot or undershoot occurs, they can be suppressed by setting the acceleration/deceleration time constant for the host controller, the soft start time constants
(Cn-07, Cn-23), or smoothing time constant (Cn-26) for the SERVOPACK.

From PI control to P control
PI control means proportional/integral control and P control means proportional control. In
short, switching “from PI control to P control” reduces effective servo gain, making the servo
system more stable.

121

APPLICATIONS OF Σ-SERIES PRODUCTS
3.6.6 Using Mode Switch cont.

J Selecting a Mode Switch
SERVOPACKs can use four types of mode switches. To select a mode switch, use the
following memory switch.
Memory
Switch Cn-01

Mode Switch Setting

Parameter

Unit

Bit
D

Bit
B





1

Does not use mode
switch.

0

0

0

Uses torque reference as
a detection point.
(Standard setting)

Cn-0C

Percentage of rated
torque: %

0

1

0

Uses speed reference as
a detection point.

Cn-0D

Motor speed: min−1

1

0

0

Uses acceleration reference as a detection point.

Cn-0E

Motor acceleration:
10 (min−1)/s

1

3

Bit
C

1

0

Uses error pulse as a
detection point.

Cn-0F

Reference unit

When Torque Reference Is Used as a Detection Point of Mode Switch
(Standard Setting)
If a torque reference exceeds the torque value set
in parameter Cn-0C, the speed loop switches to P
control.
The SGDB SERVOPACK is factory set to this
standard mode (Cn-0C = 200).
Example of Use:

Speed

Reference
speed

Motor
speed

Internal torque
reference
Torque

PI control

PI control

PI control
P control

P control

If a mode switch is not used and PI control is always performed, torque may enter a
saturation state during acceleration or deceleration, causing the motor speed to have
overshoot or undershoot.
Using the mode switch suppresses torque saturation and prevents the motor speed
from having overshoot and undershoot.

Without mode switch

With mode switch

Overshoot
Motor
speed

Motor
speed
Undershoot

Time

122

Time

3.6 Minimizing Positioning Time

When Speed Reference Is Used as a Detection Point of Mode Switch
If a speed reference exceeds the value set in parameter Cn-0D, the speed loop switches to P control.

Speed reference

Motor
speed

Speed

Example of Use:

PI control

P control

PI control

The mode switch is used to reduce settling time.
Generally, speed loop gain must be increased to reduce settling time. Using the
mode switch suppresses the occurrence of overshoot and undershoot when
speed loop gain is increased.
Without mode switch

Without mode switch

Speed reference

Overshoot

Motor speed

Motor
speed

Motor
speed

Increase speed loop gain

Undershoot
Settling time is long

3

Time

With mode switch

Suppress the occurrence
of overshoot and
undershoot.

Motor
speed

Settling time

When Acceleration Is Used as a Detection Point of Mode Switch
If motor acceleration exceeds the value set in parameter Cn-0E, the speed loop switches to P control.

Reference
speed

Motor speed

Speed

Motor
acceleration
Acceleration

Example of Use:

PI control

PI control
P control

PI control
P control

If a mode switch is not used and PI control is always performed, torque may enter a
saturation state during acceleration or deceleration, causing the motor speed to have
overshoot or undershoot.
Using the mode switch suppresses torque saturation and prevents the motor speed
from having overshoot and undershoot.

Without mode switch

With mode switch

Overshoot
Motor
speed

Motor
speed
Undershoot
Time

Time

123

APPLICATIONS OF Σ-SERIES PRODUCTS
3.6.6 Using Mode Switch cont.

When Error Pulse Is Used as a Detection Point of Mode Switch
This is for position control only.

Motor
speed

Speed reference
Speed

If an error pulse exceeds the value set in parameter Cn-0F, the speed loop switches to P control.

Error
pulse

PI control

P control

PI control

Example of Use:
The mode switch is used to reduce settling time.
Generally, speed loop gain must be increased to reduce settling time. Using the mode
switch suppresses the occurrence of overshoot and undershoot when speed loop
gain is increased.

3

Without mode switch
Speed reference

Without mode switch
Motor speed

Increase speed loop gain

Motor
speed

Overshoot

Motor
speed
Undershoot
Settling time is long

Time

With mode switch

Suppress the occurrence
of overshoot and
undershoot.

Motor speed

Settling time

J Parameters
The parameters required to set each mode switch are summarized as follows.

Cn-01Bit B

Mode Switch ON/OFF

Factory
Setting: 0

This parameter is used to enable or disable the
mode switch function.
Setting Meaning
0

Uses the mode switch function

1

Does not use the mode switch function

The SERVOPACK allows use of four different
types of mode switch. To select a mode switch, set
bits C and D of memory switch Cn-01.

124

Speed

For Speed Control and
Position Control

Reference

Time

Actual
motor
operation

Settling time

Mode switch is used to reduce settling
time and suppress undershoot when the
motor stops. It switches PI control to P
control when certain conditions are met.

3.6 Minimizing Positioning Time

Cn-01 Bit C
Cn-01 Bit D

Mode Switch Selection

Factory
Setting: 0
Factory
Setting: 0

Mode Switch Selection

For Speed Control and
Position Control
For Speed Control and
Position Control

Use the following parameters to set the mode switch to be used.
Memory
Switch
Cn-01

Parameter for
Setting Detection Point

Mode Switch Type

Bit D

Bit C

0

0

Uses torque reference as a detection point.

Cn-0C

0

1

Uses speed reference as a detection point.

Cn-0D

1

0

Uses acceleration reference as a detection point.

Cn-0E

1

1

Uses error pulse as a detection point.

Cn-0F

Mode switch is used to reduce settling time and suppress undershoot when the motor
stops. It switches PI control to P control when certain conditions are met.

Cn-0D

Cn-0E

Cn-0F

TRQMSW

Mode Switch
(Torque
Reference)

Unit: %

Setting
Range: 0
to 800

Factory
Setting:
200

For Speed
Control and
Position Control

REFMSW

Mode Switch
(Speed
Reference)

Unit:
min−1

Setting
Range: 0
to 10000

Factory
Setting: 0

For Speed
Control and
Position Control

ACCMSW

Mode Switch
(Acceleration
Reference)

Unit: 10
(min−1)/
s

Setting
Range: 0
to 3000

Factory
Setting: 0

For Speed
Control and
Position Control

ERPMSW

Cn-0C

Mode Switch
(Error Pulse)

Unit:
Reference
Unit

Setting
Range: 0
to 10000

Factory
Setting:
10000

For Position
Control Only

Mode switch is used to reduce settling time and
suppress undershoot when the motor stops. It
switches PI control to P control when certain
conditions are met.
The SERVOPACK allows use of four different
types of mode switch. To select a mode switch, set
bits B, C and D of memory switch Cn-01.

Reference
Speed

Actual motor
operation

Time
Settling time

125

3

APPLICATIONS OF Σ-SERIES PRODUCTS
3.6.6 Using Mode Switch cont.

Memory Switch
Cn-01

Mode Switch Setting

Parameter

Unit

Bit D



1

Does not use
mode switch.

0

0

0

Uses torque reference as a detection point.

Cn-0C

Percentage of rated
torque: %

0

1

0

Uses speed reference as a detection point.

Cn-0D

Motor speed: min−1

1

0

0

Uses acceleration
reference as a
detection point.

Cn-0E

Motor acceleration:
10 (min−1)/s

1

126

Bit B



3

Bit C

1

0

Uses error pulse
as a detection
point.

Cn-0F

Reference unit

3.7 Forming a Protective Sequence

3.7

Forming a Protective Sequence
This section describes how to use I/O signals from the SERVOPACK to form a protective sequence for safety purposes.

3.7.1 Using Servo Alarm Output and Alarm Code Output
J Basic Wiring for Alarm Output Signals
I/O Power
supply

SGDB SERVOPACK

Photocoupler Output
Per output:
Maximum operation
voltage: 30 VDC
Maximum output
current: 50 mADC

Photocoupler

3

Open Collector Output
Per output:
Maximum operation
voltage: 30 VDC
Maximum output
current: 20 mADC
Host controller

Provide an external I/O power supply separately. There is no DC power available from
SERVOPACK for output signals.
J Contact Output Signal ALM

Output → ALM+ 1CN-31
Output → ALM− 1CN-32

Servo Alarm Output

For Speed/Torque
Control and
Position Control

Signal Ground for Servo
Alarm Output

For Speed/Torque
Control and
Position Control

Signal ALM is output when the SERVOPACK detects an alarm.

SERVOPACK
Alarm
detection

ALM output
Turns the main
circuit power
OFF

Design the external circuit so that the main circuit
power to the SGDB SERVOPACK is turned OFF
by this alarm output signal.
ON
status:

Circuit between 1CN-31 and 1CN-32 is closed.
1CN-31 is at low level.

Normal state

OFF
status:

Circuit between 1CN-31 and 1CN-32 is open.
1CN-31 is at high level.

Alarm state

Alarm codes ALO1, ALO2, and ALO3 are output to indicate each alarm type.

127

APPLICATIONS OF Σ-SERIES PRODUCTS
3.7.1 Using Servo Alarm Output and Alarm Code Output cont.

J Open Collector Output Signals ALO1, ALO2, and ALO3

Output → ALO1 1CN-37
Output → ALO2 1CN-38
Output → ALO3 1CN-39
Output → SG

1CN-1

Alarm Code Output

For Speed/Torque
Control and
Position Control

Alarm Code Output

For Speed/Torque
Control and
Position Control

Alarm Code Output

For Speed/Torque
Control and
Position Control

Signal Ground for Alarm Code
Output

For Speed/Torque
Control and
Position Control

These signals output an alarm code to indicate the type of an alarm detected by the SERVOPACK.
Use these signals to display alarm codes at the host controller.

3

128

3.7 Forming a Protective Sequence

J Relationship between Alarm Display and Alarm Code Output
Alarm Display and Alarm Code Output:

Alarm
Display

Alarm Code Output

Servo
Alarm
(ALM)
Output

ALO1

ALO2

ALO3

¢

¢

¢

¢



¢

¢

Alarm Type

¢

Alarm Description

¢

¢

¢

¢



¢



¢







¢

Regenerative
error.
Position error
pulse
overflow

Regenerative circuit is faulty.

Main power
voltage error

Main circuit DC voltage has
exceeded approximately
420 V.
Motor speed has exceeded
the maximum allowable
speed.

Overload

Motor and SERVOPACK are
overloaded.

Overrun
Disconnection of PG
signal line

Overrun occurred due to motor or encoder signal wiring
faults.
Encoder signal line is disconnected.

¢



Overcurrent flowed thorough
the main circuit.
SERVOPACK overheated.

Overspeed



An absolute encoder error
occurred or parameter is
faulty.

Overcurrent



User
constant
error

The number of pulses in error counter has exceeded
the preset value.



¢



¢

¢

¢

¢

¢

Absolute encoder error

Absolute encoder is faulty.







¢

Heatsink
overheat

SERVOPACK heat sink
overheated.

¢

¢

¢

¢

Reference
Reference input failed to be
input read er- detected.
ror

¢



¢

¢

Power line
open phase

One phase is missing from
main circuit power supply.

Digital Operator transmission error

Communication error occurred between Digital Operator and SERVOPACK.

Undefined
U d fi d

No error
¢

¢

¢



○ : Output transistor is ON
¢ : Output transistor is OFF (Alarm state)
* : Displays an alarm category number.
For details, refer to Appendix D List of Alarm Displays.

129

3

APPLICATIONS OF Σ-SERIES PRODUCTS
3.7.2 Using Servo ON Input Signal

When the servo alarm (ALM) is output, eliminate the cause of the alarm and the turn ON
the following /ALMRST input signal to reset the alarm state.

→ Input /ALMRST 1CN-44

Alarm Reset

For Speed/Torque
Control and
Position Control

This signal is used to reset the servo alarm state.
Form an external circuit so that the main circuit power supply is turned OFF when servo
alarm is output. Alarm state is automatically reset when control power supply is turned
OFF.
Alarm state can be reset using the Digital Operator.
When an alarm occurs, always eliminate the cause before resetting the alarm state. 6.2.1
Troubleshooting Problems with Alarm Display describes how to troubleshoot the system
when an alarm arises.

3

3.7.2 Using Servo ON Input Signal
This section describes how to wire and use contact input signal “servo ON (/S-ON).” Use
this signal to forcibly turn the servomotor OFF from the host controller.
I/O power
supply

SERVOPACK
Photocoupler

Host controller
/S-ON

→ Input /S-ON 1CN-40

Servo ON

For Speed/Torque
Control and
Position Control

This signal is used to turn the motor ON or OFF.
ON: 1CN-40
is at low
level

Turns the motor ON. This is normal
operation state (called “servo ON
state”).

OFF:
1CN-40 is at
high level

Turns the motor OFF. This is inoperable state (called “servo OFF
state“).
The servo can be turned OFF during motor operation only when an
emergency stop is required.

130

Servo ON

Motor is ON
Motor is
operated
according to
input signals.

Servo OFF
Motor is OFF
Motor
cannot run.

3.7 Forming a Protective Sequence

NOTE

Do not use the /S-ON signal to start or stop the motor. Always use an input reference to
start and stop the motor.
If the /S-ON signal is not to be used, set the following memory switch to 1:

Cn-01 Bit 0

Use of Servo ON Input Signal Factory
Setting: 0

This memory switch is used to enable or disable
the servo ON input signal /S-ON (1CN-40).

For Speed/Torque Control
and Position Control

SGDB SERVOPACK
-40
(/S-ON)

When external short-circuit wiring is omitted, set
the memory switch to “1.”

When /S-ON is not used, this short-circuit
wiring can be omitted.

Setting

Meaning

0
1

3

Uses servo ON signal /S-ON.
(When 1CN-40 is open, servo is OFF. When 1CN-40 is at 0 V, servo is ON.)
Does not use servo ON signal /S-ON.
(Servo is always ON. Equivalent to short-circuiting 1CN-40 to 0 V.)

3.7.3 Using Positioning Complete Signal
This section describes how to wire and use contact output-signal “positioning complete
output (/COIN).” This signal is output to indicate that servomotor operation is complete.

I/O power supply
SGDB SERVOPACK

Photocoupler output
Per output:
Maximum operation voltage:
30 VDC
Maximum output current:
50 mADC

/COIN+
/COIN−

131

APPLICATIONS OF Σ-SERIES PRODUCTS
3.7.3 Using Positioning Complete Signal cont.

Output → /COIN 1CN-25

Positioning Complete Output

This output signal indicates that motor operation
is complete during position control. The host controller uses this signal as an interlock to confirm
that positioning is complete.

Reference

For Position
Control Only
Motor

Speed
Error
pulse

/COIN
(1CN-25)

ON
status:

Circuit between 1CN-25 and 1CN-26 is
closed.
1CN-25 is at low level.

Positioning is complete (position error is
below the preset value).

OFF
status:

Circuit between 1CN-25 and 1CN-26 is
open.
1CN-25 is at high level.

Preset value: Cn-1B (positioning
complete range)

Preset Value: Cn-1B (positioning complete range)

3

Use the following parameter to output the /COIN signal.

Cn-2D

OUTSEL

Output signal
selection

Setting Range:
110 to 666

Factory
Setting:
210

This parameter is used to specify a function signal as the 1CN output signal.
1s place

Select the 1CN-25 and 1CN-26 (/COIN, /V-CMP) functions.

10s place

Select the 1CN-27 and 1CN-28 (/TGON) functions.

100s place

Select the 1CN-29 and 1CN-30 (/S-RDY) functions.

Example: Outputting a /COIN signal
Cn-2D=jj0
(/COIN is output to 1CN-25 and 1CN-26 only.)
Preset
Value

Function

0
1

/TGON

2

/S-RDY

3

/CLT

4

/BK

5

Overload warning

6

132

/COIN, /V-CMP
(Can be allocated to 1CN-25 and 1CN-26 only.)

Overload alarm

3.7 Forming a Protective Sequence

Set the number of error pulses in the following parameter to adjust output timing of COIN
(positioning complete output).

Cn-1B

COINLV

Positioning
Complete
Range

Unit:
Reference
Unit

Setting
Range: 0
to 250

This parameter is used to set output timing of
positioning complete signal (/COIN, 1CN-25) to
be output when motor operation is complete after
a position reference pulse has been input.

Factory
Setting: 1

For Position
Control Only

Reference
Speed

Motor

Error pulse

Set the number of error pulses in terms of reference unit (the number of input pulses that is defined using the electronic gear function).

/COIN
(1CN-25)

If too large a value is set in this parameter, error may become too small when the motor
runs at a low speed, causing COIN to be output continuously.
COINLV does not affect the final positioning accuracy.
NOTE

/COIN is a signal for position control.
For speed control, /V-CMP (speed coincidence output) is used instead. For torque control, /COIN is always ON.

133

3

APPLICATIONS OF Σ-SERIES PRODUCTS
3.7.4 Using Speed Coincidence Output Signal

3.7.4 Using Speed Coincidence Output Signal
This section describes how to wire and use contact output signal “speed coincidence output (/V-CMP).” This signal is output to indicate that actual motor speed matches a reference speed. The host controller uses this signal as an interlock.

I/O power supply
SERVOPACK

Photocoupler Output
Per output:
Maximum operation voltage:
30 VDC
Maximum output current: 50
mADC

3

/V-CMP+
/V-CMP−

Output → /V-CMP 1CN-25

Speed Coincidence Output

This output signal indicates that actual motor
speed matches the input speed reference during
speed control.

For Speed Control
Only

Motor
speed

Reference
speed
/V-CMP is output within
this range.

ON
status:

Circuit between 1CN-25 and 1CN-26 is
closed.
1CN-25 is at low level.

Actual motor speed matches the speed
reference (speed difference is below the
preset value).

OFF
status:

Circuit between 1CN-25 and 1CN-26 is
open.
1CN-25 is at high level.

Actual motor speed does not match the
speed reference (speed difference is
greater than the preset value).

Preset value: Cn-22 (speed coincidence signal output width)
Use the following parameter to output the /V-CMP signal.

Cn-2D

OUTSEL

Output signal
selection

Setting Range:
110 to 666

Factory
Setting:
210

This parameter is used to specify a function signal as the 1CN output signal.
1s place
10s place

Select the 1CN-27 and 1CN-28 (/TGON) functions.

100s place

134

Select the 1CN-25 and 1CN-26 (/COIN, /V-CMP) functions.
Select the 1CN-29 and 1CN-30 (/S-RDY) functions.

3.7 Forming a Protective Sequence

Example: Outputting a /V-CMP signal
Cn-2D=jj0
(/V-CMP is output to 1CN-25 and 1CN-26 only.)
Preset
Value

Function

0

/COIN, /V-CMP
(Can be allocated to 1CN-25 and 1CN-26 only.)

1

/TGON

2

/S-RDY

3

/CLT

4

/BK

5

Overload warning

6

Overload alarm

Set the following parameter to specify the output conditions for speed coincidence signal
/V-CMP.

Cn-22

VCMPLV

Speed Coincidence
Signal Output Width

Unit:

min−1

Setting
Range: 0
to 100

Set the output conditions for speed coincidence
signal /V-CMP (1CN-25).
/V-CMP signal is output when the difference between the reference speed and actual motor
speed is not greater than the preset value.

Factory
Setting:
10

For Speed
Control Only

Motor
speed

Reference
speed
V-CMP is output
within this range

Example: When preset value is 100 and reference speed is 2000 min−1.
/V-CMP is ON (circuit between 1CN-25 and 1CN-26 is closed) when the speed
is between 1900 and 2100 min−1.
NOTE

/V-CMP is a signal for speed control.
For position control, /COIN (position complete output) is used instead. For torque control,
/V-CMP is always ON.

135

3

APPLICATIONS OF Σ-SERIES PRODUCTS
3.7.5 Using Running Output Signal

3.7.5 Using Running Output Signal
This section describes how to wire and use photocoupler output: a running output signal
/TGON. This signal indicates that a servomotor is currently running.

I/O power
supply

SERVOPACK

Photocoupler Output
Per output:
Maximum operation
voltage: 30 VDC
Maximum output
current: 50 mADC

3

/TGON+
/TGON−

Running Output

Output → /TGON

For Speed/Torque
Control and
Position Control

This output signal indicates that the motor is currently running.

Motor
speed

It is used as an external interlock.

/TGON

ON
status:

Motor is running.
Circuit is closed or signal is at low level. (Motor speed is greater than the preset
value.)

OFF
status:

Circuit is open or signal is at high level.

Motor is stopped.
(Motor speed is below the preset value.)

Preset value: Cn-0B (zero-speed level)
Use the following parameter to specify the pin to which the /TGON signal is to be output.

Cn-2D

OUTSEL

Output signal
selection

Setting Range:
110 to 666

Factory
Setting:
210

This parameter is used to specify a function signal as the 1CN output signal.
1s place

Select the 1CN-25 and 1CN-26 (/COIN, /V-CMP) functions.

10s place

Select the 1CN-27 and 1CN-28 (/TGON) functions.

100s place

Select the 1CN-29 and 1CN-30 (/S-RDY) functions.

Example: /TGON is output to 1CN-27 and 1CN-28.
Cn-2D=j1j

136

3.7 Forming a Protective Sequence

Preset
value

Function

0

/COIN, /V-CMP
(Can be allocated to 1CN-25 and 1CN-26 only.)

1

/TGON

2

/S-RDY

3

/CLT

4

/BK

5

Overload warning

6

Overload alarm

Use the following parameter to specify the output conditions for /TGON (running output
signal).

Cn-0B

TGONLV

Zero-Speed
Level

Unit:

min−1

Setting
Range: 1 to
10000

Factory
Setting:
20

For
Speed/Torque
Control and
Position Control

This parameter is used to set the speed level at which the SERVOPACK determines that
the motor is running and then outputs a signal.
The following signals are output when motor speed exceeds the preset value. (The circuit
is closed when motor speed exceeds the preset value.)
D /TGON
D Status indication mode bit data
D Monitor mode Un-05 bit 4

Motor
speed

/TGON

137

3

APPLICATIONS OF Σ-SERIES PRODUCTS
3.7.6 Using OL Warning and Alarm Output Signals

3.7.6 Using OL Warning and Alarm Output Signals
This section describes how to wire and use photocoupler output signals OLWRN (overload warning) and OL (overload alarm).
These two output signals are output when operation under the rated current or more continues for a certain period of time. The overload warning signal is output in 20% of the
time required to output the overload alarm signal.

Operating time
(seconds)

Overload Alarm level
Overload warning level

Rated current

Instantaneous peak current
Current

3

I/O power supply
SGDB SERVOPACK

Photocoupler Output
Per output:
Maximum operation
voltage: 30 VDC
Maximum output
current: 50 mADC

OLWRN+
(OL+)
OLWRN−
(OL−)

Output → OL

Overload Warning Output

For Speed/Torque
Control and
Position Control

Overload Alarm Output

Output → /OLWRN

For Speed/Torque
Control and
Position Control

OLWRN is an overload warning output signal, and OL is an overload alarm output signal.
ON
status:

Circuit is closed or signal is at low level. Normal state

OFF
status:

Circuit is open or signal is at high level.

Warning or alarm state

Use the following parameter to specify the pin to which the signal is to be output.
OUTSEL
Cn-2D

Output
signal
selection

Setting Range:
110 to 666

Factory
Setting:
210

For
Speed/Torque
Control and
Position Control

This parameter is used to specify a function signal as the 1CN output signal.

138

3.7 Forming a Protective Sequence

1s place

Select the 1CN-25 and 1CN-26 (/COIN, /V-CMP) functions.

10s place

Select the 1CN-27 and 1CN-28 (/TGON) functions.

100s place

Select the 1CN-29 and 1CN-30 (/S-RDY) functions.

Example: Overload warning is output to 1CN-27 and 1CN-28.
Cn-2D=j5j
Preset
Value

Function

0

/COIN, /V-CMP
(Can be allocated to 1CN-25 and 1CN-26 only.)

1

/TGON

2

/S-RDY

3

/CLT

4

/BK

5

Overload warning

6

Overload alarm

3

139

APPLICATIONS OF Σ-SERIES PRODUCTS
3.7.7 Using Servo Ready Output Signal

3.7.7 Using Servo Ready Output Signal
This section describes how to wire and use photocoupler output signal /S-RDY (servo
ready).
“Servo ready” means that the SERVOPACK is not in servo alarm state when the main
circuit is turned ON. For absolute encoder specifications, “servo ready” means that, in
addition to the above, the SEN signal is at high level and the absolute encoder is also in
ready state.

I/O power
supply

SGDB SERVOPACK

Photocoupler Output
Per output:
Maximum operation
voltage: 30 VDC
Maximum output
current: 50 mADC

3

Output → /S-RDY

/S-RDY+
/S-RDY−

Servo Ready Output

For Speed/Torque
Control and
Position Control

This signal indicates that the SERVOPACK is ready to receive servo ON signals.
ON
status:

Circuit is closed or signal is at low level. Servo ready state

OFF
status:

Circuit is open or signal is at high level.

Not in servo ready state

Use the following parameter to specify the pin to which the /S-RDY signal is to be output.

Cn-2D

OUTSEL Output
signal
selection

Setting Range:
110 to 666

Factory
Setting:
210

For
Speed/Torque
Control and
Position Control

This parameter is used to specify a function signal as the 1CN output signal.
1s place

Select the 1CN-25 and 1CN-26 (/COIN, /V-CMP) functions.

10s place

Select the 1CN-27 and 1CN-28 (/TGON) functions.

100s place

Select the 1CN-29 and 1CN-30 (/S-RDY) functions.

Example: /S-RDY is output to 1CN-29 and 1CN-30.
Cn-2D=2jj

140

3.7 Forming a Protective Sequence

Preset
Value

Function

0

/COIN, /V-CMP
(Can be allocated to 1CN-25 and 1CN-26 only.)

1

/TGON

2

/S-RDY

3

/CLT

4

/BK

5

Overload warning

6

Overload alarm

3.7.8 Handling of Power Loss
Use the following memory switch to specify whether to output a servo alarm when power
loss occurs.

Cn-01 Bit 5

Operation to Be Performed at
Recovery from Power Loss

Factory
Setting: 0

If the SGDB SERVOPACK detects instantaneous
voltage drop in power supply, it can output servo
alarm A.F3 to prevent a hazardous situation. This
memory switch is used to specify whether to output this alarm.

For Speed/Torque Control
and Position Control

Power loss
200 V
supply
voltage

(1CN-31)

Setting

Cn-01 bit 5 = 0
Cn-01 bit 5 = 1

Meaning

0

Does not output a servo alarm after recovery from power loss.

1

Outputs a servo alarm after recovery from power loss.

Normally, set this memory switch to 0. If the /S-RDY signal is not to be used, set the
memory switch to 1. The /S-RDY signal remains OFF while the main power supply is
OFF, regardless of the memory switch setting.

141

3

APPLICATIONS OF Σ-SERIES PRODUCTS
3.8.1 Wiring Instructions

3.8

Special Wiring

This section describes special wiring methods including the one for noise control. Always
refer to Section 3.8.1 Wiring Instructions and 3.8.2 Wiring for Noise Control, and refer to other
sections as necessary.

3.8.1 Wiring Instructions
To ensure safe and stable operation, always refer to the following wiring instructions.
NOTE

Always use the following cables for reference input and encoder wiring.

3

Cable Type

Maximum
Allowable
Length

For reference
input

Twisted-pair
cables

DE9406969

3 m (9.8 ft.)

For encoder

NOTE

Yaskawa Drawing No.

B9400064 (for incremental
Multiconductor
encoder)
shielded
DP8409123 (for absolute
twisted-pair cable
encoder)

20 m (65.6 ft.)

For a ground wire, use as thick a cable as possible.
• Trim off the excess portion of the cable to minimize the cable length.
• At least class 3 grounding (ground to 100 Ω or
less) is recommended.
• Always use one-line grounding.
• If the motor is insulated from the machine, ground the motor directly.
• Select grounding phase and grounding point in accordance with the national code and
consistent with sound local practices.

NOTE

Do not bend or apply tension to cables.
• Since the conductor of a signal cable is very thin (0.2 to 0.3 mm), handle it with adequate care.

142

3.8 Special Wiring

NOTE

Use a noise filter to prevent noise interference.
(For details, refer to the following Caution.)

Noise filter

• If the servo is to be used near private houses or
may receive noise interference, install a noise
filter on the input side of the power supply line.
Since this SERVOPACK is designed as an industrial device, it provides no mechanism to prevent noise interference.
NOTE

To prevent malfunction due to noise, take the following actions:
• Position the input reference device and noise filter as close to the SERVOPACK as possible.
• Always install a surge absorber circuit in the relay, solenoid and magnetic contactor
coils.
• The distance between a power line (such as a power supply line or motor cable) and a
signal line must be at least 30 cm (12 in). Do not put the power and signal lines in the
same duct or bundle them together.
• Do not share the power supply with an electric welder or electrical discharge machine.
When the SERVOPACK is placed near a high-frequency oscillator, install a noise filter
on the input side of the power supply line.
Note a) Since SERVOPACK uses high-speed switching elements, signal lines may receive noise. To prevent this, always take the above actions.
b) For details of grounding and noise filters, refer to Section 3.8.2 Wiring for
Noise Control.

NOTE

Use a molded-case circuit breaker (MCCB) or fuse to protect the power supply line from high
voltage.
• This SERVOPACK is directly connected to commercial power supply without a transformer.
Always use an MCCB or fuse to protect the servo system from accidental high voltage.
• Select an appropriate MCCB or fuse according
to the SERVOPACK capacity and the number of
SERVOPACKs to be used as shown below.

MCCB

143

3

APPLICATIONS OF Σ-SERIES PRODUCTS
3.8.2 Wiring for Noise Control

MCCB or Fuse for Each Power Capacity

SERVOPACK
Type
SGDB-03ADj
SGDB-05ADj
SGDB-07ADj
SGDB-10ADj

2.5

10

SGDB-20ADj

4.0

12

SGDB-30ADj

5.0

18

SGDB-44ADj

7.0

24

SGDB-50ADj

7.5

28

SGDB-60ADj

12.5

32

SGDB-75ADj

15.0

41

SGDB-1AADj

19.0

60

SGDB-1EADj

Note

0.65
1.1
1.5
2.0

SGDB-15ADj

3

Power Capacity Per
SERVOPACK (kVA)
(see note 1)

Current Capacity Per MCCB or
Fuse (A)
(see note 2)

30.0

80

5
8

1) Power capacity at rated load
2) Operating characteristics (25°C): 2 seconds or more for 200%, 0.01 second or more for
700%
3) A fast-operating fuse cannot be used because the SERVOPACK power supply is a capacitor input type. A fast-operating fuse may blow out when the power is turned ON.

3.8.2 Wiring for Noise Control
J Example of Wiring for Noise Control
This SERVOPACK uses high-speed switching elements in the main circuit. It may receive “switching noise” from these high-speed switching elements if wiring or grounding
around the SERVOPACK is not appropriate. To prevent this, always wire and ground the
SERVOPACK correctly.
This SERVOPACK has a built-in microprocessor (CPU). To protect the microprocessor
from external noise, install a noise filter in place.

144

3.8 Special Wiring

The following is an example of wiring for noise control.
Noise filter *
Servomotor
SGDB
SERVOPACK

200VAC
3.5 mm2
or more

(Casing)
FG

3.5 mm2
or more

• Operation relay sequence
• Signal generation circuit (provided by customer)

(Note b)

3

3.5 mm2
or more
ground

(Casing)

(Casing)

Wire with a thickness of
3.5 mm2 or more

2 mm2 or more
3.5 mm2 or more
(Casing)
(Casing)
Ground plate
Ground: One-line grounding
(at least class 3 grounding)

* When using a noise filter, always observe the following wiring instructions:
Note a) For a ground wire to be connected to the casing, use a thick wire with a thickness of at least 3.5 mm2 (preferably, plain stitch cooper wire).
b) For wires indicated by P↕, use twisted-pair cables whenever possible.
J Correct Grounding
• Always ground the motor frame.
Always connect servomotor frame terminal FG to the SERVOPACK ground terminal
Be sure to ground the ground terminal

.

.

• If the servomotor is grounded via the machine, a switching noise current will flow from
the SERVOPACK power unit through motor stray capacitance. The above grounding is
required to prevent the adverse effects of switching noise.
• If the reference input line receives noise, do the following.
Ground the 0 V line (SG) of the reference input line. If the main circuit wiring for the motor
is accommodated in a metal conduit, ground the conduit and its junction box. For all
grounding, always use one-line grounding.

145

APPLICATIONS OF Σ-SERIES PRODUCTS
3.8.2 Wiring for Noise Control cont.

J Noise Filter Installation
Use an inhibit type noise filter to prevent noise
from the power supply line.
Install a noise filter on the power supply line for
peripheral equipment as necessary.
The following table lists recommended noise
filters for each SERVOPACK type.
Noise Filter Types

SERVOPACK Type
0.3 kW
0.5 kW
0.7 kW
1.0 kW
1.5 kW
2.0 kW

SGDB-30ADj

4.4 kW
5.0 kW

SGDB-44ADj
SGDB-50ADj

6.0 kW

SGDB-60ADj

7.5 kW

SGDB-75ADj

11.0 kW

SGDB-1AADj

15.0 kW

SGDB-1EADj

Recommended Noise Filter

(Correct)

Type
LF-310

Specifications
Three-phase 200
p
VAC,
VAC 10 A

LF-315

SGDB-20ADj

3.0 kW

3

SGDB-03ADj
SGDB-05ADj
SGDB-07ADj
SGDB-10ADj
SGDB-15ADj

Noise Filter
Connection

Three-phase 200
p
VAC,
VAC 15 A

LF-320

Three-phase 200
VAC, 20 A
Three-phase 200
VAC, 30 A
Three-phase 200
p
VAC,
VAC 40 A

LF-330
(Incorrect)
(I co ect)

LF-340
LF-350
LF-360
LF-380K
FN-258-100
(Manufactured by
Shaffner)

Three-phase 200
VAC, 50 A
Three-phase 200
VAC, 60 A
Three-phase 200
VAC, 80 A
Three-phase 200
VAC, 100 A

Note These noise filters are manufactured by Tokin Corp. and available from Yaskawa.
For noise filters, contact your nearest Yaskawa sales representatives.

146

3.8 Special Wiring

Always observe the following installation and wiring instructions. Incorrect use of a noise
filter halves its benefits.
• Separate input lines from output lines.

Do not put the input and output
lines in the same duct or
bundle them together.

Noise
filter

Noise
filter

Noise
filter

Noise
filter

3
Separate these circuits.

• Separate the noise filter ground wire from the output lines.

Do not accommodate the
noise filter ground wire, output
lines and other signal lines in
the same duct or bundle them
together.

Noise
filter

Noise
filter
The ground wire
can be close to
input lines.

147

APPLICATIONS OF Σ-SERIES PRODUCTS
3.8.2 Wiring for Noise Control cont.

• Connect the noise filter ground wire directly to the ground plate.

Do not connect the noise filter
ground wire to other ground
wires.

Noise
filter

Shielded ground
wire

3

Noise
filter

Thick
and
short

• When grounding a noise filter inside a Unit.
If a noise filter is located inside
a Unit, connect the noise filter
ground wire and the ground
wires from other devices
inside the Unit to the ground
plate for the Unit first, then
ground these wires.

Unit
Noise
filter

Ground

148

3.8 Special Wiring

3.8.3 Using More Than One Servo Drive
J Example of Wiring More than One Servo Drive
Power supply

Power
OFF

Power
ON

Noise filter

SGDB
SERVOPACK

SGMj
servomotor

3

SGDB
SERVOPACK

SGMj
servomotor

SGDB
SERVOPACK

SGMj
servomotor

Note Wire the SERVOPACK
so that terminal S is the
grounding phase.

Connect the alarm output (ALM) terminals for the three SERVOPACKs in series to enable alarm detection relay 1RY to operate. This is because ALM is a logical complement
output signal, so the output transistor is turned OFF when the system enters an alarm
state.
The output transistor is turned OFF when the ALM output signal invokes alarm state.

149

APPLICATIONS OF Σ-SERIES PRODUCTS
3.8.3 Using More Than One Servo Drive cont.

Multiple servos can share a single MCCB or noise filter. Always select a MCCB or noise
filter that has enough capacity for the total power capacity (load conditions) of those servos. For details, refer to page 144.
MCCB

Noise filter

Noise Filter Types

3

SERVOPACK Type
0.3 kW
0.5 kW
0.7 kW
1.0 kW
1.5 kW

SGDB-20ADj

3.0 kW

SGDB-30ADj

4.4 kW
5.0 kW

SGDB-44ADj
SGDB-50ADj

6.0 kW

SGDB-60ADj

7.5 kW

SGDB-75ADj

11.0 kW

SGDB-1AADj

15.0 kW

SGDB-1EADj

Recommended Noise Filter

(Correct)

Type
LF-310

Specifications
Three-phase 200
p
VAC,
VAC 10 A

LF-315

SGDB-03ADj
SGDB-05ADj
SGDB-07ADj
SGDB-10ADj
SGDB-15ADj

2.0 kW

Noise Filter
Connection

Three-phase 200
p
VAC,
VAC 15 A

LF-320

Three-phase 200
VAC, 20 A
Three-phase 200
VAC, 30 A
Three-phase 200
p
VAC,
VAC 40 A

LF-330
LF-340
(
(Incorrect)
)

LF-350
LF-360
LF-380K
FN-258-100
(Manufactured by
Shaffner)

Three-phase 200
VAC, 50 A
Three-phase 200
VAC, 60 A
Three-phase 200
VAC, 80 A
Three-phase 200
VAC, 100 A

Note These noise filters are manufactured by Tokin Corp. and available from Yaskawa.
For noise filters, contact your nearest Yaskawa sales representatives.

150

3.8 Special Wiring

3.8.4 Using Regenerative Resistor Units
SERVOPACKs of 6.0 kW or higher have no built-in regenerative resistor. For such SERVOPACKs, connect an external regenerative resistor unit.

J Connecting a Regenerative Resistor Unit
The standard connection diagram for a regenerative resistor unit is shown below.
SERVOPACK

Three-phase
200-230 VAC

3

Alarm

Regenerative resistor unit

Connecting a Regenerative Resistor Unit

J Regenerative Resistor Units

SERVOPACK Type
SGDB-60ADj
SGDB-75ADj
SGDB-1AADj

Regenerative Resistor Unit
Type

Regenerative Resistance
(Ω)

JUSP-RA04
JUSP-RA05

6.25
3.13

SGDB-1EADj

NOTE

A regenerative resistor unit becomes very hot under some regenerative operation conditions of the servo system. Therefore, provide a cooling mechanism for the regenerative
resistor unit, use heat resistant and incombustible cables, and route the cables so that
they are not in contact with the unit.
The resistor specifications of each regenerative resistor unit are as follows:
JUSP-RA04 Type: 25Ω (220 W) x 4 (connected in parallel)
JUSP-RA05 Type: 25Ω (220 W) x 8 (connected in parallel)

151

APPLICATIONS OF Σ-SERIES PRODUCTS
3.8.5 Using an Absolute Encoder

A regenerative resistor reaches approximately 90°C when it is used at 20% of the rated
allowable dissipation value of the resistor. The allowable motor regenerative power (average) is 180 W for the JUSP-RA04 Type, and 350 W for the JUSP-RA05 Type. If the
regenerative power (average) exceeds the allowable limit value when the servo system
is operating in regenerative operation mode, select an additional regenerative resistor
that has a greater rated allowable dissipation value (W). Therefore, always take the servo system operation conditions into consideration when determining which regenerative
resistor unit to use.
Example of allowable motor duty conditions
Motor instantaneous
max. speed

0.2 s

0.2 s

0.2 s

0.2 s

25 s

3

• Motor deceleration torque: Maximum torque
• Load inertia: Five times the motor rotor inertia
Assuming that there is no mechanical loss.

3.8.5 Using an Absolute Encoder
J Outline
An absolute value detection system detects an absolute position of the machine even
when the servo system is OFF. If such a system is to be formed in the host controller, use
an SGMj servomotor with absolute encoder. Consequently, automatic operation can be
performed without zero return operation immediately after the power is turned ON.
SGMj-jjjWj 12-bit absolute encoder
SGMj-jjjSj 15-bit absolute encoder

Always detects
absolute position
Absolute encoder

152

Zero return
operation

3.8 Special Wiring

J Standard Connection Diagram for an Absolute Encoder Mounted on a Servomotor
• Interface Circuit
SGMj servomotor
Absolute encoder

SERVOPACK

Host controller

Battery
Serial
interface
circuit

Line receiver
/PAO

Line Receiver Used:
Termination Resistor R:

/PB

/PCO

/PC

/PSO

Serial
interface
circuit

/PA

/PBO

DeUp/
coddown
Clear count- er
er

/PS

Represents twisted pair wires

SN75175 or MC3486 manufactured by Texas Instruments Inc.
220 to 470 Ω

PS, /PS, PSO and /PSO are for 12-bit absolute encoders only.
SEN signal

Electrical Specifications
SGDB
SERVOPACK

Host controller
• The SEN signal must be set at high level af1CN-4
ter at least three seconds after the power is
At high level
turned ON.
7406 or
Approx. 1mA
equivalent
• When the SEN signal is changed from low
1CN-2
level to high level, +5 V is applied to the ab• A PNP transistor is recommended.
solute encoder, and serial data and initial in• Signal level High level: Min. 2.5 V
Low level: Max. 0.8 V
cremental pulses are transmitted.
• The motor is not turned ON until these operations are complete, regardless of the servo
ON signal (/S-ON).

J Memory Switch to Determine Whether to Use Input Signal SEN
Cn-01 Bit 1

Use of SEN Input Signal

Factory
Setting: 0

This memory switch is used to determine whether
to use input signal SEN (1CN-4).
This memory switch is available for absolute encoders only (not for incremental encoders).
Setting

For Speed/Torque Control
and Position Control

SERVOPACK
Servomotor
-4

Absolute encoder

Meaning

0

Uses SEN signal.

1

Does not use SEN signal.
(The SGDB SERVOPACK always
assumes that the SEN signal is at high
level, regardless of the actual signal
level.)

153

3

APPLICATIONS OF Σ-SERIES PRODUCTS
3.8.5 Using an Absolute Encoder cont.

NOTE

If the SEN signal is to be turned OFF, then ON again, it must remain at high level for at
least 1.3 seconds before being turned OFF.

SEN signal

OFF

ON: High level
1.3 seconds or more

ON

OFF
15 ms
or more

J Memory Switch to 1 to Select Absolute Encoder
Cn-01 Bit E

Encoder Type Selection

Factory
Setting: 0

For Speed/Torque Control
and Position Control

Sets the encoder type according to the servomotor type to be used.

3

After changing the memory switch setting, turn the power OFF, then ON.
Motor Type
encoder
specifications
2
3
6
W
S

Number of Encoder Pulses Per Revolution

Preset Value

Incremental encoder: 8192 pulses per revolution
Incremental encoder: 2048 pulses per revolution
Incremental encoder: 4096 pulses per revolution
Absolute encoder: 1024 pulses per revolution
Absolute encoder: 8192 pulses per revolution

0

1

Use the following parameter to set the number of pulses for the absolute encoder to be
used:
PULSNO
Number of Encoder
Pulses

Cn-11

Unit:
P/R

Setting
Range:
Number of
Encoder
Pulses

For Speed/Torque
Control and Position
Control

Sets the number of encoder pulses according to the servomotor type to be used.
After changing the memory switch setting, turn the power OFF, then ON.
Motor Type
encoder
specifications

Number of Encoder Pulses Per Revolution

Preset Value

2

8192

3

Incremental encoder: 2048 pulses per revolution

2048

6

Incremental encoder: 4096 pulses per revolution

4096

W

Absolute encoder: 1024 pulses per revolution

1024

S

154

Incremental encoder: 8192 pulses per revolution

Absolute encoder: 8192 pulses per revolution

8192

3.8 Special Wiring

NOTE

Incorrect settings of the above parameters may result in abnormal motor operation. To
prevent this, always set the parameter correctly.

J Using a Battery
Use the following battery to enable the absolute encoder to store position information
even when the power is turned OFF. Load the battery in the host controller and connect it
to SERVOPACK input terminals BAT and BAT0.
Recommended battery:

D Connect the battery securely to prevent contact faults
resulting from environmental changes or aging.

Lithium battery

D Battery voltage is not monitored inside the
SERVOPACK. Provide a battery voltage monitor circuit
as necessary.
Minimum voltage: 2.8 V

Toshiba Battery ER6V C3 Type
3.6 V, 2000 mAH

3

J Setting up Absolute Encoder
Set up the absolute encoder in the following cases:
• When starting the machine for the first time
• When the absolute encoder is not connected to power supply or backup power supply
(battery) for more than two days

155

APPLICATIONS OF Σ-SERIES PRODUCTS
3.8.5 Using an Absolute Encoder cont.

The setup procedure is as follows:
15-bit absolute encoder (Motor type encoder specifications=S)
1

Discharging Electricity from the Encoder

• Turn the SGDB SERVOPACK OFF, then disconnect the encoder connector.
• Short-circuit encoder connector terminals R and S
for at least two minutes.
Key position

2

Turning Power ON

• Return the wiring to the normal state.
• Connect the battery, turn the SGDB SERVOPACK
ON, and set the SEN signal at high level.
• If alarm “A.00” arises, repeat the same procedure
from the beginning.
• If no problem has occurred, the setup procedure is
complete.

3

12-bit absolute encoder (Motor type encoder specifications=W)
1

Turning SGDB SERVOPACK ON

• Wire the SGDB SERVOPACK, motor and encoder
in the normal way.

3

• Connect the battery and turn the SGDB SERVOPACK ON.

• Turn the SGDB SERVOPACK
OFF, then disconnect the encoder connector.

2

Turning the Encoder ON

• Set the SEN signal at high level.
• Keep the encoder turned ON for at least three minutes.

Resetting Data

• Short-circuit encoder connector
terminals 13 and 14 for two seconds or more.
(For SGM and SGMP servomotors)

Key
position

• Short-circuit encoder connector
terminals R and S for at least
two seconds.
(For SGMG, SGMD, and SGMS
servomotors)

• It does not matter even if alarm status arises.

4

Turning the Power ON

• Return the wiring to the original state.
• Turn the SGDB SERVOPACK ON and set the SEN
signal at high level.
• If alarm “A.00” arises, repeat the same procedure
from the beginning.
• If no problem has occurred, the setup procedure is
complete.

NOTE

Setting up the encoder sets the revolution count inside the encoder to 0.
After setting up the encoder, always reset the machine home position. Operating the machine without the home position being reset does not only damage the machine but may
also cause an accident resulting in injury or death.

J Absolute Data Exchange Sequence
The SERVOPACK sends absolute data to the host controller when receiving output from
an absolute encoder. This data exchange sequence is described below.
Use the following detailed information when designing a host controller.

156

3.8 Special Wiring

Outline of Absolute Signal

SERVOPACK

Frequency
dividing
circuit

The absolute encoder outputs PAO, PBO,
PCO and PSO as shown on the right.

Signal
Name

Status

Contents

Initial state

Serial data
Initial incremental pulse

Normal state

Incremental pulse

Initial state

Initial incremental pulse

Normal state

Incremental pulse

Normal state

Home position pulse

Normal state

Rotation count serial data
(12-bit absolute encoder only)

PAO

PBO
PCO
PSO

3

Contents of Absolute Data
Serial Data:

Indicates how many turns the motor shaft has made from
the reference position (position specified at setup).

Initial Incremental Pulse:

Outputs pulses at the same pulse rate as when the motor
shaft rotates from the home position to the current position at the maximum speed of 4,900 min−1.
Reference position
(setup)

Current position

Coordinate data
Value M

Absolute data PM can be determined using the following formula.

PE = M ¢ R+PO
PM = PE − PS

PE
M
PO
PS

PM
R

Current value read by encoder
Serial data (rotation count data)
Number of initial incremental pulses
(Normally, this is a negative value)
Number of initial incremental pulses read at setup
(Normally, this is a negative value stored and
controlled by a host controller.)
Current value required for the customer system
Number of pulses per encoder revolution
(pulse count after dividing, value of Cn-0A)

157

APPLICATIONS OF Σ-SERIES PRODUCTS
3.8.5 Using an Absolute Encoder cont.

Absolute Data Transmitting Sequence
1. Set the SEN signal at
high level.
2. After 100 ms, set the
system to serial data
reception-waitingstate. Clear the incremental pulse up/down
counter to zero.

Rotation count
serial data

Initial incremental
pulse
Incremental
pulse
(Phase A)
Incremental
pulse
(Phase B)
Rotation count
serial data

Undefined
(Phase A)
Initial
incremental
pulse

Undefined

(Phase B)

Undefined

3. Receive eight bytes of
serial data.

1 to
3 ms
10 to
15 ms

Approx.
23 ms

4. The system enters a normal incremental operation state approximately 50 ms
after the last serial data is received.
Detailed Specifications of Each Signal

3

• Specifications of PAO Serial Data:

“P” or “A”

“+” or “-”

”,”

“CR”

The number of revolutions is output in five digits.
Data transmission
method

Start-stop synchronization
(ASYNC)

Baud rate

9600

Start bit

1 bit

Stop bit

1 bit

Parity

Even number

Character code

ASCII 7-bit code

Data format

Data

8 characters. As shown on
the right.

Start bit

• Data is P+0000 (CR) or P−0000
(CR) when the number of revolutions is zero.
• The maximum number of revolutions is 99999. If this value is exceeded, it returns to 0000.

• Specifications of PSO Serial Data:
The number of revolutions and the absolute position within one revolution are always output in five and four digits, respectively. The transmission cycle is
approximately 40 ms.
Data transmission
method
Baud rate

9600

Start bit

1 bit

Stop bit

1 bit

Parity

Even number

Character code

ASCII 7-bit code

Data format

158

Start-stop synchronization
(ASYNC)

13 characters. As shown on
the right.

Even parity

Number of
revolutions: “0” to “9”
“+” or “-”

“+” or “-”

Absolute position
within one revolution:
“0” to “9”
“CR”

“P” or “A”

Data
Start bit

Even parity

• Absolute position data within one revolution is a value before frequency dividing.
(4,096 pulses per revolution)
• Absolute position data increases during
forward rotation (standard setting).
(Not valid in reverse rotation mode)

3.8 Special Wiring

• Incremental Pulse and Home Position
Pulse:

Phase A

Forward
rotation

Phase B

Initial incremental pulses which provide absolute data are first divided by
the frequency divider inside the SERVOPACK and then output in the same
way as normal incremental pulses.

Reverse
rotation

Phase A
Phase B

Phase C

Phase C

• Note that phase C is not divided so its pulse
width is narrower than phase A.

• Use the following parameter to set the pulse dividing ratio.

Cn-0A

PGRAT
Dividing Ratio
Setting

Unit: P/R

Setting Range:
16 to Number
of Encoder
Pulses

Set the number of output pulses for PG output
signals (PAO, /PAO, PBO and /PBO).

SGMj
servomotor
encoder

Pulses from motor encoder (PG) are divided
by the preset number of pulses before being
output.
The number of output pulses per revolution is
set in this parameter. Set this value according
to the reference unit of the machine or controller to be used.

For Speed/Torque
Control and
Position Control

SGDB
SERVOPACK
Phase A

Phase B

Frequency
divider

Output terminals:
PAO (1CN-33)
/PAO (1CN-34)
PBO (1CN-35)
/PBO (1CN-36)

Phase A
Phase B Output

Setting example:
Preset value: 16
PA0
PB0
1 revolution

The setting range varies according to the encoder used.

159

3

APPLICATIONS OF Σ-SERIES PRODUCTS
3.8.5 Using an Absolute Encoder cont.

J Alarm Display
When a 12-bit absolute encoder is used, the following alarms are detected and displayed.
List of Alarms

Alarm Type

Digital
Operator
Display

Meaning

PAO Serial
Data

PSO Serial
Data

Backup Alarm

ALM81.

CR

ALARMOA
BACK
CR

Battery Alarm

Indicates that backup
voltage drop was
detected. (This alarm
warns of battery
replacement and
disconnection.)

ALM83.

CR

ALARMOD
BATT
CR

Checksum
Error

Indicates that an error
was detected in memory
data check.

ALM82.

CR

ALARMOB
CHEC
CR

Overspeed

Indicates that the motor
was running at a speed
exceeding 400 min−1
when the encoder was
turned ON.

ALM85.

CR

ALARMOP
OVER
CR

Absolute Error

3

Indicates that backup
voltage drop was
detected. (This alarm
helps maintain reliability of
rotation count data.)

Indicates that an error
was detected in sensor
check inside the encoder.

ALM84.

CR

ALARMOH
ABSO
CR

ALM81.

CR

ALARMOE
BACK
(BATT) CR

Backup/Battery
Combination
Alarm

The SEN signal can be used to output alarm information from PAO and PSO as serial
data.

SEN Signal
Digital
Operator
Display
PAO Serial
Data
PSO Serial
Data

“H”

or

Error detection

“H”

ALM80.

Absolute encoder alarm
(Alarm type identified)

CR

ALARMO*

CR

Incremental pulse

P¦jjjjj, H¦jjjjj,
jjjj CR jjjj
CR

“L”

“H”

Absolute encoder alarm
(Details unknown)

and so on

160

“L”:

(Undefined)

ALARMO*

****

CR

ALM8*.
CR
(Undefined)

3.8 Special Wiring

J Absolute Encoder Home Position Error Detection
Cn-02 Bit 1

Absolute Encoder Home
Position Error Detection

Factory
Setting: 0

For Speed/Torque Control
and Position Control

This memory switch is used to specify whether to use home position error detection
(alarm A.80) when an absolute encoder is used.
Setting

Meaning

0

Detects a home position error.

1

Does not detect a home position error.

Normally, set this memory switch to “0”.
This memory switch has no significance when an incremental encoder is used.

TERMS

3

Home position error detection
This function detects an encoder count error resulting from noise. It checks the number of
pulses per motor revolution, and outputs a home position error alarm if that number is incorrect.
If the absolute encoder detects an error, it inverts phase C and notifies the SERVOPACK of
the error. In this case, this “home position error detection” function also works.

161

APPLICATIONS OF Σ-SERIES PRODUCTS
3.8.6 Extending an Encoder Cable

3.8.6 Extending an Encoder Cable
Both incremental and absolute encoders have a standard encoder cable (maximum 20
meters (65.6 ft.)). If a longer cable is required, prepare an extension cable as described
below. The maximum allowable cable length is 50 meters (164 ft.).
J 3-meter (19.8 ft.) Cable with Connectors (for SGM and SGMP)

• For incremental encoder: DP9320089-1
• For absolute encoder: DP9320088-1

3

J 3-meter (1.98 ft) Cable with Connector
J Encoder Plug and Cable Clamp (for SGMG, SGMD, and SGMS)

or

• For incremental encoder: DE9406971-1
• For absolute encoder: DE9406972-1
• L-type plug: MS3108B20-29S
or
• Straight plug: MS3106B20-29S
• Cable clamp: MS3057-12A

162

3.8 Special Wiring

J 50-meter (164 ft.) Extension Cable

• For both incremental and absolute encoders: DP8409179

Cut this cable 30 cm (0.98 ft.) or less from each end.
Cut

3

Cut

Be sure to connect
each wire correctly
(see the following
table).

For SGMG, SGMD and
SGMS Types, connect
directly to the plug.

Maximum 50 m (164 ft.)

163

APPLICATIONS OF Σ-SERIES PRODUCTS
3.8.7 Using SGDB SERVOPACK with High Voltage Line

Connect cables of the same color to each other as shown in the table below. Note that
wiring for incremental and absolute encoders is different.
Color and Wire Size of
Cable with Connectors

Color and Wire Size of
50-meter Extension
Cable (DP8409179)

PG5V

Red

AWG22

Red

AWG16

PG0V

Black

AWG22

Black

AWG16

PA

Blue

AWG26

Blue

AWG26

*PA

White/Blue

AWG26

White/Blue

AWG26

PB

Yellow

AWG26

Yellow

AWG26

*PB

White/Yellow

AWG26

White/Yellow

AWG26

PC

Green

AWG26

Green

AWG26

*PC

White/Green

AWG26

White/Green

AWG26

PS

Purple

AWG26

Purple

AWG26

*PS

White/Green

AWG26

White/Green

AWG26

RESET

White/Gray

AWG26

White/Gray

AWG26

BAT

Orange

AWG26

Orange

AWG26

BAT0

White/Orange

AWG26

White/Orange

AWG26

Signal
Name

3

Only the absolute
encoder can be
connected.

Note Make sure to connect the shielded wires.

3.8.7 Using SGDB SERVOPACK with High Voltage Line
SGDB SERVOPACKs use three-phase 200 VAC.
If, however, three-phase 400 VAC class (400 V, 440 V) power supply must be used, prepare the following power transformer (for three-phase).

& lt; Primary side & gt;
400 or 440 VAC

164

& lt; Secondary side & gt;
200 VAC

3.8 Special Wiring

Select appropriate power transformer capacity according to the following table.

SERVOPACK
Type

Power Supply Capacity Per
SGDA SERVOPACK (kVA)
(see note)

SGDB-03ADj

0.65

SGDB-05ADj

1.1

SGDB-07ADj

1.5

SGDB-10ADj

2.0

SGDB-15ADj

2.5

SGDB-20ADj

4.0

SGDB-30ADj

5.0

SGDB-44ADj

7.0

SGDB-50ADj

7.5

SGDB-60ADj

12.5

SGDB-75ADj

15.0

SGDB-1AADj

19.0

SGDB-1EADj

30.0

3

Note At rated load.
When 400-V-class supply voltage is used, power must be turned ON and OFF on the primary side of the power transformer.

165

APPLICATIONS OF Σ-SERIES PRODUCTS
3.8.8 Connector Terminal Layouts

3.8.8 Connector Terminal Layouts
This section describes connector terminal layouts for SERVOPACKs, SGMj servomotors
and Digital Operators.
J SERVOPACK Connectors
1CN Terminal Layout
1
2

SG

0V
3

4

SEN

SG

8

/PULS

SG

Power supply
for open collector reference

V-REF

Reference
pulse input
T-REF

11

14

/SIGN

/CLR

PL2

Power supply for open
collector reference

CLR

Error counter
clear input
15

16

18

20

TQR-M

PL3

/PCO

17

19

24

PCO

BAT0

−12V

+12V

Power supply
for speed/
torque reference

23

/V-CMP
(/COIN+)

Speed coincidence signal
output

25

47

49

ALO2

Alarm code
output (open
collector output)

/S-ON

Servo ON input

P-OT

Forward overtravel input

/ALM−
RST

Alarm reset input

/N-CL

Reverse external torque limit
ON input

PSO

Phase S
Signal output

50

FG

Frame ground

PG dividing
output
phase B

ALO3

/P-CON

Alarm code
output (open
collector output)

P control input

/N-OT

Reverse overtravel input

/P-CL

Forward external torque limit
ON input

Battery (+)

Battery (−)
Power supply
for speed/
torque reference

BAT

38

48

45

PG dividing
output
phase B

46

ALO1

PG dividing
output
phase C

PG dividing
output
phase C

/PBO

44

PBO

Speed monitor
43

21
22

VTG-M

PG dividing
output
phase A

42

39

41

Torque monitor
Power supply
for open collector reference

37

/PAO

40

PAO

PG dividing
output
phase A

Error counter
clear input

Reference
sign input

Servo alarm
output

Servo alarm
output

Reference
sign input

13

12

SIGN

ALM−

36

35

Servo ready
output

Servo ready
output

/ALM+

Torque reference input

0V

/S-RDY−

34

33

TGON
output signal

32

Reference
pulse input

/TGON−

TGON
output signal

Speed reference input

PULS

/S-RDY+

Speed coincidence output

30

29

/TGON+

/V-CMP
(/COIN−)

28

27

31

9
10

26

0V

0V
7

3

PL1

SEN signal input
5

6

SG

+24V
IN

/PSO

External power supply input

Phase S
Signal output

D SERVOPACK Side
Connector type: 10250-52A2JL (manufactured by 3M)
D Cable Side
Connector type: 10150-3000VE (manufactured by 3M)
Connector case type: 10350-52A0-008 (manufactured by 3M)

166

3.8 Special Wiring

2CN Terminal Layout
1
2

PG0V

PG0V

3
4

8

5

PG5V

BAT +

Battery (+) (for
absolute enb l t
coder only)

7

9

DIR

PS

10

PG input
phase C

/PA

PG input
phase A

19

/PB

PG input
phase B

PG input
phase A

Rotation direction input
PG input
phase S (for
absolute encoder only)

/PC

PG input
phase C

PA

BAT −

17

PC

16
PG input
phase S (for
absolute encoder only)

Battery (−) (for
absolute encoder only)

13

15

14
PG power supply +5 V

PG5V

PS

12

PG0V

PG5V
PG power supply +5 V

6

11
PG power supply 0 V

PG power supply 0 V

18

20

PB

FG

PG input
phase B

Frame ground
F
d

D SERVOPACK Side
Connector type: 10220-52A2JL (manufactured by 3M)
D Cable Side
Connector type: 10120-3000VE (manufactured by 3M)
Connector case type: 10320-52A0-008 (manufactured by 3M)

3
J Connectors for Incremental Encoder
[SGM and SGMP series]

1

Channel A output

Blue

2

Channel /A output

Blue/Black

3

Channel B output

Yellow

4

Channel /B output

Yellow/Black

5

Channel C output

Green

6. Channel /C output

Green/Black

7

0 V (power supply)

Gray

8

+5 V (power supply)

Red

9

Frame ground (FG)

Orange

Items to be Prepared by Customer
Cap:
172161-1
Socket: 170361-1 (chain type) or
170365-1 (loose type)

Blue
White/Blue
Yellow
White/Yellow
Green
White/Green
Red
Black

Green/Yellow

Items to be Prepared by Customer
Case:
10320-52A0-008
(manufactured by 3M)
Connector:
10120-3000VE
(manufactured by 3M)

167

APPLICATIONS OF Σ-SERIES PRODUCTS
3.8.8 Connector Terminal Layouts cont.

J Connectors for Absolute Encoder
[SGM and SGMP series]
1 Channel A output

Blue

2 Channel /A output

White/Blue

3 Channel B output

Yellow

4 Channel /B output

White/Green

7 0 V (power supply)

Black

8 +5 V (power supply)

Red

9 Frame ground (FG)

Green/Yellow

10 Channel S output

Purple

11 Channel /S output

White/Purple

12 (Capacitor reset)

3

Green

6 Channel /Z output

Do not use this terminal. (It is used to discharge electricity from
capacitor before shipment.)

White/Yellow

5 Channel Z output

(Gray)

13 Reset

White/Gray

14 0 V (battery)

White/Orange

15 3.6 V (battery)

Orange

Items to be Prepared by Customer
Cap:
172163-1
Socket: 170361-1 (chain type) or
170365-1 (loose type)

Blue
White/Blue
Yellow
White/Yellow
Green
White/Green
Violet
White/Violet
Red
Black

White/Gray
Orange
White/Orange
Green/Blue

168

Items to be Prepared by Customer
Case:
10320-52A0-008
(manufactured by 3M)
Connector:
10120-3000VE
(manufactured by 3M)

3.8 Special Wiring

J Connectors for Incremental Encoder
[SGMG, SGMD and SGMS series]
A

Channel A output

B

Channel /A output

C

Channel B output

D

Channel /B output

E

Channel C output

F. Channel /C output
G 0 V (power supply)
H

+5 V (power supply)

J

Frame ground (FG)
Items to be Prepared by Customer
Plug:
(L shaped) MS3108B20-29S or
(Straight)
MS3106B20-29S
Cable clamp: MS3057-12A

Blue
White/Blue
Yellow
White/Yellow
Green
White/Green
Red
Black

3
Items to be Prepared by Customer
Case:
10320-52A0-008
(manufactured by 3M)
Connector:
10120-3000VE
(manufactured by 3M)

169

APPLICATIONS OF Σ-SERIES PRODUCTS
3.8.8 Connector Terminal Layouts cont.

J Connectors for Absolute Encoder
[SGMG, SGMD and SGMS series]
A

Channel A output

B

Channel /A output

C

Channel B output

D

Channel /B output

E

Channel Z output

F. Channel /Z output
G 0 V (power supply)
H

+5 V (power supply)

J

Frame ground (FG)

K

Channel S output

L. Channel /S output
R

0 V (battery)

T

3

Reset

S

3.6 V (battery)

Items to be Prepared by Customer
Plug:
(L shaped) MS3108B20-29S or
(Straight)
MS3106B20-29S
Cable clamp: MS3057-12A

Blue
White/Blue
Yellow
White/Yellow
Green
White/Green
Purple
White/Purple
Red
Black

White/Gray
Orange
White/Orange

170

Items to be Prepared by
Customer
Case:
10320-52A0-008
(manufactured by 3M)
Connector:
10120-3000VE
(manufactured by 3M)

3.8 Special Wiring

J Connectors and Terminals for Standard-type Motor without Brake
[SGM and SGMP series]

1

Phase U

Red

2

Phase V

White

3

Phase W

Blue

4

Frame ground (FG)

Green

For SGMP-15A

3
M4 crimp terminal
Cap:
172159-1
Socket: 170362-1 or 170366-1

Items to be Prepared by Customer
Round crimp terminal R1.25-4TOR
(manufactured by AMP.)

For SGMP-15A
Cap:
350780-1
Socket: 350536-6 or 350550-6

171

APPLICATIONS OF Σ-SERIES PRODUCTS
3.8.8 Connector Terminal Layouts cont.

J Connectors and Terminals for Motor with Brake
[SGM and SGMP series]

1

Phase U

Red

2

Phase V

White

3

Phase W

Blue

4

Frame ground (FG)

Green

5

Brake terminal

Black

6

Brake terminal

Black

For SGMP-15A

3
M4 crimp terminal
Cap:
172160-1
Socket: 170362-1 or
170366-1

Items to be Prepared by Customer
Round crimp terminal R1.25-4TOR (manufactured
by AMP.)

For SGMP-15A
Cap:
350781-1
Socket: 350536-6 or 350550-6
(DC side)
Red
AC input
Black
Brake power supply (manufactured by
Yaskawa Controls Co., Ltd.)
• 100 VAC input: 90 VDC (LPDE-1H01)
• 200 VAC input: 90 VDC (LPSE-2H01)

172

3.8 Special Wiring

J Connectors and Terminals for Standard-type Motor without Brake
[SGMG, SGMD and SGMS series]

A

Phase U

B

Phase V

C

Phase W

D

Frame ground (FG)

3

For plug and cable clamp types, refer to
Section 5.6.3 Connector.

173

APPLICATIONS OF Σ-SERIES PRODUCTS
3.8.8 Connector Terminal Layouts cont.

J Connectors and Terminals for Motor with Brake
[SGMG, SGMD and SGMS series]

A

Phase U

B

Phase V

C

Phase W

D

Frame ground (FG)

E

Brake terminal

F

Brake terminal

3
For plug and cable
clamp types, refer to
Section 5.6.3 Connector.
(DC side)
Red
AC input
Black
Brake power supply (manufactured by
Yaskawa Controls Co., Ltd.)
• 100 VAC input: 90 VDC (LPDE-1H01)
• 200 VAC input: 90 VDC (LPSE-2H01)

174

3.8 Special Wiring

J Connectors for Digital Operator
• JUSP-OP02A-1 (Hand-held Type)

• JUSP-OP03A (Mount Type)

Fits directly into
“OPERATOR” on the
SERVOPACK.

3
17JE-23090-02
(manufactured by Daiichi
Denshi Kogyo K.K.)

Flat cable
(accessory)

Pin Signal Signal Circuit Name
No. Name

Signal
Direction

1

TXD

Transmit data (non-inversion side) P z S

2

/TXD

Transmit data (inversion side)

3

RXD

Receive data (non-inversion side) P ! S

4

/RXD

Receive data (inversion side)

5

OPH

6

/RXD

7

RT

8

GND

P!S
#

Shorting pins 6 and 7 produces a terminal
resistance of 220 Ω between RXD and *RXD.

5VPP

9

PzS

#
Signal ground 0 V

175

USING THE DIGITAL OPERATOR

4

This chapter describes the basic operation of the digital operator and the convenient features it offers.
All constant settings and motor operations are possible by simple, convenient, operation.
Operate the digital operator as you read through this chapter.

4
4.1 Basic Operations . . . . . . . . . . . . . . . . . . . . . . . .
4.1.1
4.1.2
4.1.3
4.1.4
4.1.5
4.1.6
4.1.7

Connecting the Digital Operator . . . . . . . . . . . . . . . . . . . . . . .
Digital Operator Functions . . . . . . . . . . . . . . . . . . . . . . . . . . .
Resetting Servo Alarms . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Basic Functions and Mode Selection . . . . . . . . . . . . . . . . . . .
Operation in Status Display Mode . . . . . . . . . . . . . . . . . . . . .
Operation in Parameter Setting Mode . . . . . . . . . . . . . . . . . .
Operation in Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . .

4.2 Using the Functions . . . . . . . . . . . . . . . . . . . . . .
4.2.1
4.2.2
4.2.3
4.2.4
4.2.5
4.2.6
4.2.7
4.2.8
4.2.9

Operation in Alarm Trace-back Mode . . . . . . . . . . . . . . . . . .
Operation Using the Digital Operator . . . . . . . . . . . . . . . . . . .
Autotuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Reference Offset Automatic Adjustment . . . . . . . . . . . . . . . .
Reference Offset Manual Adjustment Mode . . . . . . . . . . . . .
Clearing Alarm Trace-back Data . . . . . . . . . . . . . . . . . . . . . .
Checking Motor Specifications . . . . . . . . . . . . . . . . . . . . . . .
Checking Software Version . . . . . . . . . . . . . . . . . . . . . . . . . .
Current Detection Offset Manual Adjustment Mode . . . . . . .

178
178
179
180
181
182
186
191

194
194
197
201
207
210
213
215
216
217

177

USING THE DIGITAL OPERATOR
4.1.1 Connecting the Digital Operator

4.1

Basic Operations

This section describes the basic operations using the Digital Operator.

4.1.1 Connecting the Digital Operator
The Digital Operator is available as two types: JUSP-OP02A-1 (Hand-held Type) and JUSPOP03A (Mount Type).
Each type is connected to the SERVOPACK as shown below.
JUSP-OP02A-1 (Hand-held Type)

JUSP-OP03A (Mount Type)

4
Attach directly on
the SERVOPACK

Connect using the 1 m
cable supplied.

SERVOPACK

• The Digital Operator connector can be connected or disconnected while the SERVOPACK power is ON.

178

4.1 Basic Operations

4.1.2 Digital Operator Functions
The Digital Operator allows the user to set parameters, send commands, and display operating status.
This section describes the key names and functions of the Digital Operator in the initial
display status.

Hand-held Digital Operator
Key

Name

Function

RESET Key
DSPL
SET

Press to reset the servo alarm.

DSPL/SET Key

Press to select the status display
mode, setting mode, monitor mode,
or error trace-back mode.
Used to select data in setting mode.

DATA
ENTER

DATA/ENTER Key

Press to display the parameter settings and set values.

Digit
Selection
Keys

Increment/
Forward
Jog Key

Press to increment the set value.
Used as a forward start key during
jogging.

Decrement/Reverse Jog
Key

Value
Change/
Jog Keys

Press to decrement the set value.
Used as a reverse start key during
jogging.

Digit
Press to select the digit to be
Down Key changed. The selected digit flashes.

Digit Up
Key

JOG
SVON

SVON Key

The cursor moves right one digit
g
g
when the Digit Down Key is pressed.
The cursor moves left one digit when
the Digit Up Key is pressed.
Press to jog using the Digital Operator.

179

4

USING THE DIGITAL OPERATOR
4.1.3 Resetting Servo Alarms

Mounted Digital Operator
Key
UP

Name
UP Key

Function
Press to display the parameter settings and
set values.
Pressing the UP Key increments the set value.

DOWN

DOWN Key

Pressing the DOWN Key decrements the set
value.
Servo alarms can be reset by pressing the
UP Key and DOWN Key simultaneously.

MODE/SET

DATA

MODE/SET Key Press to select the status display mode, setting mode, monitor mode, or error traceback mode.
DATA Key

Press to display the parameter settings and
set values.
Can be used as a data setting key in the setting mode.

4

4.1.3 Resetting Servo Alarms
Servo alarms can be reset using the Digital Operator. (Servo alarms can also be reset by the
1CN-44, /ALMRST input signal. Refer to Section 3.7.1 Using Servo Alarm Output and Alarm
Code Output for details.)
The alarm state can be cleared by turning the main power supply OFF, then turning the control power supply OFF.

Type: JUSP-OP03A
Press

Type: JUSP-OP02A-1

Press

NOTE

180

Alarm Reset
simultaneously
.

Alarm Reset

After an alarm occurs, remove the cause of the alarm before resetting it. Refer to Section
6.2 Troubleshooting to determine and remedy the cause of an alarm.

4.1 Basic Operations

4.1.4 Basic Functions and Mode Selection
Digital Operator operation allows status display, parameter setting, operating reference, and
auto-tuning operations.
Basic Mode Selection
The four basic modes are listed below. Each time the mode key is pressed, the next mode in
the sequence is selected.
JUSP-OP02A-1

JUSP-OP03A
Press the

Press the

key to switch the mode.

key to switch the mode.

Status Display
Mode → Section 4.1.5

4

Displays the SERVOPACK status as bit
data and codes.

Setting Mode → Section 4.1.6

Sets the parameters to select and set
all SERVOPACK functions.

Monitor Mode → Section 4.1.7

Special Modes
These modes are selected by setting
a value for parameter

Setting
Displays the speed references to the SERVOPACK,
the actual speed, and internal status.

Alarm Trace-back
Mode → Section 4.2.1

Displays a log of previous alarms.

Mode
Operation mode from Digital
Operator → Section 4.2.2
Reference offset automatic
adjustment mode
→ Section 4.2.4
Clear alarm trace-back
data → Section 4.2.6
Reference offset manual
adjustment mode
→ Section 4.2.5
Motor-type check mode
→ Section 4.2.7
Auto-tuning mode
→ Section 4.2.3
Software-version check
mode → Section 4.2.8
Current detection offset
manual adjustment mode
→ Section 4.2.9

181

USING THE DIGITAL OPERATOR
4.1.5 Operation in Status Display Mode

4.1.5 Operation in Status Display Mode
The status display mode displays the SERVOPACK status as bit data and codes.
J Selecting Status Display Mode
The status display mode is displayed when the power is turned ON. If the status display
mode is not displayed, use the procedure shown in 4.1.4 Basic Functions and Mode
Selection to set the status display mode.
Keys to the status display are shown below.
For Speed Control
Bit Data

Code

Speed Coincidence
Base Block
Control Power ON
Speed Reference Input

4

TGON

Power Ready

Torque Reference Input

Code

Status
Base block
Servo OFF (motor power OFF)
Run
Servo ON (motor power ON)
Forward Rotation Prohibited (P-OT)
1CN-42 (P-OT) OFF. See Cn-01 Bit 2 (page 57).
Reverse Rotation Prohibited (N-OT)
1CN-43 (N-OT) OFF. See Cn-01 Bit 3 (page 57).
Alarm Status
Displays the alarm number. See the table of alarms on page 196.

182

4.1 Basic Operations

Bit Data

Description

Control Power ON

Lit when SERVOPACK control power ON. Not lit when
SERVOPACK control power OFF.
Lit for base block. Not lit at servo ON.

Base Block
Speed Coincidence

Lit if motor speed reaches speed reference. Otherwise,
not lit.
Lit if motor speed exceeds preset value.
Not lit if motor speed is below preset value
value.
Preset value: Set in Cn-0B (20 min−1 is factory setting)

TGON

Speed Reference Input

Lit if input speed reference exceeds preset value.
Not lit if input speed reference is below preset value.
Specified value: Set in Cn-0B (20 min−1 is factory setting)

Torque Reference Input

Lit if input torque reference exceeds preset value.
Not lit if input torque reference is below preset value.
Preset value: Set in Cn-0B (10% rated torque is standard
setting)
(Used for torque feed−forward or current restriction)

Power Ready

Lit when main power supply circuit is normal.
Not lit when power is OFF or main power supply circuit is
faulty.

4

For Position Control
Bit Data

Code

Positioning Complete
Base Block
Control Power ON
Reference Pulse Input

Code

TGON

Power Ready

Error Counter Clear Input

Status
Base block
Servo OFF
Run
Servo ON
Forward Rotation Prohibited
1CN-42 (P-OT) OFF. See Cn-01 Bit 2 (page 57).
Reverse Rotation Prohibited
1CN-43 (N-OT) OFF. See Cn-01 Bit 3 (page 57).
Alarm Status
Displays the alarm number. See the table of alarms on page 196.

183

USING THE DIGITAL OPERATOR
4.1.5 Operation in Status Display Modecont.

Bit Data
Control Power ON
Base Block
Positioning Complete

TGON

Reference Pulse Input
Error Counter Clear Input
Power Ready

Description
Lit when SERVOPACK control power ON. Not lit when
SERVOPACK control power OFF.
Lit for base block. Not lit at servo ON.
Lit if error between position reference and actual motor
position is below preset value.
Not lit if error between position reference and actual
motor position exceeds preset value.
Preset value: Set in Cn-1B (1 pulse is standard setting)
Lit if motor speed exceeds preset value.
Not lit if motor speed is below preset value.
Preset value: Set in Cn-0B (20 min−1 is standard setting)
Lit if reference pulse is input
Not lit if no reference pulse is input.
Lit when error counter clear signal is input.
Not lit when error counter clear signal is not input.
Lit when main power supply circuit is normal.
Not lit when power is OFF or main power supply circuit is
faulty.

4

184

4.1 Basic Operations

For Torque Control

Speed
Coincidence

Bit Data

Code

Base Block
Control Power ON
Speed Reference Input

TGON

Power Ready

Torque Reference Input

Code

Status
Base block
Servo OFF (motor power OFF)
Run
Servo ON (motor power ON)
Forward Rotation Prohibited (P-OT)
1CN-42 (P-OT) OFF. See Cn-01 Bit 2 (page 57).
Reverse Rotation Prohibited (N-OT)
1CN-43 (N-OT) OFF. See Cn-01 Bit 3 (page 57).

4

Alarm Status
Displays the alarm number. See the table of alarms on page 196.

Bit Data
Control Power ON
Base Block
Speed Coincidence
TGON

Description
Lit when SERVOPACK control power ON. Not lit when
SERVOPACK control power OFF.
Lit for base block. Not lit at servo ON.
Lit if motor speed reaches speed reference. Otherwise,
not lit.
Lit if motor speed exceeds preset value.
Not lit if motor speed is below preset value
value.
Preset value: Set in Cn-0B (20 min−1 is factory setting)

Speed Reference Input

Lit if input speed reference exceeds preset value.
Not lit if input speed reference is below preset value.
Preset value: Set in Cn-0B (20 min−1 is factory setting)
(Used as speed limit)

Torque Reference Input

Lit if input torque reference exceeds preset value.
Not lit if input torque reference is below preset value.
Preset value: Set in Cn-0B (10% rated torque is standard
setting)

Power Ready

Lit when main power supply circuit is normal.
Not lit when power is OFF or main power supply circuit is
faulty.

185

USING THE DIGITAL OPERATOR
4.1.6 Operation in Parameter Setting Mode

4.1.6 Operation in Parameter Setting Mode
J Parameter Types
Two types of parameter are used:
• Constant Settings (Cn-03 to Cn-2D)
• Memory Switches (Cn-01, Cn-02)
The setting method is different for each type.
The SERVOPACK offers a large number of functions, which are selected and adjusted by
the parameter settings.
The constant settings (Cn-03 to Cn-2D) allow setting of a constant within a fixed range.
The memory switches (Cn-01, Cn-02) allow the required functions to be selected.
Refer to Appendix C List of Parameters.

4

186

4.1 Basic Operations

J Using the Setting Mode for Constant Settings (Cn-03 to Cn-2D)
The constant settings (Cn-03 to Cn-23) allow setting of a constant. Check the permitted
range of the constant in Appendix C List of Parameters, before changing the data. The
example below shows how to change user setting Cn-15 from 100 to 85.

For JUSP-OP02A-1
1. Press
mode.

DSPL
SET

to select the parameter setting
Setting
Mode

JUSP-OP02A-1

2. Select the parameter number to set.
Press the

and

keys to select the digit.

Press the
ue.

and

keys to change the val-

The selected
digit flashes.

4

DATA
ENTER

3. Press
to display the current data for the Parameter
Number
parameter selected at step 2.

Data

4. Set the required data.
Press the

and

keys to select the digit.

Press the
ue.

and

keys to change the val-

5. Press

DATA
ENTER

The selected
digit flashes.

to store the data.

DATA
ENTER

once more to display the parameter
6. Press
number again.

The stored
data flashes.

Parameter
Number

Data

7. Repeat steps 2 to 6 as often as required.

187

USING THE DIGITAL OPERATOR
4.1.6 Operation in Parameter Setting Mode cont.

For JUSP-OP03A
MODE/SET

JUSP-OP03A

to select the parameter setting

1. Press
mode.

MODE/SET

Setting
Mode

UP

DOWN

and
keys to select the pa2. Press the
rameter number to set.

DATA

3. Press
to display the current data for the parameter selected at step 2.

UP

Parameter
Number

DOWN

4. Press the
and
keys to change the data
to the required value.

4

Value changes rapidly
when key held down
DATA

5. Press

to store the data.

The stored data flashes.

DATA

once more to display the parameter
6. Press
number again.
7. Repeat steps 2 to 6 as often as required.
Refer to Appendix C List of Parameters.

188

Parameter
Number

DATA

Data

4.1 Basic Operations

J Using the Setting Mode for Memory Switches (Cn-01, Cn-02)
Turn the bits of the memory switches ON and OFF to select the functions required.
The example below shows how to turn ON Bit 4 of memory switch Cn-01.
For JUSP-OP02A-1
1. Press
mode.

DSPL
SET

to select the parameter setting
Setting
Mode

JUSP-OP02A-1

2. Select the parameter number to set.
Press the

and

keys to select the digit.

Press the
ue.

and

keys to change the val-

DATA
ENTER

3. Press
to display the current data for the
memory switch selected at step 2.

4. Press the
and
number to set.

keys to select the bit

5. Press the
and
keys to set the memory
switch data ON or OFF for the bit number.

The selected
digit flashes.

Bit
Memory
Number
Switch Data to Set

Parameter
Number

4
Bit Number to Set
Bit
Number

Press either key.
or

6. Repeat steps 4 and 5 as often as required.
7. Press

TERMS

DATA
ENTER

to store the data.

The stored data
flashes.

Turning Bits ON and OFF
Memory switches use bits, not numbers, to select
functions.
Sixteen bits are available (1 to 9 and A to F). Select
the required functions by turning the appropriate bit
ON (function ON) or OFF (function OFF).

: = OFF
= ON

189

USING THE DIGITAL OPERATOR
4.1.6 Operation in Parameter Setting Mode cont.
DATA
ENTER

Parameter
Number

8. Press
once more to display the parameter
number again.

Memory
Switch Data

Refer to Appendix C List of Parameters.
For JUSP-OP03A
MODE/SET

JUSP-OP03A

1. Press
mode.

to select the parameter setting
Setting
Mode

UP

DOWN

2. Press the
and
keys to select the parameter number to set.

MODE/SET

3. Press
to display the current data for the
memory switch selected at step 2.

4

UP

and
4. Press the
number to set.

Parameter
Number

DOWN

Bit
Number
Memory
Switch Data to Set

Bit Number to Set

keys to select the bit

Bit
Number

MODE/SET

5. Press
to set the memory switch data
ON or OFF for the bit number.
6. Repeat steps 4 and 5 as often as required.
DATA

7. Press

to store the data.

DATA

once more to display the parameter
8. Press
number again.
Refer to Appendix C List of Parameter Settings

190

The stored data
flashes.

Parameter
Number

Memory
Switch Data

4.1 Basic Operations

4.1.7 Operation in Monitor Mode
The monitor mode allows the reference values input into the SERVOPACK, I/O signal status,
and SERVOPACK internal status to be monitored.
The monitor mode can be set during motor operation.
J Using the Monitor Mode
The example below shows how to display 1500, the contents of monitor number Un-00.
For JUSP-OP02A-1
1. Press

DSPL
SET

to select the monitor mode
Monitor
Mode

JUSP-OP02A-1

and
keys to select the moni2. Press the
tor number to display.

4
DATA
ENTER

to display the data for the monitor
3. Press
number selected at step 2.
DATA
ENTER

4. Press
once more to display the monitor
number again.

Monitor
Number

Data

Monitor
Number

Data

For JUSP-OP03A
MODE/SET

1. Press

to select the monitor mode.
Monitor
Mode

JUSP-OP03A

UP

DOWN

2. Press the
and
keys to select the monitor number to display.

DATA

3. Press
to display the data for the monitor
number selected at step 2.

DATA

4. Press
once more to display the monitor
number again.

Monitor
Number

Monitor
Number

Data

Data

191

USING THE DIGITAL OPERATOR
4.1.7 Operation in Monitor Mode cont.

J Monitor Mode Displays
Monitor
Number

Monitor Display
Actual motor speed Units: min−1.
Input speed reference
Units: min−1.
Internal torque reference
Units: %
(with respect to rated torque)
Number of pulses from motor U-phase edge
Units: pulses
Electrical angle
Units: 0.1 deg
Internal status bit display

Internal Status
Bit Display

Internal status bit display
Input reference pulse speed display
Units: min−1.
Positional error
Units: x1 reference unit (Cn-02 Bit E = 0)
x100 reference unit (Cn-02 Bit E = 1)

4

20

Reference pulse counter reading
Units: reference units
A value between 0 to 65535 inclusive is
displayed.
Monitor
No
Un-05

Bit
No
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

192

Description
Servo alarm
Dynamic brake ON
Reverse rotation mode
During motor rotation
Speed coincidence or positioning
complete
Mode switch ON
Or contact input
During forward
co o
speed control
current limit
During reverse
current limit
Motor power ON
A-phase
B-phase
C-phase
U-phase
V-phase
W-phase
Servo ON
P operation or rotation direction input
Forward overtravel
Reverse overtravel
SEN signal input

Related I/O Signal, Parameter
1CN-31 (ALM)
Cn-02 Bit 0, 2CN-7 (DIR)

1CN-45 (/P-CL)
1CN-46 (/N-CL)

2CN-16(PA), 2CN-17(/PA)
2CN-18(PB), 2CN-19(/PB)
2CN-14(PC), 2CN-15(/PC)

1CN-40 (/S-ON)
1CN-41 (/P-CON)
1CN-42 (P-OT), Cn-01 Bit 2
1CN-43 (N-OT), Cn-01 Bit 3
1CN-4 (SEN), Cn-01 Bit 1

4.1 Basic Operations

Monitor
No
Un-06

Bit
No
1
2
3
4
5
6
7
8
9
to
20

Description
Input reference pulse
Input pulse sign
Error counter clear input
Current limit
Brake interlock output
Overload warning
Main power supply ON
Servo ready
Not used

Related I/O Signal, Parameter
1CN-7 (PLUS), 1CN-8 (/PULS)
1CN-11(SIGN), 1CN-12(/SIGN)
1CN-15 (CLR), 1CN-14 (/CLR)

4

193

USING THE DIGITAL OPERATOR
4.2.1 Operation in Alarm Trace-back Mode

4.2

Using the Functions

This section describes how to use the basic operations described in section 1 to operate and
adjust the motor.

4.2.1 Operation in Alarm Trace-back Mode
The alarm trace-back mode displays up to ten alarms which occurred previously. By allowing confirmation of what alarm occurred when, it is a useful aid to speed up troubleshooting.

Alarm Sequence Number
The higher the number,
the older the alarm data

4
NOTE

194

Alarm Code

See the table of
alarms on page 196.

The alarm trace-back data is not cleared on alarm reset or when the SERVOPACK power is
turned OFF. This does not adversely affect operation.
The data is cleared using the special mode: Clear alarm trace-back data.
Refer to Section 4.2.6 Clearing Alarm Trace-back Data for details.

4.2 Using the Functions

J Using the Alarm Trace-back Mode
Follow the procedure below to determine which alarms occurred previously.
For JUSP-OP02A-1
1. Press
mode.

DSPL
SET

to select the alarm trace-back

JUSP-OP02A-1
Alarm Trace-back Mode

2. Press the
and
keys to scroll the alarm Older
sequence numbers up and down and display information on previous alarms. The higher the
left-hand digit (alarm sequence number), the Newer
older the alarm data.
For JUSP-OP03A
MODE/SET

JUSP-OP03A

1. Press
mode.

4

to select the alarm trace-back

Alarm Trace-back Mode
UP

DOWN

2. Press the
and
keys to scroll the alarm Older
sequence numbers up and down and display information on previous alarms. The higher the
left-hand digit (alarm sequence number), the Newer
older the alarm data.

195

USING THE DIGITAL OPERATOR
4.2.1 Operation in Alarm Trace-back Mode cont.

J Alarm Display Contents
The table below lists the alarms displayed in the alarm trace-back mode.
Displayed Alarm
Code

Description
Absolute data error
Parameter breakdown
Parameter setting error
Overcurrent
Regenerative error
Position error pulse overflow
Main circuit voltage error detection
Overspeed
Overload(Instantaneous)
Overload(Continuous)

4

Absolute encoder error
Absolute encoder back-up error
Absolute encoder checksum error
Absolute encoder battery error
Absolute encoder data error
Absolute encoder overspeed
Heat sink overheated
Reference input read error
Servo overrun detected *
Encoder output phase error
Encoder A-, B-phase disconnection
Encoder C-phase disconnection
Power line open phase
Power loss error.
Not an alarm. Reset by alarm reset or SERVOPACK power ON.

196

4.2 Using the Functions

* This function prevents overrun.
The following are operator-related alarms which are not recorded by alarm trace-back.
Digital Operator transmission error 1
Digital Operator transmission error 2

• Refer to the troubleshooting procedures when an alarm occurs, described in Section
6.2 Troubleshooting.

4.2.2 Operation Using the Digital Operator

.

Simple Motor Check
Operation from the Digital Operator allows the SERVOPACK to run the motor. This allows
rapid checking of basic operations during machine set-up and testing, without the trouble of
connecting a host controller.

Power

SERVOPACK

Digital Operator
Motor

197

4

USING THE DIGITAL OPERATOR
4.2.2 Operation Using the Digital Operator cont.

J Operation Using the Digital Operator
Use the following procedure to operate the motor from the Digital Operator
For JUSP-OP02A-1
1. Press
mode.

DSPL
SET

to select the parameter setting

JUSP-OP02A-1
Setting Mode

2. Select the parameter number Cn-00.
(Parameter Cn-00 is selected when the power
is turned ON.)

Select Cn-00.

The selected digit
flashes.

Press the
digit.

keys to select the

Press the

4

and

and

keys to change the value.

DATA
ENTER

to display the current data for the
3. Press
parameter Cn-00.

Parameter
Number

Data

4. Press the
and
keys to change the data
Set to 00-00.
to 00.
(This parameter is set to 00 when the power isPress the
keys to change the
turned ON.)
value.

DSPL
SET

to set the Digital Operator in op5. Press
eration mode. Operation is now possible under
Digital Operator control.
Display for operation mode from
Digital Operator

6. Press

JOG
SVON

to set the servo ON status (motor Press

Servo ON
- motor ON

power turned ON).
to change.

198

Servo OFF
- base block

4.2 Using the Functions

7. Press the
tor.

and

keys to operate the mo-

Motor runs
forward while
this key is
pressed.

Motor
Forward
Rotation

Motor runs
backward while
this key is
pressed.

Motor
Reverse
Rotation

DSPL
SET

8. Press
to revert to
. This sets
the servo OFF status (motor power turned
OFF).
(Alternatively, press

JOG
SVON

to set the servo

OFF status.)
DATA
ENTER

9. Press
to return to the setting mode display. This disables operation under Digital Operator control.
Setting Mode Display

For JUSP-OP03A-1
MODE/SET

JUSP-OP03A

1. Press
mode.

to select the parameter setting

4
Setting Mode

UP

DOWN

2. Press the
and
keys to select the parameter number Cn-00.
(Parameter Cn-00 is selected when the power
is turned ON.)

Select Cn-00.

DATA

3. Press
to display the current data for the parameter Cn-00.
UP

Parameter Number

Data

DOWN

4. Press the
and
keys to change the data
to 00.
(This parameter is set to 00 when the power is
turned ON.)

Set to 00-00.

Value changes
rapidly when key
held down.
MODE/SET

5. Press
to set the Digital Operator in operation mode. Operation is now possible under
Digital Operator control.
Display for operation mode from
Digital Operator

199

USING THE DIGITAL OPERATOR
4.2.2 Operation Using the Digital Operator cont.
DATA

Press

Servo ON
- motor ON

6. Press
to set the servo ON status (motorDATA
power turned ON).

Servo OFF
- base block

to change.

UP

7. Press the
tor.

DOWN

and

keys to operate the mo-

Motor runs
forward while
this key is
pressed.
Motor runs
backward while
this key is
pressed.

Motor
Forward
Rotation
Motor
Reverse
Rotation

MODE/SET

8. Press
to revert to
. This sets
the servo OFF status (motor power turned
OFF).
DATA

to return to the setting mode display.
9. Press
This disables operation under Digital Operator
control.
Setting Mode Display

4

J Changing Motor Speed
The motor speed for operation under Digital Operator control can be changed with a parameter:
Parameter: Cn-10 (JOGSPD), Units: min−1., Standard setting: 500
For details about setting the motor speed, refer to Section 4.1.6 Operation in Parameter
Setting Mode and Appendix C List of Parameterts.

200

4.2 Using the Functions

4.2.3 Autotuning

.

No experience required to achieve optimum settings.
The SERVOPACK contains a built-in autotuning function to automatically measure the machine characteristics and set the parameters.
Servo drives normally require tuning to match the machine configuration and rigidity. This
tuning requires a great deal of experience and is difficult for a person unfamiliar with the tuning procedure.
However, autotuning allows even totally inexperienced people to easily complete the tuning.

Autotuning
Automatically measures the
machine characteristics and
sets the parameters.
Load Inertia
SGDB

Friction
SGMj

J Precautions Relating to Autotuning
Speed Setting During Autotuning
The motor speed during autotuning is set by parameter Cn-10. Set to 500 min−1., which is
the factory setting. Autotuning may be unsuccessful if this value is set too low.
UP

or

The motor runs intermittently while the
motor does not rotate continuously.

(or

DOWN

or

) key is held down. The

Machine Rigidity Selection
Select the machine rigidity as described below. If the actual rigidity is unknown, select
medium rigidity.

High Rigidity
Medium Rigidity
Low Rigidity

• If the Machine Resonates
At servo ON when the

JOG
SVON

DATA

(or

DOWN

) key is pressed or when the motor is operated by
UP

or
(
or
) key, machine resonance indicates an inappressing the
propriate machine rigidity setting.
Follow the procedure below to correct the machine rigidity setting, and run autotuning
once more.

201

4

USING THE DIGITAL OPERATOR
4.2.3 Autotuning cont.
MODE/SET

1. Press the

DSPL
SET

(or

) key to cancel autotuning.
MODE/SET

DSPL
SET

(or
) key once more to enter the machine rigidity setting
2. Press the
mode. Reduce the setting by one.
• If Autotuning Does Not End
Failure of autotuning to end

, is caused by an inappropriate machine rigid-

ity setting. Follow the procedure below to correct the machine rigidity setting, and run
autotuning once more.
MODE/SET

1. Press the

DSPL
SET

(or

) key to cancel autotuning.
MODE/SET

DSPL
SET

2. Press the
(or
) key once more to enter the machine rigidity setting
mode. Increase the setting by one.
Autotuning may not end for machines with large play or extremely low rigidity.
In these cases, use conventional manual adjustment.

4

Input Signals
• The P-OT signal, N-OT signal and SEN signal (absolute encoder only) are enabled
during autotuning. Input the P-OT signal, N-OT signal and SEN signal (absolute
encoder only) during autotuning.
To conduct autotuning without inputting these signals, set parameter Cn-01 Bits 1, 2,
and 3 to 1.
• Autotuning is not possible during overtravel
(P-OT or N-OT signal OFF).
Load

OFF

• Conduct autotuning when no overtravel has occurred (both P-OT and
N-OT signal ON).

Motor

Load

ON

202

ON

ON

Motor

4.2 Using the Functions

• When performing autotuning, set the P-CON signal to OFF status.
• When using the mode switching function, perform autotuning after performing one of
the following operations:
D Not using mode switching.
D Setting a higher mode switching level.
Refer to 3.6.6 Using Mode Switch for details on mode switch function.
• If using the /S-ON signal to set the servo ON status, display

before turn-

ing ON the /S-ON signal.
J Parameters Automatically Settable with Autotuning
Cn-04

Speed loop gain

Cn-05

Speed loop integration time
constant

Cn-1A

Position loop gain

4

Once autotuning has been completed, the autotuning procedure can be omitted for subsequent machines, providing the machine specifications remain unchanged.
It is sufficient to directly set the parameters for subsequent machines.
The machine rigidity can be selected from one of seven levels.

TERMS

Machine Rigidity
The machine rigidity is one of the machine characteristics related to servo control. Set the servo to
high response for a machine, such as a machine
tool, with high rigidity, and to low response for a machine, such as a robot, with low rigidity.

Motor

High rigidity
Motor

Low rigidity

203

USING THE DIGITAL OPERATOR
4.2.3 Autotuning cont.

J Using Autotuning
Follow the procedure below to run autotuning.

For JUSP-OP02A-1
1. Press
mode.

DSPL
SET

to select the parameter setting

JUSP-OP02A-1
Setting Mode

2. Select the parameter number Cn-00.
(Parameter Cn-00 is selected when the power
is turned ON.)
Press the
digit.

and

The selected
digit flashes.

keys to select the

Press the
value.

4

and

Select Cn-00.

keys to change the

DATA
ENTER

to display the current data for the
3. Press
parameter Cn-00.

4. Press the
to 05.

and

Data

Parameter Number

keys to change the data

Set to 00-05.

Press the
keys to change the
value.

5. Press

DSPL
SET

to display the machine rigidity.

Machine Rigidity
Display

and
keys to select the ma6. Press the
chine rigidity. If the actual rigidity is unknown,
select medium rigidity (C-003 to C-005).

High Rigidity

Medium Rigidity

Low Rigidity

7. Press

DSPL
SET

to select autotuning mode.

Autotuning Mode

204

4.2 Using the Functions

8. Press

JOG
SVON

to set the servo ON status.

Press

Servo ON
- motor ON
Servo OFF
- base block

to change.

9. Press the
tor.

and

keys to operate the mo-

Motor runs
forward while
this key is
pressed.

Motor
Forward
Rotation

Motor runs
backward while
this key is
pressed.

10.When autotuning is complete, the END message is displayed, as shown to the right.
Servo OFF status is automatically selected. If
Servo ON/Servo OFF is selected by a signal
from an external contact, turn this signal OFF.
11. Release the

and

Motor
Reverse
Rotation
Autotuning Complete

keys to revert to the

display.

4

DATA
ENTER

12.Press
to return to the setting mode display. This ends the autotuning operation.
Setting Mode Display

For JUSP-OP03A
MODE/SET

JUSP-OP03A

to select the parameter setting

1. Press
mode.

Setting Mode
UP

DOWN

2. Press the
and
keys to select the parameter number Cn-00.
(Parameter Cn-00 is selected when the power
is turned ON.)

Select Cn-00.

DATA

3. Press
to display the current data for the parameter Cn-00.

Parameter Number

Data

205

USING THE DIGITAL OPERATOR
4.2.3 Autotuning cont.
UP

4. Press the
to 05.

DOWN

and

keys to change the data

Set to 00-05

Value changes
rapidly when
key held down.
MODE/SET

5. Press

to display the machine rigidity.

Machine Rigidity Display
UP

DOWN

and
keys to select the ma6. Press the
chine rigidity (C-001 to C-007).

High Rigidity

Medium Rigidity

Low Rigidity

MODE/SET

7. Press

4

to select autotuning mode.

Autotuning Mode
DATA

8. Press

to set the servo ON status.

Press

to change.

UP

9. Press the
tor.

DOWN

and

keys to operate the mo-

Servo ON
- motor ON
Servo OFF
- base block

Motor runs
forward while
this key is
pressed.
Motor runs
backward while
this key is
pressed.

10.When autotuning is complete, the END message is displayed.
Servo OFF status is automatically selected. If
Servo ON/Servo OFF is selected by a signal
from an external contact, turn this signal OFF.

206

Motor
Forward
Rotation
Motor
Reverse
Rotation

Autotuning Complete

4.2 Using the Functions

UP

11. Release the

DOWN

and

keys to revert to the

display.
DATA

12.Press
to return to the setting mode display.
This ends autotuning operation.

DATA

Setting Mode Display

4.2.4 Reference Offset Automatic Adjustment
J Why Does Reference Offset Occur?
The motor may rotate slowly when the reference voltage is intended to be 0 V.
This occurs when the host controller or external circuit has a small offset (measured in
mV) in the reference voltage.

.

Automatic Adjustment of Reference Voltage
The reference offset automatic adjustment mode automatically measures the offset and
adjusts the reference voltage. It adjusts both speed and torque references.
The following diagram illustrates automatic adjustment of an offset in the reference
voltage from the host controller or external circuit.

Offset

Reference
Voltage
Reference
Speed or
Reference
Torque

Offset
Automatically
Adjusted in
SERVOPACK

Reference
Voltage

Automatic Adjustment
of Offset

Reference
Speed or
Reference
Torque

After completion of offset automatic adjustment, the amount of offset is stored in the
SERVOPACK.
The amount of offset can be checked in the speed reference offset manual adjustment
mode. Refer to Section 4.2.5 Reference Offset Manual Adjustment Mode for details.
The reference offset automatic adjustment mode cannot be used where a position loop is
formed with the host controller and the error pulses are zeroed when servo lock is
stopped.
In this case, use the speed reference offset manual adjustment mode. Refer to Section
4.2.5 Reference Offset Manual Adjustment Mode for details.
Zero-clamp speed control is available to force the motor to stop during zero speed reference. Refer to Section 3.4.3 Using Zero-Clamp for details.

207

4

USING THE DIGITAL OPERATOR
4.2.4 Reference Offset Automatic Adjustment cont.

J Using the Reference Offset Automatic Adjustment Mode
Follow the procedure below to automatically adjust the reference offset.
For JUSP-OP02A-1
1. Follow the procedure below to set the motor into
operating mode.
JUSP-OP02A-1

Host
Controller

(1) Input the (intended) 0 V reference voltage from the host controller or external circuit.

Servomotor

0 V Speed
Reference
or Torque
Reference
Servo ON

Slow Rotation

SERVOPACK

(2) Then, turn ON the servo ON (1CN-40, S-ON) signal.
2. Press
mode.

DSPL
SET

to select the parameter setting
Setting Mode

3. Select the parameter number Cn-00.
(Parameter Cn-00 is selected when the power
is turned ON.)

4

Press the
digit.

and

and

The selected digit
flashes.

keys to select the

Press the
value.

Select Cn-00.

keys to change the

DATA
ENTER

4. Press
to display the current data for the
parameter Cn-00.

5. Press the
to 01.

and

Parameter Number

keys to change the data

Data

Set to 00-01.
Press the
keys to change the
value.

DSPL
SET

6. Press
to automatically adjust the reference offset. The motor rotation stops.

Slow
Rotation

Motor Stops

DATA
ENTER

7. Press
to return to the setting mode display. This ends reference offset automatic adjustment.
Setting Mode Display

208

4.2 Using the Functions

For JUSP-OP03A
1. Follow the procedure below to set the motor into
operating mode.
JUSP-OP03A

(1) Input the (intended) 0V reference voltage from the host controller or external circuit.

0 V Speed
Reference
or Torque
Reference

Servomotor

Servo ON

Host
Controller

Slow Rotation
SERVOPACK

(2) Then, turn ON the servo ON (1CN-40,
/S-ON) signal.
MODE/SET

to select the parameter setting

2. Press
mode.

Setting Mode

UP

DOWN

3. Press the
and
keys to select the parameter number Cn-00.
(Parameter Cn-00 is selected when the power
is turned ON.)

Select Cn-00.

4

DATA

4. Press
to display the current data for the parameter Cn-00.

UP

5. Press the
to 01.

DOWN

and

keys to change the data

Parameter Number

Data

Set to 00-01.

Value changes
rapidly when key
held down.
MODE/SET

6. Press
to automatically adjust the reference offset. The motor rotation stops.

Slow
Rotation
Motor Stops

DATA

to return to the setting mode display.
7. Press
This ends reference offset automatic adjustment.
Setting Mode Display

209

USING THE DIGITAL OPERATOR
4.2.5 Reference Offset Manual Adjustment Mode

4.2.5 Reference Offset Manual Adjustment Mode
Speed reference offset manual adjustment is very convenient in the following situations:
• If a loop is formed with the host controller and the error is zeroed when servo lock is
stopped.
• To deliberately set the offset to some value.
This mode can also be used to check the data set in the reference offset automatic adjustment mode.
In principle, this mode operates in the same way as the reference offset automatic adjustment mode, except that the amount of offset is directly input during the adjustment.

Offset Adjustment Range and Setting Units are as follows:

Reference Speed or Reference Torque

4

Offset Adjustment Range

Sped Reference
Input Voltage

Offset Units

Offset Adjustment Range: -512 to +511
Offset Units:
Reference Speed

0.038 min−1. (0.076 mV)
When Cn-03 = 500

Reference Torque 0.02 min−1. (0.61 mV)
When Cn-13 = 30

210

4.2 Using the Functions

Follow the procedure below to manually adjust the reference voltage.
For JUSP-OP02A-1
1. Press
mode.

DSPL
SET

to select the parameter setting
Setting Mode

JUSP-OP02A-1

2. Select the parameter number Cn-00.
(Parameter Cn-00 is selected when the power
is turned ON.)
and

Press the
digit.

Press
value.

and

Select Cn-00.
The selected digit
flashes.

keys to select the

keys to change the

DATA
ENTER

3. Press
to display the current data for the
parameter Cn-00.

4. Press the
to 03.

and

Parameter Number

keys to change the data

4

Data

Set to 00-03.

Press the
keys to change the
value.

DSPL
SET

to select the speed reference off5. Press
set manual adjustment mode.
The amount of speed reference offset is displayed.

6. Press the
and
amount of offset.

Speed Reference
Offset Manual
Adjustment Mode

keys to adjust the

(Adjust the speed references.)
DSPL
SET

7. Press
to select the torque reference offset manual adjustment mode.
The amount of torque reference offset is displayed.
and
keys to adjust the
8. Press the
amount of offset.
(Adjust the torque references.)

211

USING THE DIGITAL OPERATOR
4.2.5 Reference Offset Manual Adjustment Mode cont.

9. Press
display.

DSPL
SET

to return to the parameter data

DATA
ENTER

to return to the setting mode dis10.Press
play. This ends the reference offset manual adjustment.
Setting Mode Display

For JUSP-OP03A
MODE/SET

JUSP-OP03A

1. Press
mode.

to select the parameter setting
Setting Mode

UP

DOWN

2. Press the
and
keys to select the parameter number Cn-00.
(Parameter Cn-00 is selected when the power
is turned ON.)

4

Select Cn-00.

DATA

3. Press
to display the current data for the parameter Cn-00.
UP

4. Press the
data to 03.

Parameter Number

DOWN

and

keys to change the

Set to 00-03.

Value changes
rapidly when
key held down.

MODE/SET

5. Press
to select the speed reference offset manual adjustment mode.
The amount of speed reference offset is displayed.
UP

DOWN

and
6. Press the
amount of offset.

keys to adjust the

(Adjust the speed references.)
MODE/SET

to select the torque reference off7. Press
set manual adjustment mode.
The amount of torque reference offset is displayed.
UP

DOWN

8. Press the
and
keys to adjust the
amount of offset.(Adjust the torque references.)

212

Data

Speed Reference
Offset Manual
Adjustment Mode

4.2 Using the Functions

MODE/SET

9. Press
display.

to return to the parameter data

DATA

to return to the setting mode display.
10.Press
This ends the reference offset manual adjustment.
Setting Mode Display

4.2.6 Clearing Alarm Trace-back Data
This procedure clears the alarm history, which stores the alarms occurring in the SERVOPACK. Each alarm in the alarm history is set to A99, which is not an alarm code. Refer to
Section 4.2.1 Operation in Alarm Trace-back Mode for details.
Follow the procedure below to clear the alarm trace-back data.

For JUSP-OP02A-1
DSPL
SET

1. Press
mode.

4

to select the parameter setting
Setting Mode

JUSP-OP02A-1

2. Select the parameter number Cn-00.
(Parameter Cn-00 is selected when the power
is turned ON.)
Press the

and

Press the
value.

and

Select Cn-00.
The selected digit
flashes.

keys to select the digit.
keys to change the

DATA
ENTER

3. Press
to display the current data for the
parameter Cn-00.

4. Press the
to 02.

and

Parameter Number

keys to change the data

Data

Set to 00-02.
Press the
keys to change the
value.

DSPL
SET

5. Press
data.

to clear the alarm trace-back
Clear the alarm trace-back data.

DATA
ENTER

6. Press
display.

to return to the parameter number

Parameter Number

Data

213

USING THE DIGITAL OPERATOR
4.2.6 Clearing Alarm Trace-back Data cont.

For JUSP-OP03A
MODE/SET

JUSP-OP03A

to select the parameter setting

1. Press
mode.

Setting Mode

UP

DOWN

and
keys to select the pa2. Press the
rameter number Cn-00.
(Parameter Cn-00 is selected when the power
is turned ON.)

Select Cn-00.

DATA

to display the current data for the pa3. Press
rameter Cn-00.
UP

4. Press the
to 02.

Parameter Number

Data

DOWN

and

keys to change the data

Set to 00-02.

4

Value changes
rapidly when
key held down.
MODE/SET

5. Press
data.

to clear the alarm trace-back
Clear the alarm trace-back data.
DATA

6. Press
display.

214

to return to the parameter number

Parameter Number

Data

4.2 Using the Functions

4.2.7 Checking Motor Specifications
This mode used for maintaining the motor.
When Cn-00 is set to 00-04, this mode is used to check the motor specifications.
Use the following procedure to check the motor specifications.
Hand-held Digital Operator
1. Set Cn-00 to 00-04.
2. Press the DSPL/SET Key.
The motor capacity is displayed.
Motor Capacity Display

Motor model
0: Σ Series

Motor Capacity
05: 0.3 kW
0.5 kW
0A: 0.7 kW
1.0 kW
0F: 1.5 kW
14: 2.0 kW
1E: 3.0 kW

2C: 4.4 kW
5.0 kW
3C: 6.0 kW
4B: 7.5 kW
6E: 11.0 kW
96: 15.0 kW

4

3. Press the DSPL/SET Key.
The special specification (Y specification) is displayed.
Special Specification
(Y Specification) Display
(Hexadecimal notation)
(1) (2) (3) (4)

(1) × 163 + (2) × 162 + (3) × 16 + (4) = special specification (Y specification number)

Checking of the motor specifications has now been completed.
Mounted Digital Operator
1. Set Cn-00 to 00-04.
2. Press the MODE/SET Key.
The motor capacity is displayed.
3. Press the MODE/SET Key.
The special specification (Y specification) is displayed.
Checking of the motor specifications has now been completed.

215

USING THE DIGITAL OPERATOR
4.2.8 Checking Software Version

4.2.8 Checking Software Version
This mode is used for maintaining the motor.
When Cn-00 is set to 00-06, this mode is used to check the software version.
Use the following procedure to check the software version.

Hand-held Digital Operator
1. Set Cn-00 to 00-06.
2. Press the DSPL/SET Key.
The software version is displayed.
Software Version Display

Software
Version

4

Type
b: Type SGDB-jADj

Checking of the software version has now been completed.

Mounted Digital Operator
1. Set Cn-00 to 00-06.
2. Press the MODE/SET Key.
The software version is displayed.
3. Press the MODE/SET Key.
The software version is displayed.
Checking of the software version has now been completed.

216

4.2 Using the Functions

4.2.9 Current Detection Offset Manual Adjustment Mode
Current detection offset manual adjustment is performed at Yaskawa before shipping.
Basically, the customer need not perform this adjustment. Perform this adjustment only if
highly accurate adjustment is required when the Digital Operator is combined with a specific motor.
Run the motor at a speed of approximately 100 min−1, and adjust the Digital Operator
until the torque monitor ripple is minimized. Adjust the U−phase and V−phase offsets
alternately several times until these offsets are well balanced.
Follow the procedure below to perform current detection offset manual adjustment.
For JUSP-OP02A-1
1. Press
mode.

DSPL
SET

to select the parameter setting
Setting Mode

JUSP-OP02A-1

2. Select the parameter number Cn-00.
(Parameter Cn-00 is selected when the power
is turned ON.)
Press the
digit.

Press
value.

and

and

The
selected
digit flashes.

keys to select the

keys to change the

DATA
ENTER

3. Press
to display the current data for the
parameter Cn-00.

4. Press the
to 08.

and

4

Select Cn-00.

Data

Parameter Number

keys to change the data

Set to 00-08.
Press the
keys to change the
value.

DSPL
SET

to select the current detection off5. Press
set manual adjustment mode.
The amount of current detection offset is displayed.
6. Press the
and
keys to switch between
U-phase and V-phase current adjustment
modes.

Current Detection
Offset Manual
Adjustment Mode

Phase-u
Current
Adjustment
Mode

Phase-v
Current
Adjustment
Mode

217

USING THE DIGITAL OPERATOR
4.2.9 Current Detection Offset Manual Adjustment Mode cont.

7. Press the
and
keys to adjust the
amount of current detection offset.

8. Press
display.

DSPL
SET

to return to the parameter data

DATA
ENTER

9. Press
to return to the parameter setting
mode display. This ends the current detection
offset manual adjustment.
Setting Mode Display

For JUSP-OP03A
MODE/SET

JUSP-OP03A

4

to select the parameter setting

1. Press
mode.

Setting Mode

UP

DOWN

and
to select the parameter
2. Press the
number Cn-00.
Parameter Cn-00 is selected when the power is
turned ON.

Select Cn-00.

DATA

3. Press
to display the current data for the parameter Cn-00.
UP

4. Press the
to 08.

Parameter Number

Data

DOWN

and

keys to change the data

Set to 00-08.
Press
the keys
to
change
the value

MODE/SET

5. Press
to select the current detection offset manual adjustment mode.
The amount of current detection offset is displayed.

Current Detection
Offset Manual
Adjustment Mode

DATA

6. Press
to switch between U-phase and Vphase current adjustment modes.
UP

DOWN

and
keys to adjust the
7. Press the
amount of current detection offset.

218

Phase-u
Current
Adjustment
Mode

Phase-v
Current
Adjustment
Mode

4.2 Using the Functions

MODE/SET

8. Press
display.

to return to the parameter data

DATA

9. Press
to return to the parameter setting
mode display. This ends the current detection
offset manual adjustment.
Setting Mode Display

4

219

SERVO SELECTION AND
DATA SHEETS

5

This chapter describes how to select Σ-Series servo drives and peripheral devices.
The section also presents the specifications and dimensional drawings required for selection and design.
Choose and carefully read the relevant sections of this chapter.

5.1 Selecting a Σ-Series Servo . . . . . . . . . . . . . . . . .
5.1.1 Selecting a Servomotor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1.2 Selecting a SERVOPACK . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1.3 Selecting a Digital Operator . . . . . . . . . . . . . . . . . . . . . . . . . .

5.2 SGM Servomotor . . . . . . . . . . . . . . . . . . . . . . . .
5.2.1 Ratings and Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2.2 Mechanical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2.3 Option Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.3 SERVOPACK Ratings and Specifications . . . .
5.3.1
5.3.2
5.3.3
5.3.4
5.3.5
5.3.6

Combined Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ratings and Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . .
Overload Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Starting Time and Stopping Time . . . . . . . . . . . . . . . . . . . . . .
Load Inertia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Overhanging Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.4 Σ-Series Dimensional Drawings . . . . . . . . . . . .
5.4.1 Servomotor Dimensional Drawings . . . . . . . . . . . . . . . . . . . .
5.4.2 SERVOPACK Dimensional Drawings . . . . . . . . . . . . . . . . . .
5.4.3 Digital Operator Dimensional Drawings . . . . . . . . . . . . . . . .

5.5 Selecting Peripheral Devices . . . . . . . . . . . . . . .
5.5.1 Selecting Peripheral Devices . . . . . . . . . . . . . . . . . . . . . . . . .
5.5.2 Order List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

223
223
233
235

5

237
237
269
272

282
282
285
288
289
290
291

292
292
400
412

414
414
424

221

Chapter Table of Contents, Continued

5.6 Specifications and Dimensional Drawings of
Peripheral Devices . . . . . . . . . . . . . . . . . . . . . . .
5.6.1 Cable Specifications and Peripheral Devices . . . . . . . . . . . . .
5.6.2 Motor Cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.6.3 Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.6.4 Brake Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.6.5 Encoder Cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.6.6 Battery for Absolute Encoder . . . . . . . . . . . . . . . . . . . . . . . . .
5.6.7 1CN Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.6.8 Connector Terminal Block Converter Unit . . . . . . . . . . . . . . .
5.6.9 Cable With 1CN Connector and One End Without Connector
5.6.10 Circuit Breaker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.6.11 Noise Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.6.12 Magnetic Contactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.6.13 Surge Suppressor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.6.14 Regenerative Resistor Unit . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.6.15 Variable Resistor for Speed Setting . . . . . . . . . . . . . . . . . . . .
5.6.16 Encoder Signal Converter Unit . . . . . . . . . . . . . . . . . . . . . . . .
5.6.17 Cables for Connecting PC and SERVOPACK . . . . . . . . . . . .

5

222

442
442
446
447
466
469
480
481
483
485
486
486
488
490
490
491
492
494

5.1 Selecting a Σ-Series Servo

5.1

Selecting a Σ-Series Servo
This section describes how to select the Σ-Series servomotor, SERVOPACK, and Digital Operator.

5.1.1 Selecting a Servomotor
Select an SGMG (1000 or 1500 min−1), SGMS, or SGMD servomotor according to the
servo system to be used. Each type can be identified as eight-digit alphanumeric characters following “SGMG-”, “SGMS-” or “SGMD-”. Numbers 1) to 6) shown in the following
figure correspond to the numbers in the flowchart for servomotor selection on the following pages.
J Selecting an SGMG, SGMS, or SGMD Servomotor
The following pages provide an explanation of Σ-Series Servomotor models and selection flowcharts.

5

223

USING THE DIGITAL OPERATOR
5.1.1 Selecting a Servomotor cont.

Models
Each model of Σ-Series Servomotor can be identified by specifying an 8-digit alphanumeric code following “SGMj-”.

SGMj- 03 A 2 A A j j
Σ-Series
G: SGMG servomotor
S: SGMS servomotor
D: SGMD servomotor
1) Rated output (motor capacity)
03: 0.3kW (0.40HP) 05: 0.45kW (0.60HP)
09: 0.85kW(1.14HP), 0.9kW (1.21HP)
12: 1.2kW (1.61HP) 13: 1.3kW (1.74HP)
20: 1.8kW (2.41HP), 2.0kW (2.68HP)
30: 2.9kW (3.89HP), 3.0kW (4.02HP)
40: 4.0kW (5.36HP) 44: 4.4kW (5.90HP)
55: 5.5kW (7.38HP) 60: 6.0kW (8.05HP)
1A: 11kW (14.75HP) 1E: 15kW(20HP)

06:
10:
15:
22:
32:
50:
75:

0.6kW
1.0kW
1.5kW
2.2kW
3.2kW
5.0kW
7.5kW

(0.80HP)
(1.34HP)
(2.01HP)
(2.95HP)
(4.29HP)
(6.71HP)
(10.06HP)

2) Supply voltage
A: 200V
3) Encoder specification
2: 8192 P/R incremental encoder
6: 4096 P/R incremental encoder
W: 12-bit (1024 P/R) absolute encoder
S: 15-bit (8192 P/R) absolute encoder
4) Rated speed
A: SGMG Type (1500 min−1)
SGMS Type (3000 min−1)
SGMD Type (2000 min−1)
B: SGMG Type (1000 min−1)

5

5) Shaft specification
Blank: Standard (straight without key)
A
: Standard (straight without key, only when “options” and “lead specification” columns are
not blank)
B
: Straight with key and one shaft-end tap
C
: Taper 1/10 with parallel key
D
: Taper 1/10 with Woodruff key (for G Series 05 and 09 only)
6) Options
Blank: Standard
1
: Standard (only when “lead specification” column is not blank)
S
: With shaft seal
B
: With 90 VDC brake
C
: With 24 VDC brake
F
: With shaft seal and 90 VDC brake
G
: With shaft seal and 24 VDC brake Options
Lead specification
Blank: Standard (connector)

Flowchart for servomotor selection

Selected motor type
Example

SGMG- 0 9 A 2 A B S

Axis 1

SGM

-

Axis 2

SGM

-

D D D

224

D D D D

Blank for standard specification

5.1 Selecting a Σ-Series Servo

Flowchart for Servomotor Selection
The actual selection of the SGMG, SGMS or SGMD servomotor is performed according
to the following flowchart.
Flowchart for Servomotor Selection
Start servomotor selection

D D D If necessary, refer to the data sheets in
Section 5.2 SGM Servomotor.

1) Select motor capacity

D D D Refer to 5)

D Fill in Machine Data Table

D Select capacity using

D D D Consult Yaskawa sales representative
for further information.

servomotor sizing software.

Determine motor capacity
Enter rated output

Enter code in the first and second columns
by referring to *1 on page 227.
SGMj-JJ_ _ _ _ _ _

5

2) Enter supply voltage
Always enter “A” (200 V) in the third column.

3) Select encoder specification

Absolute or
Incremental?

4096/8192 P/R
incremental encoder
12-bit or 15-bit
absolute encoder

SGMj-jjA_ _ _ _ _

Enter code in the third column by referring
to *2 on page 227.
The encoder specification differs according
to the motor series.
SGMj-jjjJ_ _ _ _
SGMj-jjjJ_ _ _ _

4) Enter rated speed

Type SGMG (1500 min−1),
Type SGMS, Type SGMD
Type SGMG (1000 min−1)

Enter A
Enter B

SGMj-jjjjA_ _ _
SGMj-jjjjB_ _ _

To next page (A)

225

USING THE DIGITAL OPERATOR
5.1.1 Selecting a Servomotor cont.
From previous page (A)

5) Select shaft specification

Straight without key

SGMj-jjjjjA _ _

Straight with key (with end-shaft tap)

SGMj-jjjjjB _ _

Taper 1/10 with parallel key

SGMj-jjjjjC _ _

Taper 1/10 with Woodruff key
(for G Series 05 and 09 only)

SGMj-jjjjjD _ _

6) Selection option specification

With 90 VDC brake
Under gravity

Oil is used at shaft end

With 24 VDC brake
With shaft seal

SGMj-jjjjjjB _
SGMj-jjjjjjC _
SGMj-jjjjjjS _

With shaft seal and
90 VDC brake

5

Gravity load + oil

SGMj-jjjjjjF _

With shaft seal and
24 VDC brake

SGMj-jjjjjjG _
Normally, the last
column is left blank.

End servomotor selection

226

5.1 Selecting a Σ-Series Servo

*1 Rated output (motor capacity)
KW(HP)
G

Series
Code

1500

S

min−1

03

1000

min−1

3000

D

min−1

2000 min−1

0.3 (0.40)

05

0.45 (0.60)

06

0.6 (0.80)

09

0.85 (1.14)

0.9 (1.21)

10

1.0 (1.34)

12

1.2 (1.61)

13

1.3 (1.74)

15

1.5 (2.01)

20

1.8 (2.41)

2.0 (2.68)

2.0 (2.68)

22

2.2 (2.95)

30

2.9 (3.89)

3.0 (4.02)

3.0 (4.02)

32

3.2 (4.29)

40

4.0 (5.36)

44

4.4 (5.90)

4.0 (5.36)

4.4 (5.90)

50

5.0 (6.71)

55

5.5 (7.38)

60

6.0 (8.05)

75

7.5 (10.06)

1A

11.0 (14.75)

1E

15.0 (20)

5

*2 Encoder specification
Symbol
2
6
W
S

Specifications
Incremental encoder:
8192 P/R
Incremental encoder:
4096 P/R
Absolute encoder:
12 bit (1024 P/R)
Absolute encoder:
15 bit (8192 P/R)

SGMG

SGMS

SGMD

f

f

f

f

f

f

f

f

: Standard

f

f: Non-standard

227

USING THE DIGITAL OPERATOR
5.1.1 Selecting a Servomotor cont.

J Selecting an SGMP-15A Servomotor
Select an SGMP-15A servomotor according to the servo system to be used. Each type
can be identified as four-digit alphanumeric characters following “SGMP-15A”. Numbers
1) to 6) shown in the following figure correspond to the numbers in the flowchart for servomotor selection on the following pages.

SGMP- 15 A 3 1 2 j
Σ-Series
SGMP: SGMP servomotor
(cube type)
1) Rated output (motor capacity)
15 : 1.5 kW (2.01HP)

2) Supply voltage
A: 200V
3) Encoder specification
3: 2048 P/R incremental encoder
W: 12-bit absolute encoder

5

4) Design revision order
5) Shaft specification
2: Straight without key
4: Straight with key
6: Straight with key with tap
6) Options
B: with brake S: with shaft seal
D: with brake and shaft seal
P: drip-proofed

Flowchart for servomotor selection

Selected motor type
Example

SGMP- 1 5 A W 1 4 B

Axis 1

SGMP-

Axis 2

SGMP-

D D D

228

D D D D D D

5.1 Selecting a Σ-Series Servo

Flowchart for Servomotor Selection
The actual selection of the SGMP-15A servomotor is conducted according to the following flowchart.
Flowchart for Servomotor Selection
Start servomotor selection

D D D If necessary, refer to the data sheets in
Section 5.2 SGM Servomotor.

1) Select motor capacity

D D D Refer to 5) on page 231.

D Fill in Machine Data Table

D Select capacity using

D D D Consult Yaskawa sales representative
for further information.

servomotor sizing software.

Determine motor capacity

Enter “15” (1500 W) in the first and second columns.
Enter rated output

SGMP-JJ_ _ _ _ _

5

2) Enter supply voltage
Always enter “A” (200 V) in the third column.

SGMP-15A_ _ _ _

3) Select encoder specification

2048 P/R
incremental encoder

Absolute or
Incremental?

12-bit absolute encoder

SGMP-15A3 _ _ _
SGMP-15AW _ _ _

4) Enter design revision order
Always enter “1” in the fifth column.

SGMP-15Aj1 _ _

To next page (A)

229

USING THE DIGITAL OPERATOR
5.1.1 Selecting a Servomotor cont.
From previous page (A)

5) Select shaft specification

With/without key?

Straight without key
Straight with key

SGMP-15Aj12_
SGMP-15Aj14_

6) Selection option specification

Under Gravity load

With brake

Oil is used at end of shaft

With shaft seal

Gravity load+oil
Subject to water droplets

With brake and
shaft seal
Drip-proofed

SGMP-15Aj1jB
SGMP-15Aj1jS
SGMP-15Aj1jD
SGMP-15Aj1jP

End servomotor selection

5

230

5.1 Selecting a Σ-Series Servo

Machine Data Table
Fill out the machine data table below as an aid to selecting the drive system. When the
machine data table is complete, use the servomotor sizing software to select the motor
capacity.
Ball Screw Horizontal Axis
*1

Load mass
Thrust
Coefficient of friction
Overall efficiency
Gear ratio
Gear+coupling
Ball screw pitch
Ball screw diameter
Ball screw length

W
F

kg (lb)
kg (lb)

kg¡cm2 (lb¡in2.)
mm (in.)
mm (in.)
mm (in.)

Load mass

W1

kg (lb)

Counterweight

W2

kg (lb)

Coefficient of friction

µ

Overall efficiency

η

Gear ratio

R (= Nm/Nl)

Gear+coupling

Jg

kg¡cm2 (lb¡in2.)

Ball screw pitch

*2
*3

µ
η
R (= Nm/Nl)
Jg
P
D
L

P

mm (in.)

Table W
Motor

Ball screw

Gear+coupling
p g
Jg
J

Ball Screw Vertical Axis

Motor
Gear+coupling
Jg

Ball screw diameter

D

mm (in.)

Ball screw length

L

mm (in.)

W
F

kg (lb)
kg (lb)

Ball
B ll screw

5

Timing Belt
Load mass
Thrust
Coefficient of friction
Overall efficiency
Gear ratio
Gear+coupling
Pulley
Pulley diameter

µ
η
R (= Nm/Nl)
Jg
Jd
D

kg¡cm2 (lb¡in2.)
kg¡cm2 (lb¡in2.)
mm (in.)

W
F

Pulley
Jd

kg (lb)
kg (lb)

Timing belt

Gear+coupling
Jg
Motor

Rack and Pinion
Load mass
Thrust
Coefficient of friction
Overall efficiency
Gear ratio
Gear+coupling
Pinion diameter
Pinion thickness

µ
η
R (= Nm/Nl)
Jg
D
t

W
Rack
Pinion

kg¡cm2 (lb¡in2.)

Gear+coupling
p g
Jg
J

Motor

mm (in.)
mm (in.)

231

USING THE DIGITAL OPERATOR
5.1.1 Selecting a Servomotor cont.

Roll Feeder
Load J

Jℓ

Tension

F

kg (lb)

Press force

P

kg (lb)

Roller diameter

D

mm (in.)

Coefficient of friction

µ

Overall efficiency

η

Gear ratio

R (= Nm/Nl)

Gear+coupling

Jg

kg¡cm2 (lb¡in2.)

Load J

Jℓ

kg¡cm2 (lb¡in2.)

Load torque

Tℓ

Press f
force
P

kg¡cm2 (lb¡in2.)

kg¡cm2 (lb¡in2.)

Roller

Motor

Jℓ
Gear+coupling
G
li
GD2g

Rotor

Overall efficiency

η

Gear ratio

R (= Nm/Nl)

Tℓ
Motor

Jg

kg¡cm2 (lb¡in2.)

Jℓ
Tℓ
Nm
td
ts
ta
td

s

Positioning distance

Ls

Jℓ

kg¡cm2 (lb¡in2.)
kg¡cm2 (lb¡in2.)
min−1
s
s
s

DUTY

Gear+coupling
Jg

mm (in.)

Gear+coupling

Others
Load J
Load torque
Motor speed
DUTY
Positioning time
Accel/decel time

Duty cycle

5

Moving member speed

Vℓ

m/min

Positioning time

ts

s

Accel/decel time

ta

s

Enter either Vℓ or ts. If both are entered, specify priority.

Operating environment
D Operating temperature
D Other

*1

*2

Gear ratio R = Nm/Nℓ = motor-speed/load-speed

*3

232

J (inertia) of Table W (load weight) and J (inertia) of the motor are automatically calculated by the servomotor sizing software.

Gear+coupling J g: J of gear or coupling
This is J of the joint (including a gear) between the motor and the load (machine).

5.1 Selecting a Σ-Series Servo

5.1.2 Selecting a SERVOPACK
Select an SGDB SERVOPACK according to the servo system to be used. Each type can
be identified as six-digit alphanumeric characters following “SGDB-”.

SGDB- 03 A D j-j
Σ-Series
SGDB SERVOPACK

Rated output (motor
capacity)
Code

Capacity
(kW) (HP)

03

0.3 (0.40)

05

0.5 (0.67)

07

0.7 (0.94)

10

1.0 (1.34)

15

1.5 (2.01)

20

2.0 (2.68)

30

3.0 (4.02)

44

4.4 (5.90)

50

5.0 (6.71)

60

6.0 (8.05)

75

7.5 (10.06)

1A

11.0 (14.75)

1E

Supply voltage
A: 200 V

15.0 (20)

Model
D: For speed/torque control and position control
Motor series
G: SGMG (1500 min−1)
M: SGMG (1000 min−1)
S: SGMS
D: SGMD
P: SGMP
Blank: SGM

5

Option
P: Duct ventilation type
Flowchart for SERVOPACK
selection

Selected SERVOPACK type
Example

SGDB- 0 5 A D G

Axis 1

SGDB-

Axis 2

SGDB-

D D D
*

D D D D D D

The motor type can be changed within the same group by altering the parameter
setting. (See the table on the next page.)

233

USING THE DIGITAL OPERATOR
5.1.2 Selecting a SERVOPACK cont.

Select an SGDB SERVOPACK according to the motor to be used. The following table
shows the correspondence between SERVOPACK and motor types.
Group

05

10

15

SERVOPACK Type
SGDB-03ADM
SGDB-05AD
SGDB-05ADP
SGDB-05ADG
SGDB-07ADM
SGDB-10AD
SGDB-10ADP
SGDB-10ADG
SGDB-10ADM
SGDB-10ADS
SGDB-15ADM
SGDB-15ADG
SGDB-15ADP
SGDB-15ADS
SGDB-20ADG
SGDB-20ADM
SGDB-20ADS
SGDB-30ADD
SGDB-30ADG
SGDB-30ADM
SGDB-30ADS
SGDB-44ADD
SGDB-44ADG
SGDB-44ADM
SGDB-44ADS
SGDB-50ADD
SGDB-50ADS
SGDB-60ADG
SGDB-60ADM

Motor Type
SGMG-03AjB
SGM-04A
SGMP-04A
SGMG-05AjA
SGMG-06AjB
SGM-08A
SGMP-08A
SGMG-09AjA
SGMG-09AjB
SGMS-10AjA
SGMG-12AjB
SGMG-13AjA
SGMP-15A

75

SGDB-75ADG

SGMS-15AjA
SGMG-20AjA
SGMG-20AjB
SGMS-20AjA
SGMD-22AjA
SGMG-30AjA
SGMG-30AjB
SGMS-30AjA
SGMD-32AjA
SGMG-44AjA
SGMG-44AjB
SGMS-40AjA
SGMD-40AjA
SGMS-50AjA
SGMG-55AjA
SGMG-60AjB
SGMG-75AjA

1A

SGDB-1AADG

SGMG-1AAjA

1E

SGDB-1EADG

SGMG-1EAjA

20

30

5
44

60

.

234

The motor type can be changed within the same group by altering the parameter setting.

5.1 Selecting a Σ-Series Servo

5.1.3 Selecting a Digital Operator
The following two types of Digital Operator are available.
The two types cannot be used simultaneously. However, it is convenient to have both
types and use whichever suits the circumstances.
Each type differs in shape but the operating functions are identical.

JUSP-OP03A (Mount Type)
• Use attached to the top of the
SERVOPACK front face.

JUSP-OP02A-1 (Hand-held Type)
• Use held in the hand while connected
with the 1 m cable supplied.

5

235

USING THE DIGITAL OPERATOR
5.1.3 Selecting a Digital Operator cont.

The Digital Operator is selected according to the flowchart below.
Flowchart for Digital Operator Selection

Start Digital Operator selection

1) Is the SERVOPACK front
face easily accessible for
operation?

Yes

2) Is compactness a priority?
No
3) Is the SERVOPACK front
face not easily accessible
for operation?
4) Hand-held operation
required?

Select Mount
Type
Yes
Select Hand-held
Type

Type JUSP-OP03A
Type JUSP-OP02A-1

End Digital Operator selection

Personal
computer is used

5

Purchase monitoring software for
personal computer

Separately purchase dedicated cable
(DE9405258).

236

5.2 SGM Servomotor

5.2

SGM Servomotor

This section presents tables of ratings and specifications for SGMG, SGMS, SGMD and
SGMP servomotors. Refer to these tables when selecting a servomotor.
For SGM(400W, 750W) and SGMP(400W, 750W) servomotor, refer to USER’S MANUAL(manual No. TSE−S800−15 or TSE−S800−17).

5.2.1 Ratings and Specifications
Ratings and Specifications of each servomotor model are shown below.
J SGMG Servomotors (Rated Motor Speed is 1500 min−1)
Ratings and Specifications
Time rating:
Thermal class:
Vibration class:
Withstand voltage:
Insulation resistance:
Enclosure:
Ambient temperature:
Ambient humidity:
Excitation:
Drive method:
Mounting:

continuous
F
15µm or below
1500 VAC
500 VDC 10MΩ min.
totally enclosed, self-cooled
IP67(except for shaft opening)
0 to 40°C
20% to 80% (non-condensing)
permanent magnet
direct drive
flange method

5

237

USING THE DIGITAL OPERATOR
5.2.1 Ratings and Specifications cont.
Servomotor SGMG

05AjA

09AjA

13AjA

20AjA

30AjA

44AjA

55AjA

75AjA

1AAjA

Rated Torque* N¡m
q
kgf¡cm
(lb¡in)

0.45
(0.6)
2.84
29
(25)

0.85
(1.1)
5.39
55
(48)

1.3
(1.7)
8.34
85
(74)

1.8
(2.4)
11.5
117
(102)

2.9
(3.9)
18.6
190
(165)

4.4
(5.9)
28.4
290
(252)

5.5
(7.4)
35.0
357
(310)

7.5
(10)
48.0
490
(425)

11
(15)
70.0
714
(620)

15
(20)
95.4
974
(845)

Instantaneous N¡m
Peak T
P k Torque* kgf¡cm
*
(lb¡in)

8.92
91
(79)

13.8
141
(122)

23.3
238
(207)

28.7
293
(254)

45.1
460
(404)

71.1
725
(630)

87.6
894
(775)

119
1210
(1050)

175
1790
(1550)

224
2290
(1988)

Rated
A (rms)
Current*
Instantaneous A (rms)
Max Current*
Rated Speed* min−1

3.8

7.1

10.7

16.7

23.8

32.8

42.1

54.7

58.6

78.0

11

17

28

42

56

84

110

130

140

170

Rated Output* kW (HP)

min−1

Instantaneous
Max Speed*
Torque
N¡m/A
Constant
(rms)

1EAjA

1500
3000

2000

5

0.84

0.73

0.83

0.91

0.88

0.93

1.25

1.32

7.3

7.3

7.4

6.5

7.3

8.0

7.8

8.2

11

11.7

¢10−4
kg¡m2

7.24

13.9

20.5

31.7

46.0

67.5

89.0

125

281

315

¢10−3
lb¡in¡s2
Rated Power
Rate*
Rated Angular
Acceleration*
Inertia Time
Constant
Inductive
Time
Constant

0.83

lb¡in/A
(rms)
Moment of
Inertia

0.82

6.41

12.3

18.2

28.1

40.7

59.8

78.8

111

249

279

kW/s

11.2

20.9

33.8

41.5

75.3

120

137

184

174

289

rad/s2

3930

3880

4060

3620

4050

4210

3930

3850

2490

3030

ms

5.0

3.1

2.8

2.1

1.9

1.3

1.3

1.1

1.2

0.98

ms

5.1

5.3

6.3

12.5

12.5

15.7

16.4

18.4

22.6

27.2

* These items and torque-speed characteristics quoted in combination with an SGDB SERVOPACK at an armature winding temperature of 20°C.
Note These characteristics can be obtained when the following heat sinks (steel
plates) are used for cooling purposes:
Type 05AjA to 13AjA : 400¢400¢20 (mm) (15.75¢15.75¢0.79 (in))
Type 20AjA to 75AjA : 550¢550¢30 (mm) (21.65¢21.65¢1.18 (in))
Type 1AAjA to 1EAjA: 650¢650¢35 (mm) (25.59¢25.59¢1.38 (in))

238

5.2 SGM Servomotor

The ratings and specifications above refer to a standard servomotor.

NOTE

Add the numerical values below to the moment of inertia values in the table for a motor
fitted with a holding brake .
Other specifications will also change slightly.
Servomotor SGMG
Holding
brake
90VDC

05Aj
A

09Aj
A

13Aj
A

20Aj
A

30Aj
A

44Aj
A

55Aj
A

75Aj
A

1AA
jA

1EAj
A

Moment
of Inertia
Increase

¢10−4 kg¡m2

2.1

8.5

8.5

18.8

37.5

¢10−3 lb¡in¡s2

1.86

7.54

7.54

16.7

33.2

Static
Friction
Torque

N·m

4.41

43.1

72.6

84.3

114.7

12.7

5

TERMS

Holding Brake
The holding brake is automatically applied to the motor shaft to prevent the load falling in vertical axis applications when the motor power supply is turned off or fails. It is
only to hold the load and cannot be used for stopping the motor.

239

USING THE DIGITAL OPERATOR
5.2.1 Ratings and Specifications cont.

Torque-Motor Speed Characteristics
• SGMG-05AjA

• SGMG-09AjA

Motor
Speed
(min−1)

Motor
Speed
(min−1)

• SGMG-13AjA

• SGMG-20AjA

Motor
Speed
(min−1)

Motor
Speed
(min−1)

5

• SGMG-30AjA

• SGMG-44AjA

Motor
Speed
(min−1)

Motor
Speed
(min−1)

A: Continuous Duty Zone
B: Intermittent Duty Zone

240

5.2 SGM Servomotor

• SGMG-55AjA

• SGMG-75AjA

Motor
Speed
(min−1)

Motor
Speed
(min−1)

• SGMG-1AAjA

• SGMG-1EAjA
3000

2000

Motor
Speed
(min−1)

Motor
Speed
(min−1)

A

B

1000

0

0

50

100

150

200

250

2000

2500

TORQUE(N·m)
0

500

1000

1500

TORQUE(lb·in)

A: Continuous Duty Zone
B: Intermittent Duty Zone

241

5

USING THE DIGITAL OPERATOR
5.2.1 Ratings and Specifications cont.

J SGMG Servomotors with Standard Backlash Gears (Rated Motor Speed is 1500 min−1)

Ratings and Specifications
Time rating:
Thermal class:
Vibration class:
Withstand voltage:
Insulation resistance:
Enclosure:

continuous
F
15µm or below
1500 VAC for one minute
500 VDC 10MΩ min.
totally enclosed, self-cooled
IP44 (or the equivalent)
Ambient temperature:
0 to 40°C
Ambient humidity:
20% to 80% (non-condensing)
Excitation:
permanent magnet
Drive method:
direct drive
Mounting:
foot and flange mounted
Type 4095 to 4115: omni-directional mounting
Type 4130 to 4190 horizontal mounting to shaft
Rotation direction:
reverse
Gear lubricating method: Type 4095 to 4115: grease
Type 4130 to 4190: oil *
Gear mechanism:
planetary gear mechanism
Backlash:
roughly 0.6 to 2° at the gear output shaft
*

5
Servomotor
Model
SGMG-

For oil lubrication, the motor should be mounted horizontal to the shaft. Contact your
Yaskawa representative about lubrication for mounting at angles.

Servomotor
Output
kW

Rated
Speed
min−1

Gear
Rated
Torque
N·m
(lb·in)

Gear Ratio

Rated
Torque/Efficiency
N·m/%
(lb·in/%)

Instantaneous
Peak
Torque/Efficiency

Gear
Inertia

Rated
Speed
min−1

Max.
Speed
min−1

250

500

1.96 (1.73)

136

272

1.6 (1.42)

71

142

1.15 (1.02)

51

103

1.17 (1.04)

250

500

1.8 (1.59)

136

272

1.4 (1.24)

71

142

2.0 (1.77)

51

103

2.2 (1.95)

× 10−4
Kg·m2
(× 10−3
lb·in·s2)

N·m/%
(lb·in/%)

-05AjAjAR

0.45

1500

2.84
(25)
( )

1/6
1/11

13.6/80

42.8/80

(120/80)

(379/80)

1/21

25.0/80

78.5/80

(221/80)

-05AjAjBR

(695/80)

1/29

44.8/70

140/75

(397/70)

-05AjAjCR

(1239/75)

-09AjAjAR

0.85

5.39
(48)
( )

1/6

66.0/80

207/80

(584/80)

-05AjAj7R

(1832/80)

66.3/80
(587/80)

122/80
(1080/80)

203/70
(1797/70)

242

125/75

321/80

(1106/75)

-09AjAj7R

1/29

79.3/70
(702/70)

-09AjAjCR

1/21

47.4/80
(420/80)

-09AjAjBR

1/11

25.9/80
(229/80)

(2841/80)

5.2 SGM Servomotor

Servomotor
Model
SGMG-

Servomotor
Output
kW

Rated
Speed
min−1

Gear
Rated
Torque
N·m
(lb·in)

Gear Ratio

Rated
Torque/Efficiency
N·m/%
(lb·in/%)

Instantaneous
Peak
Torque/Efficiency

Gear
Inertia

Rated
Speed
min−1

Max.
Speed
min−1

250

500

1.8 (1.59)

136

272

2.9 (2.57)

71

142

2.0 (1.77)

51

103

0.9 (0.797)

250

500

6.3 (5.58)

136

272

4.8 (4.25)

71

142

5.9 (5.22)

51

103

5.6 (4.96)

250

500

6.3 (5.58)

136

272

4.8 (4.25)

71

142

5.9 (5.22)

51

103

45.9 (40.6)

250

500

12.0 (10.6)

136

272

7.7 (6.82)

71

142

47.5 (42.0)

51

103

63.5 (56.2)

250

500

14.0 (12.4)

136

272

9.8 (8.67)

71

142

79.0 (69.9)

51

103

77.0 (68.2)

× 10−4
Kg·m2
(× 10−3
lb·in·s2)

N·m/%
(lb·in/%)

1.3

1500

8.34
(74)
( )

1/6
1/11

-13AjAjBR

1/21

-13AjAjCR

1/29

40.0/80

112/80

(354/80)

(991/80)

68.7/80
(608/80)
140/75

(1699/75)

(1239/75)

-13AjAjAR

(3470/80)

192/75
392/80

-20AjAjAR

1.8

11.5
(102)
(
)

1/6

193/80

541/80

(1708/80)

-13AjAj7R

(4788/80)

1/11

55.1/80

138/80

(488/80)

(1221/80)

1/21

101/80

253/80

(894/80)

-20AjAjBR

(2239/80)

1/29

193/75

482/80

(1708/75)

-20AjAjCR

(4266/80)

-30AjAjAR

2.9

18.6
(165)
(
)

1/6

266/80

666/80

(2354/80)

-20AjAj7R

(5895/80)

1/11

89.4/80

217/80

(791/80)

(1921/80)

1/21

164/80

397/80

(1452/80)

-30AjAjBR

(3514/80)

1/29

313/80

758/80

(2770/80)

-30AjAjCR

(6709/80)

-44AjAjAR

4.4

28.4
(
)
(252)

-44AjAjBR

1/6

432/75

1049/80

(3824/75)

-30AjAj7R

(9285/80)

1/11

136/80

341/80

(1204/80)

(3018/80)

-44AjAjCR

1/21

250/80

625/80

(2213/80)

(5532/80)

-44AjAj7R

1196/80
(10586/80)

5.5

35.0
(
(310)
)

1646/80
(14569/80)

-55AjAjCR

1/11

420/80
(3717/80)

308/80

771/80
(6824)

1/29

588/80

1470/80

(5204/80)

-55AjAj7R

1/21

168/80
(1487/80)
(2726/80)

-55AjAjBR

1/6

660/80
(5842/80)

-55AjAjAR

1/29

477/80
(4222/80)

(13011/80)

811/80

2029/80

(7178/80)

(17959/80)

243

5

USING THE DIGITAL OPERATOR
5.2.1 Ratings and Specifications cont.

Servomotor
Model
SGMG-

Servomotor
Output
kW

Rated
Speed
min−1

Gear
Rated
Torque
N·m
(lb·in)

Gear Ratio

Rated
Torque/Efficiency
N·m/%
(lb·in/%)

Instantaneous
Peak
Torque/Efficiency

Gear
Inertia

Rated
Speed
min−1

Max.
Speed
min−1

136

272

65.0 (57.5)

71

142

79.0 (69.9)

51

103

91.0 (80.5)

136

182

90.0 (79.6)

71

95

95.0 (84.1)

51

69

238.0 (210.6)

× 10−4
Kg·m2
(× 10−3
lb·in·s2)

N·m/%
(lb·in/%)

-75AjAjBR

7.5

1500

48.0
(
)
(425)

-75AjAjCR

1/11
1/21

422/80

1039/80

(3735/80)

(9196/80)

-75AjAj7R

1989/80
(17605/80)

11

70.0
(620)
(
)

-1AAjAjCR

1/11

1117/80

2754/80

(9887/80)

-1AAjAjBR

1/29

807/80
(7143/80)

(24376/80)

1/21

615/80

1548/80

(5443/80)

(13701/80)

1/29

2950/80
(26110/80)

1627/80

4067/80

(14400/80)

-1AAjAj7R

1176/80
(10408/80)

(35996/80)

Note Output torque and motor speed produce the following trends in efficiency. Values in
the table are at the rated motor speed.

Efficiency

Efficiency

5
Output torque

Motor speed

Configuration
The following configuration accurately and efficiently transmits Servomotor power.
A gear (Cyclo) is used in combination with the internal planetary gear mechanism of the Servomotor.
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14

244

Part Name
Low-speed shaft
Collar
External cover
Internal pin
Internal roller
External pin
Frame
Ring
Curved plate
Eccentric bearing
Internal cover
High-speed shaft
Adapter plate
Motor

5.2 SGM Servomotor

Gear Lubrication
• Grease Lubricating Type (4095 to 4115)
The gearbox is filled at the factory.
• Oil Lubricating Type (4130 to 4190)
All oil is drained from the gears prior to shipment. The gearbox must be filled to the red
line at the top of the oil gauge before initial use.
We recommend using industrial extreme-pressure gear oil or SP type or JIS K 2219 industrial gear oil type 2 or equivalent. See the following table.
Manufacturer

Ambient
Temperature
T
t


Kosmo Oil
Co., Ltd.

0 to 35°C

Nihon Sekiyu
Co., Ltd.

Kosmo Gear Co., Ltd.
SE
100, 150

Bonokku
M
100, 150

General Oil Co.
Ltd.
General SP Gear Roll
100, 150

Approximate amounts of oil are shown in the following table.
(Unit: 1 [liters])
Frame No.

4130
4135

4145

4155

4160
4165

4170
4175

4180
4185

4190

Horizontal Type

0.7

0.7

0.7

1.4

1.9

2.5

4.0

J SGMG Servomotors with Low-backlash Gears (Rated Motor Speed is 1500 min−1)
Ratings and Specifications
Time rating:
Thermal class:
Vibration class:
Withstand voltage:
Insulation resistance:
Enclosure:

continuous
F
15µm or below
1500 VAC for one minute
500 VDC 10MΩ min.
totally enclosed, self-cooled
IP44 (or the equivalent)
Ambient temperature:
0 to 40°C
Ambient humidity:
20% to 80% (non-condensing)
Excitation:
permanent magnet
Drive method:
direct drive
Mounting:
flange mounted
(can be mounted in any direction)
Rotation direction:
forward
Gear lubricating method: grease
Gear mechanism:
planetary gear mechanism
Backlash:
0.05° (3 min) at the gear output shaft

245

5

USING THE DIGITAL OPERATOR
5.2.1 Ratings and Specifications cont.

Servomotor
Model
SGMG-

Servomotor
Output
kW

Rated
Speed
min−1

Gear

Rated
Torque
N·m
(lb·in)

Gear
Ratio

Rated
Torque/
Efficiency
N·m/%
(lb·in/%)

-05AjAL1K

0.45

1500

2.84
(25)
( )

1/5

-05AjAL2K

1/9

-05AjAL5K

1/20

-05AjAL7K

1/29

-05AjAL8K

1/45

-09AjAL1K

0.85

5.39
( )
(48)

1/5

-09AjAL2K
-09AjAL5K

1/20

-09AjAL7K

5

1/9

1/29

-09AjAL8K

1/45

-13AjAL1K

1.3

8.34
( )
(74)

1/5

-13AjAL2K

1/9

-13AjAL5K

1/20

-13AjAL7K

1/29

-13AjAL8K

1/45

246

11.4/80
(101/80)
20.4/80
(181/80)
45.4/80
(402/80)
65.9/80
(583/80)
102/80
(903/80)
21.6/80
(191/80)
38.8/80
(343/80)
86.2/80
(763/80)
125/80
(1106/80)
194/80
(1717/80)
33.4/80
(296/80)
60.0/80
(531/80)
133/80
(1177/80)
193/80
(1708/80)
300/80
(2655/80)

Max.
Speed
min−1

Gear
Inertia
×10−4
kg·m2
(×10−3
lb·in·s2)

Load Inertia
at the Motor
Shaft
(Servomotor
+ Gear)
×10−4 kg·m2
(×10−3

Instantaneous
Peak
Torque/
Efficiency
N·m/%
(lb·in/%)

Rated
Speed
min−1

35.7/80
(316/80)
64.2/80
(568/80)
143/80
(1266/80)
207/80
(1832/80)
321/80
(2841/80)
55.2/80
(489/80)
74.5/60
(659/60)
221/80
(1956/80)
320/80
(2832/80)
497/80
(4399/80)
93.2/80
(825/80)
168/80
(1487/80)
373/80
(3301/80)
541/80
(4788/80)
839/80
(7426/80)

300

600

1.26 (1.12)

8.50 (7.52)

167

334

0.94 (0.832)

8.18 (7.24)

75

150

4.66 (4.12)

11.9 (10.5)

51

102

2.76 (2.44)

10.0 (8.85)

33

66

1.81 (1.60)

9.05 (8.0)

300

600

1.30 (1.15)

15.2 (13.5)

167

334

0.90 (0.797)

14.8 (13.1)

75

150

4.70 (4.16)

18.6 (16.5)

51

102

2.80 (2.48)

16.7 (14.8)

33

66

4.50 (3.98)

18.4 (16.3)

300

600

7.20 (6.37)

27.7 (24.5)

167

334

4.80 (4.25)

25.3 (22.4)

75

150

6.90 (6.11)

27.4 (24.3)

51

102

10.4 (9.21)

30.9 (27.3)

33

66

6.70 (5.93)

27.2 (24.1)

lb·in·s2)

5.2 SGM Servomotor

Servomotor
Model
SGMG-

Servomotor
Output
kW

Rated
Speed
min−1

Gear

Rated
Torque
N·m
(lb·in)

Gear
Ratio

Rated
Torque/
Efficiency
N·m/%
(lb·in/%)

-20AjAL1K

1.8

1500

11.5
(102)
(
)

1/5

-20AjAL2K

1/9

-20AjAL5K

1/20

-20AjAL7K

1/29

-30AjAL1K

2.9

18.6
(
)
(165)

1/5

-30AjAL2K

1/9

-30AjAL5K

1/20

-44AjAL1K

4.4

28.4
(
(251)
)

-44AjAL2K

1/5
1/9

46.0/80
(407/80)
82.8/80
(733/80)
184/80
(1629/80)
267/80
(2363/80)
74.4/80
(659/80)
134/80
(1186/80)
298/80
(2638/80)
114/80
(1009/80)
204/80
(1806/80)

Max.
Speed
min−1

Gear
Inertia
×10−4
kg·m2
(×10−3
lb·in·s2)

Load Inertia
at the Motor
Shaft
(Servomotor
+ Gear)
×10−4 kg·m2
(×10−3

Instantaneous
Peak
Torque/
Efficiency
N·m/%
(lb·in/%)

Rated
Speed
min−1

115/80
(1018/80)
207/80
(1832/80)
459/80
(4063/80)
666/80
(5895/80)
182/80
(1611/80)
328/80
(2903/80)
730/80
(6461/80)
284/80
(2514/80)
512/80
(4532/80)

300

600

10.2 (9.03)

41.9 (37.1)

167

334

7.80 (6.90)

39.5 (35.0)

75

150

20.2 (17.9)

51.9 (45.9)

51

102

13.4 (11.9)

45.1 (39.9)

300

600

20.4 (18.1)

66.4 (58.8)

167

334

12.5 (11.1)

58.5 (51.8)

75

150

20.2 (17.9)

66.2 (58.6)

300

600

20.4 (18.1)

87.9 (77.8)

167

334

12.5 (11.1)

80.0 (70.8)

lb·in·s2)

5

Note Output torque and motor speed produce the following trends in efficiency. Values in the table are at the rated motor speed.

Efficiency

Efficiency

Output torque

Motor speed

247

USING THE DIGITAL OPERATOR
5.2.1 Ratings and Specifications cont.

Configuration
This simple planetary gear mechanism is equipped with four planetary gears to which
load is evenly distributed via a floating relay ring in each step.
Two gears are used to transmit driving force during forward rotation, and the other two are
used to transmit driving force during reverse rotation.
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Gear Lubrication
The gearbox is filled at the factory.

5

248

Part Name
Casing
Bracket
Motor bracket
Primary sun gear
Primary planetary gear
Primary planetary shaft
Internal gear
Secondary sun gear
Secondary planetary gear
Secondary planetary shaft
Low-speed shaft
Oldham’s coupling
High-speed shaft bearing
Low-speed shaft bearing
Motor

5.2 SGM Servomotor

J SGMG Servomotors (Rated Motor Speed is 1000 min−1)
Ratings and Specifications
Time rating:
Thermal class:
Vibration class:
Withstand voltage:
Insulation resistance:
Enclosure:
Ambient temperature:
Ambient humidity:
Excitation:
Drive method:
Mounting:
Servomotor SGMG

continuous
F
15µm or below
1500 VAC
500 VDC 10MΩ min.
totally enclosed, self-cooled
IP67 (except for shaft opening)
0 to 40°C
20% to 80% (non-condensing)
permanent magnet
direct drive
flange method

03AjB

06AjB

09AjB

12AjB

20AjB

30AjB

44AjB

60AjB

N¡m
lb¡in
N¡m
lb¡in
A (rms)

0.3
(0.4)
2.84
25
7.17
63
3.0

0.6
(0.8)
5.68
50
14.1
125
5.7

0.9
(1.2)
8.62
76
19.3
171
7.6

1.2
(1.6)
11.5
102
28.0
248
11.6

2.0
(2.7)
19.1
169
44.0
390
18.5

3.0
(4.0)
28.4
252
63.7
564
24.8

4.4
(5.9)
41.9
372
107
947
32.9

6.0
(8.0)
57.2
508
129
1140
46.9

Instantaneous Max
Current*
Rated Speed*

A (rms)

7.3

13.9

16.6

28

42

56

84

110

min−1

1000

Instantaneous Max
Speed*
Torque Constant

min−1

2000

N¡m/A
(rms)

1.03

1.06

1.21

1.03

1.07

1.19

1.34

1.26

lb¡in/A
(rms)

9.12

9.38

10.7

9.12

9.47

10.5

11.9

11.2

¢10−4
kg¡m2

7.24

13.9

20.5

31.7

46.0

67.5

89.0

125

¢10−3
lb¡in¡s2

6.41

12.3

18.2

28.1

40.7

59.8

78.8

111

Rated Power Rate*

kW/s

11.2

23.2

36.3

41.5

79.4

120

198

262

Rated Angular
Acceleration*
Inertia Time Constant

rad/s2

3930

4080

4210

3620

4150

4210

4710

4590

ms

5.1

3.8

2.8

2.0

1.7

1.4

1.3

1.1

Inductive Time
Constant

ms

5.1

4.7

5.7

13.5

13.9

15.5

14.6

16.5

Rated Output*

kW (HP)

Rated Torque *
q
Instantaneous Peak
Torque*
T
*
Rated Current*

Moment of Inertia

5

* These items and torque-speed characteristics quoted in combination with an SGDB SERVOPACK at an armature winding temperature of 20°C.
Note These characteristics can be obtained when the following heat sinks (steel
plates) are used for cooling purposes:
Type 03AjB to 09AjB : 400¢400¢20 (mm) (15.75¢15.75¢0.79 (in))
Type 12AjB to 60AjB : 550¢550¢30 (mm) (21.65¢21.65¢1.18 (in))

249

USING THE DIGITAL OPERATOR
5.2.1 Ratings and Specifications cont.

NOTE

The ratings and specifications above refer to a standard servomotor.
Add the numerical values below to the moment of inertia values in the table for a motor
fitted with a holding brake.
Other specifications will also change slightly.

Servomotor SGMG
Holding Moment
¢10−4 kg¡m2
brake
of Inertia
−3
2
90VDC Increase ¢10 lb¡in¡s
Static
Friction
Torque

5

250

N·m

03AjB

06AjB

09AjB

12AjB

20AjB

30AjB

44AjB

2.1

8.5

8.5

1.86

7.54

7.54

43.1

72.6

4.41

12.7

60AjB

5.2 SGM Servomotor

Torque-Motor Speed Characteristics
• SGMG-03AjB

• SGMG-06AjB

Motor
Speed
(min−1)

Motor
Speed
(min−1)

• SGMG-09AjB

• SGMG-12AjB

Motor
Speed
(min−1)

Motor
Speed
(min−1)

5

• SGMG-20AjB

• SGMG-30AjB

Motor
Speed
(min−1)

Motor
Speed
(min−1)

A: Continuous Duty Zone
B: Intermittent Duty Zone

251

USING THE DIGITAL OPERATOR
5.2.1 Ratings and Specifications cont.
• SGMG-44AjB

• SGMG-60AjB

Motor
Speed
(min−1)

Motor
Speed
(min−1)

A: Continuous Duty Zone
B: Intermittent Duty Zone
J SGMG Servomotors with Standard Backlash Gears (Rated Motor Speed is 1000 min−1)
Ratings and Specifications
Time rating:
Thermal class:
Vibration class:
Withstand voltage:
Insulation resistance:
Enclosure:

continuous
F
15µm or below
1500 VAC for one minute
500 VDC 10MΩ min.
totally enclosed, self-cooled
IP44 (or the equivalent)
Ambient temperature:
0 to 40°C
Ambient humidity:
20% to 80% (non-condensing)
Excitation:
permanent magnet
Drive method:
direct drive
Mounting:
foot and flange mounted
Type 4095 to 4115: omni-directional mounting
Type 4130 to 4190 horizontal mounting to shaft
Rotation direction:
forward/reverse
Gear lubricating method: Type 4095 to 4115: grease
Type 4130 to 4190: oil *
Gear mechanism:
planetary gear mechanism
Backlash:
roughly 0.6 to 2° at the gear output shaft

5

*

252

For oil lubrication, the motor should be mounted horizontal to the shaft. Contact your
Yaskawa representative about lubrication for mounting at angles.

5.2 SGM Servomotor

Servomotor
Model
SGMG-

Servomotor
Output
kW

Rated
Speed
min−1

Gear

Rated
Torque
N·m
(lb·in)

Gear
Ratio

Rated
Torque/
Efficiency
N·m/%
(lb·in/%)

Instantaneous
Peak
Torque/
Efficiency
N·m/%

Rated
Speed
min−1

Max.
Speed
min−1

0.3

1000

2.84
(25)

1/6
1/11

-03AjBjCR

1/21

-03AjBj7R

1/29

-06AjBjAR

0.6

5.68
(50)

1/11

-06AjBjBR

1/21

-06AjBjCR

1/29

-06AjBj7R
-09AjBjAR

1/6

0.9

8.62
(76)

1/6
1/11

-09AjBjBR

1/21

-09AjBjCR

(1478/80)

(1089/75)

-03AjBjBR

13.6/80
(120/80)
25.0/80
(221/80)
41.8/70
(370/70)
65.9/80
(583/80)
27.2/80
(241/80)
50.0/80
(443/80)
83.5/70
(739/70)
123/75

(2717/75)

41.4/80
(366/80)
75.9/80
(672/80)
136/75

92.7/80
(820/80)
170/80

(1204/75)

1/29

34.4/80
(304/80)
63.1/80
(558/80)
106/70
(938/70)
167/80
67.7/80
(599/80)
125/80

1.2

11.5
(102)

1/6

208/70
307/75

1/21

-12AjBjCR

1/29

-20AjBjAR

2.0

19.1
(169)

1/6

304/75

200/80

448/80

55.0/80

126/75

101/80
(894/80)
180/75

-20AjBj7R

1/21
1/29

8.84 (7.82)

1.6 (1.42)

47

95

8.39 (7.43)

1.15 (1.02)

34

68

8.41 (7.44)

1.17 (1.04)

166

333

15.7 (13.9)

1.8 (1.59)

90

181

15.3 (13.5)

1.4 (1.24)

47

95

15.9 (14.1)

2.0 (1.77)

34

68

16.1 (14.3)

2.2 (1.95)

166

333

22.3 (19.7)

1.8 (1.59)

90

181

21.9 (19.4)

1.4 (1.24)

47

95

22.5 (19.9)

2.0 (1.77)

34

68

22.8 (20.2)

2.3 (2.04)

166

333

38.0 (33.6)

6.3 (5.58)

90

181

36.5 (32.3)

4.8 (4.25)

47

95

37.6 (33.3)

5.9 (5.22)

34

68

37.3 (33.0)

5.6 (4.96)

166

333

52.3 (46.3)

6.3 (5.58)

90

181

50.8 (45.0)

4.8 (4.25)

47

95

51.9 (45.9)

5.9 (5.22)

34

68

91.9 (81.3)

45.9 (40.6)

(2186/80)
(3903/75)

247/80
441/75

266/80

651/80
(5762/80)

91.7/80

212/80
(1876/80)

169/80

387/80
(3425/80)

321/80

739/80

(2841/80)

-20AjBjCR

181

(1115/75)

(812/80)

1/11

90

(3965/80)

(1496/80)

-20AjBjBR

1.96 (1.73)

(2691/75)

(2354/80)

-12AjBj7R

9.20 (8.14)

(1505/80)

(487/80)

1/11

-12AjBjBR

333

(1841/70)

(1593/75)

-12AjBjAR

166

(1106/80)

(1770/80)

-09AjBj7R

Gear
Inertia
×10−4
Kg·m2
(×10−3
lb·in·s2)

lb·in·s2)

(lb·in/%)

-03AjBjAR

Load Inertia at
the Motor
Shaft
(Servomotor +
Gear)
×10−4 kg·m2
(×10−3

(6541/80)

416/75

958/75

(3682/75)

(8479/75)

253

5

USING THE DIGITAL OPERATOR
5.2.1 Ratings and Specifications cont.

Servomotor
Model
SGMG-

Servomotor
Output
kW

Rated
Speed
min−1

Gear

Rated
Torque
N·m
(lb·in)

Gear
Ratio

Rated
Torque/
Efficiency
N·m/%
(lb·in/%)

Instantaneous
Peak
Torque/
Efficiency
N·m/%

Rated
Speed
min−1

Max.
Speed
min−1

3.0

1000

28.4
(251)

1/6

136/80

306/80

(1204/80)

(2708/80)

1/11

250/80

561/80

(2213/80)

-30AjBjBR

477/80

1068/80

(4222/80)

4.4

41.9
(371)

-44AjBjBR

660/80

1480/80

(5842/80)

-44AjBjAR

1/6

201/80

453/70

(1779/80)

370/80

830/70

1/21

705/80

1588/70

5

-60AjBjCR

973/80

2185/70

(8612/80)

57.2
(506)

1/11

504/80

1205/80

(4461/80)

7.7 (6.82)

47

95

115 (102)

47.5 (42.0)

34

68

131 (116)

63.5 (56.2)

166

333

103 (91.2)

14.0 (12.4)

90

181

98.8 (87.4)

9.8 (8.67)

47

95

168 (149)

79.0 (69.9)

34

68

166 (147)

77.0 (68.2)

90

181

190 (168)

65.0 (57.5)

47

95

204 (181)

79.0 (69.9)

34

68

216 (191)

91.0 (80.5)

(10665/80)

961/80

2300/80

(8506/80)

1/29

75.2 (66.6)

(19339/70)

1/21

-60AjBj7R

181

(14055/70)

1/29
6.0

90

(7346/70)

(6240/80)

-60AjBjBR

12.0 (10.6 )

(4010/70)

(3275/80)

-44AjBj7R

79.5 (70.4)

(13099/80)

1/11

-44AjBjCR

333

(9453/80)

1/29

-30AjBj7R

166

(4965/80)

1/21

-30AjBjCR

Gear
Inertia
×10−4
Kg·m2
(×10−3
lb·in·s2)

lb·in·s2)

(lb·in/%)

-30AjBjAR

Load Inertia at
the Motor
Shaft
(Servomotor +
Gear)
×10−4 kg·m2
(×10−3

(20357/80)

1323/80

3176/80

(11710/80)

(28111/80)

Note Output torque and motor speed produce the following trends in efficiency.
Values in the table are at the rated motor speed.

Efficiency

Efficiency

Output torque

254

Motor speed

5.2 SGM Servomotor

Configuration
This configuration accurately and efficiently transmits Servomotor power.
A gear (Cyclo) is used in combination with the internal planetary gear mechanism of the
Servomotor.
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14

Part Name
Low-speed shaft
Collar
External cover
Internal pin
Internal roller
External pin
Frame
Ring
Curved plate
Eccentric bearing
Internal cover
High-speed shaft
Adapter plate
Motor

Gear Lubrication
• Grease Lubricating Type (4095 to 4115)
The gearbox is filled at the factory.

5

• Oil Lubricating Type (4130 to 4190)
All oil is drained from the gears prior to shipment. The gearbox must be filled to the red
line at the top of the oil gauge before initial use.
We recommend using industrial extreme-pressure gear oil or SP type or JIS K 2219 industrial gear oil type 2 or equivalent. See the following table.
Ambient Temperature
t
0 to 35°C

Manufacturer
Kosmo Oil
Co., Ltd.

Nihon Sekiyu
Co., Ltd.

Kosmo Gear Co., Ltd.
SE
100, 150

Bonokku
M
100, 150

General Oil Co.
Ltd.
General SP Gear Roll
100, 150

Approximate amounts of oil applied are shown in the following table.
(Unit: 1 [liters])
Frame No.
Horizontal
Type

4130
4135

4145

4155

4160
4165

4170
4175

4180
4185

4190

0.7

0.7

0.7

1.4

1.9

2.5

4.0

255

USING THE DIGITAL OPERATOR
5.2.1 Ratings and Specifications cont.

J SGMG Servomotors with Low-backlash Gears (Rated Motor Speed is 1000 min−1)

Ratings and Specifications
Time rating:
Thermal class:
Vibration class:
Withstand voltage:
Insulation resistance:
Enclosure:

continuous
F
15µm or below
1500 VAC for one minute
500 VDC 10MΩ min.
totally enclosed, self-cooled
IP44 (or the equivalent)
Ambient temperature:
0 to 40°C
Ambient humidity:
20% to 80% (non-condensing)
Excitation:
permanent magnet
Drive method:
direct drive
Mounting:
flange mounted (can be mounted in any direction
Rotation direction:
forward
Gear lubricating method: grease
Gear mechanism:
planetary gear mechanism
Backlash:
0.05° (3 min) at the gear output shaft

5

Servomotor
Model
M d l
SGMG-

Servomotor
Output
kW

Rated
Speed
min−1

Gear

Rated
Torque
N·m
(lb·in)

Gear
Ratio

Rated
Torque/
Efficiency
N·m/%
(lb·in/%)

-03AjBL1K

0.3

1000

2.84
( )
(25)

1/5

-03AjBL2K

1/9

-03AjBL5K

1/20

-03AjBL7K

1/29

-03AjBL8K

1/45

-06AjBL1K

0.6

5.68
( )
(50)

1/5

-06AjBL2K

1/9

-06AjBL5K

1/20

-06AjBL7K

1/29

-06AjBL8K

1/45

256

11.4/80
(101/80)
20.4/80
(181/80)
45.4/80
(402/80)
65.9/80
(583/80)
102/80
(903/80)
22.7/80
(201/80)
40.9/80
(362/80)
90.9/80
(805/80)
132/80
(1168/80)
204/80
(1806/80)

Instantaneous
Peak
Torque/
Efficiency
N·m/%
(lb·in/%)

Rated
Speed
min−1

Max.
Speed
min−1

Gear
Inertia
I ti
×10−4
kg·m2
(×10−3
lb·in·s2)

28.7/80
(254/80)
51.6/80
(457/80)
115/80
(1018/80)
166/80
(1469/80)
258/80
(2284/80)
56.4/80
(499/80)
82.5/80
(730/80)
226/65
(2000/65)
327/80
(2894/80)
508/80
(4496/80)

200

400

1.26 (1.12)

8.50 (7.52)

111

222

0.94 (0.832)

8.18 (7.24)

50

100

1.40 (1.24)

8.64 (7.65)

34

68

2.76 (2.44)

10.0 (8.85)

22

44

1.81 (1.60)

9.05 (8.01)

200

400

1.30 (1.15)

15.2 (13.5)

111

222

0.90 (0.797)

14.8 (13.1)

50

100

4.70 (4.16)

18.6 (16.5)

34

68

2.80 (2.48)

16.7 (14.8)

22

44

4.50 (3.98)

18.4 (16.3)

Load Inertia
at the Motor
Shaft
(Servomotor
+ Gear)
×10−4 kg·m2
(×10−3
lb·in·s2)

5.2 SGM Servomotor

Servomotor
Model
SGMG-

Servomotor
Output
kW

Rated
Speed
min−1

Gear

Rated
Torque
N·m
(lb·in)

Gear
Ratio

Rated
Torque/
Efficiency
N·m/%
(lb·in/%)

-09AjBL1K

0.9

1000

8.62
( )
(76)

1/5

-09AjBL2K

1/9

-09AjBL5K

1/20

-09AjBL7K

1/29

-09AjBL8K

1/45

-12AjBL1K

1.2

11.5
(102)
(
)

1/5

-12AjBL2K

1/9

-12AjBL5K

1/20

-12AjBL7K

1/29

-12AjBL8K

1/45

-20AjBL1K

2.0

19.1
(
(169)
)

1/5

-20AjBL2K

1/9

-20AjBL5K

1/20

-30AjBL1K

3.0

28.4
(
(251)
)

-30AjBL2K

1/5
1/9

34.5/80
(305/80)
62.1/80
(550/80)
138/80
(1221/80)
200/80
(1770/80)
310/80
(2744/80)
46/80
(407/80)
82.8/80
(733/80)
184/80
(1629/80)
267/80
(2363/80)
414/80
(3664/80)
76.4/80
(676/80)
138/80
(1221/80)
306/80
(2708/80)
114/80
(1009/80)
204/80
(1806/80)

Instantaneous
Peak
Torque/
Efficiency
N·m/%
(lb·in/%)

Rated
Speed
min−1

Max.
Speed
min−1

Gear
Inertia
×10−4
kg·m2
(×10−3
lb·in·s2)

77.2/80
(683/80)
139/80
(1230/80)
309/80
(2735/80)
448/80
(3965/80)
695/80
(6151/80)
112/80
(991/80)
202/80
(1788/80)
448/80
(3965/80)
650/80
(5753/80)
1008/80
(8922/80)
176/80
(1558/80)
317/80
(2806/80)
704/80
(6231/80)
255/80
(2257/80)
459/80
(4063/80)

200

400

3.40 (3.01)

23.9 (21.2)

111

222

4.80 (4.25)

25.3 (22.4)

50

100

6.90 (6.11)

27.4 (24.3)

34

68

10.4 (9.21)

30.9 (27.3)

22

44

6.70 (5.93)

27.2 (24.1)

200

400

10.2 (9.03)

41.9 (37.1)

111

222

7.80 (6.90)

39.5 (35.0)

50

100

20.2 (17.9)

51.9 (45.9)

34

68

13.4 (11.9)

45.1 (39.9)

22

44

9.70 (8.59)

41.4 (36.6)

200

400

10.2 (9.03)

56.2 (49.7)

111

222

7.80 (6.90)

53.8 (47.6)

50

100

20.2 (17.9)

66.2 (58.6)

200

400

20.4 (18.1)

87.9 (77.8)

111

222

12.5 (11.1)

80.0 (70.8)

Load Inertia
at the Motor
Shaft
(Servomotor
+ Gear)
×10−4 kg·m2
(×10−3
lb·in·s2)

Note Output torque and motor speed produce the following trends in efficiency. Values in
the table are at the rated motor speed.

Efficiency

Efficiency

Output torque

Motor speed

257

5

USING THE DIGITAL OPERATOR
5.2.1 Ratings and Specifications cont.

Configuration
This simple planetary gear mechanism is equipped with four planetary gears to which
load is evenly distributed via a floating relay ring in each step.
Two gears are used to transmit driving force during forward rotation, and the other two are
used to transmit driving force during reverse rotation.
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Gear Lubrication
The gearbox is filled at the factory.

5

258

Part Name
Casing
Bracket
Motor bracket
Primary sun gear
Primary planetary gear
Primary planetary shaft
Internal gear
Secondary sun gear
Secondary planetary gear
Secondary planetary shaft
Low-speed shaft
Oldham’s coupling
High-speed shaft bearing
Low-speed shaft bearing
Motor

5.2 SGM Servomotor

J SGMS Servomotors

Ratings and Specifications
Time rating:
Thermal class:
Vibration class:
Withstand voltage:
Insulation resistance:
Enclosure:
Ambient temperature:
Ambient humidity:
Excitation:
Drive method:
Mounting:

Servomotor SGMS

10AjA

Rated Output*

kW (HP)

Rated Torque *
q

continuous
F
15µm or below
1500 VAC
500 VDC 10MΩ min.
totally enclosed, self-cooled
IP67 (except for shaft opening)
0 to 40°C
20% to 80% (non-condensing)
permanent magnet
direct drive
flange method

15AjA

20AjA

30AjA

40AjA

50AjA

Rated Current*

N¡m
lb¡in
N¡m
lb¡in
A (rms)

1.0
(1.3)
3.18
28.2
9.54
84.4
5.7

1.5
(2.0)
4.9
43
14.7
130
9.5

2.0
(2.7)
6.36
56.4
19.1
169
12.4

3.0
(4.0)
9.8
87
29.4
260
18.8

4.0
(5.4)
12.6
112
37.8
336
24.3

5.0
(6.7)
15.8
140
47.6
422
28.2

Instantaneous Max Current*

A (rms)

17

28

42

56

77

84

Rated Speed*

min−1

3000

Instantaneous Max Speed*
Torque Constant

min−1

4500

N¡m/A
(rms)

0.636

0.573

0.559

0.573

0.55

0.61

lb¡in/A
(rms)

5.6

5.1

5.0

5.1

4.9

5.4

¢10−4
kg¡m2

1.74

2.47

3.19

7.00

9.60

12.3

¢10−3
lb¡in¡s2

1.54

2.19

2.82

6.20

8.50

10.9

Rated Power Rate*

kW/s

57.9

97.2

127

137

166

202

Rated Angular Acceleration*

rad/s2

18250

19840

19970

14000

13160

12780

Inertia Time Constant

ms

0.87

0.71

0.58

0.74

0.60

0.57

Inductive Time Constant

ms

7.1

7.7

8.3

13.0

14.1

14.7

Instantaneous Peak Torque*
q

Moment of Inertia

5

* These items and torque-speed characteristics quoted in combination with an SGDB SERVOPACK at an armature winding temperature of 20°C.
Note These characteristics can be obtained when the following heat sinks (alumnium
plates) are used for cooling purposes:
Type 10AjA to 20AjA : 300¢300¢12 (mm) (11.81¢11.81¢0.47 (in))
Type 30AjA to 50AjA : 400¢400¢20 (mm) (15.75¢15.75¢0.79 (in))

259

USING THE DIGITAL OPERATOR
5.2.1 Ratings and Specifications cont.

NOTE

The ratings and specifications above refer to a standard servomotor.
Add the numerical values below to the moment of inertia values in the table for a motor
fitted with a holding brake.
Other specifications will also change slightly.

Servomotor SGMS
Holding Moment
brake
of Inertia
90VDC Increase
Static
Friction
Torque

5

260

10AjA

15AjA

20AjA

30AjA

¢10−4 kg¡m2

0.325

2.1

¢10−3 lb¡in¡s2

0.289

1.86

N·m

7.84

2.0

40AjA

50AjA

5.2 SGM Servomotor

J SGMS Servomotor (Rated Motor Speed is 1000 r/min) Torque-Motor Speed
Characteristics
• SGMS-10AjA

• SGMS-15AjA

Motor
Speed
(min−1)

Motor
Speed
(min−1)

• SGMS-20AjA

• SGMS-30AjA

Motor
Speed
(min−1)

Motor
Speed
(min−1)

• SGMS-40AjA

5

• SGMS-50AjA

Motor
Speed
(min−1)

Motor
Speed
(min−1)

A: Continuous Duty Zone
B: Intermittent Duty Zone

261

USING THE DIGITAL OPERATOR
5.2.1 Ratings and Specifications cont.

J SGMS Servomotors with Low-backlash Gears

Ratings and Specifications
Time rating:
Thermal class:
Vibration class:
Withstand voltage:
Insulation resistance:
Enclosure:

continuous
F
15 µm or below
1500 VAC for one minute
500 VDC 10 MΩ min.
totally enclosed, self-cooled
IP44 (or the equivalent)
Ambient temperature:
0 to 40°C
Ambient humidity:
20% to 80% (non-condensing)
Excitation:
permanent magnet
Drive method:
direct drive
Mounting:
flange method (can be mounted in any direction)
Rotation direction:
forward
Gear lubricating method: grease
Gear mechanism:
planetary gear mechanism
Backlash:
0.05° (3 min) at the gear output shaft

5

Servomotor
Model
M d l
SGMS-

Servomotor
Output
kW

Rated
Speed
min−1

Gear

Rated
Torque
N·m
(lb·in)

Gear
Ratio

Rated
Torque/
Efficiency
N·m/%
(lb·in/%)

-10AjAL1K

1.0

3000

3.18
(
(28.2)
)

1/5

-10AjAL2K

1/9

-10AjAL5K

1/20

-10AjAL7K

1/29

-10AjAL8K

1/45

-15AjAL1K

1.5

4.9 (43)

1/5

-15AjAL2K

1/9

-15AjAL5K

1/20

-15AjAL7K

1/29

-15AjAL8K

1/45

262

12.7/80
(112/80)
22.9/80
(203/80)
50.9/80
(451/80)
73.8/80
(653/80)
115/80
(1018/80)
19.6/80
(173/80)
35.3/80
(312/80)
78.4/80
(694/80)
114/80
(1009/80)
176/80
(1558/80)

Instantaneous
Peak
Torque/
Efficiency
N·m/%
(lb·in/%)

Rated
Speed
min−1

Max.
Speed
min−1

Gear
Inertia
I ti
×10−4
kg·m2
(×10−3
lb·in·s2)

38.2/80
(338/80)
68.7/80
(608/80)
153/80
(1354/80)
221/80
(1956/80)
343/80
(3036/80)
58.8/80
(520/80)
106/80
(938/80)
235/80
(2080/80)
341/80
(3018/80)
529/80
(4682/80)

600

800

3.44 (3.04)

5.18 (4.58)

333

444

3.11 (2.75)

4.85 (4.29)

150

200

6.79 (6.01)

8.53 (7.55)

103

138

4.88 (4.32)

6.62 (5.86)

66

89

3.92 (3.47)

5.66 (5.01)

600

800

3.44 (3.04)

5.91 (5.23)

333

444

4.77 (4.22)

7.24 (6.41)

150

200

6.79 (6.01)

9.26 (8.20)

103

138

4.88 (4.32)

7.35 (6.51)

66

89

6.58 (5.82)

9.05 (8.01)

Load Inertia
at the Motor
Shaft
(Servomotor
+ Gear)
×10−4 kg·m2
(×10−3
lb·in·s2)

5.2 SGM Servomotor

Servomotor
Model
SGMS-

Servomotor
Output
kW

Rated
Speed
min−1

Gear

Rated
Torque
N·m
(lb·in)

Gear
Ratio

Rated
Torque/
Efficiency
N·m/%
(lb·in/%)

-20AjAL1K

2.0

3000

6.36
(
)
(56.4)

1/5

-20AjAL2K

1/9

-20AjAL5K

1/20

-20AjAL7K

1/29

-20AjAL8K

1/45

-30AjAL1K

3.0

9.8 (87)

1/5

-30AjAL2K

1/9

-30AjAL5K

1/20

-30AjAL7K

1/29

-30AjAL8K

1/45

-40AjAL1K

4.0

12.6
(112)
( )

1/5

-40AjAL2K

1/9

-40AjAL5K

1/20

-40AjAL7K

1/29

-50AjAL1K

5.0

15.8
(
)
(140)

1/5

-50AjAL2K

1/9

-50AjAL5K

1/20

25.6/80
(227/80)
46/80
(407/80)
102/80
(903/80)
148/80
(1310/80)
230/80
(2036/80)
39.2/80
(347/80)
70.5/80
(624/80)
157/80
(1390/80)
227/80
(2009/80)
353/80
(3124/80)
50.4/80
(446/80)
90.7/80
(803/80)
202/80
(1788/80)
292/80
(2584/80)
63.2/80
(559/80)
114/80
(1009/80)
253/80
(2239/80)

Instantaneous
Peak
Torque/
Efficiency
N·m/%
(lb·in/%)

Rated
Speed
min−1

Max.
Speed
min−1

Gear
Inertia
×10−4
kg·m2
(×10−3
lb·in·s2)

76.4/80
(676/80)
138/80
(1221/80)
306/80
(2708/80)
443/80
(3921/80)
688/80
(6089/80)
118/80
(1044/80)
212/80
(1876/80)
470/80
(4160/80)
682/80
(6036/80)
1058/80
(9364/80)
151/80
(1337/80)
272/80
(2407/80)
605/80
(5355/80)
877/80
(7762/80)
190/80
(1682/80)
343/80
(3036/80)
762/80
(6744/80)

600

800

3.44 (3.04)

6.63 (5.87)

333

444

4.77 (4.22)

7.96 (7.05)

150

200

6.79 (6.01)

9.98 (8.83)

103

138

10.3 (9.12)

13.5 (11.9)

66

89

6.58 (5.82)

9.77 (8.65)

600

800

10.2 (9.03)

17.2 (15.2)

333

444

7.80 (6.90)

14.8 (13.1)

150

200

20.2 (17.9)

27.2 (24.1)

103

138

13.4 (11.9)

20.4 (18.1)

66

89

9.70 (8.59)

16.7 (14.8)

600

800

10.2 (9.03)

19.8 (17.5)

333

444

12.5 (11.1)

22.1 (19.6)

150

200

20.2 (17.9)

29.8 (26.4)

103

138

13.4 (11.9)

23.0 (20.4)

600

800

20.4 (18.1)

32.7 (28.9)

333

444

12.5 (11.1)

24.8 (22.0)

150

200

20.2 (17.9)

32.5 (28.8)

Load Inertia
at the Motor
Shaft
(Servomotor
+ Gear)
×10−4 kg·m2
(×10−3
lb·in·s2)

Note 1. The maximum input motor speed for the gear is 4000 min−1.
2.

Output torque and motor speed produce the following trends in efficiency. Values
in the table are at the rated motor speed.

263

5

USING THE DIGITAL OPERATOR
5.2.1 Ratings and Specifications cont.

Efficiency

Efficiency

Output torque

Motor speed

Configuration
This simple planetary gear mechanism is equipped with four planetary gears to which
load is evenly distributed via a floating relay ring in each step.
Two gears are used to transmit driving force during forward rotation, and the other two are
used to transmit driving force during reverse rotation.
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

5
Gear Lubrication
The gearbox is filled at the factory.

264

Part Name
Casing
Bracket
Motor bracket
Primary sun gear
Primary planetary gear
Primary planetary shaft
Internal gear
Secondary sun gear
Secondary planetary gear
Secondary planetary shaft
Low-speed shaft
Oldham’s coupling
High-speed shaft bearing
Low-speed shaft bearing
Motor

5.2 SGM Servomotor

J SGMD Servomotors with Holding Brake

Ratings and Specifications
Time rating:
Thermal class:
Vibration class:
Withstand voltage:
Insulation resistance:
Enclosure:
Ambient temperature:
Ambient humidity:
Excitation:
Drive method:
Mounting:
Holding brake:

continuous
F
15µm or below
1500 VAC
500 VDC 10MΩ min.
totally enclosed, self-cooled
IP67 (except for shaft opening)
0 to 40°C
20% to 80% (non-condensing)
permanent magnet
direct drive
flange method
90VDC
Static friction torque 29.4 N¡m

Servomotor SGMD
Rated Output*
Rated Torque *
q

22AjAAB

32AjAAB

40AjAAB

kW (HP)

2.2 (2.9)

3.2 (4.3)

4.0 (5.4)

Rated Current *

N¡m
kgf¡cm (lb¡in)
N¡m
kgf¡cm (lb¡in)
A (rms)

10.5
107 (93)
36.7
375 (326)
15.7

15.3
156 (135)
53.5
546 (474)
20.9

19.1
195 (169)
66.9
682 (592)
22.8

Instantaneous Max Current*

A (rms)

54

73

77

Rated Speed*

min−1

2000

Instantaneous Max Speed*
Torque Constant
q

min−1

3000

N¡m/A (rms)
kgf¡cm/A(lb¡in/A)
(rms)

0.72
7.4 (6.4)

0.78
8.0 (6.9)

0.93
9.5 (8.2)

Moment of Inertia

kg¡m2¢10−4
gf¡cm¡s2
(lb¡in¡s2¢10−3)

56.6
57.8 (50.3)

74.2
75.7 (65.9)

91.8
93.7 (81.5)

Rated Power Rate*

kW/s

21.6

34.1

42.3

Rated Angular Acceleration*

rad/s2

2060

2230

2220

Inertia Time Constant

ms

3.3

2.2

2.0

Inductive Time Constant

ms

16.2

18.2

17.8

Instantaneous Peak Torque*
q

5

* These items and torque-speed characteristics quoted in combination with an SGDB SERVOPACK at an armature winding temperature of 20°C.
Note These characteristics can be obtained when the following heat sinks (steel
plates) are used for cooling purposes:
Type 22AjAAB to 40AjAAB :650¢650¢35 (mm)
(25.59¢25.59¢1.38 (in))

265

USING THE DIGITAL OPERATOR
5.2.1 Ratings and Specifications cont.

Torque-Motor Speed Characteristics
• SGMD-22AjAAB

• SGMD-32AjAAB

Motor
Speed
(min−1)

Motor
Speed
(min−1)

• SGMD-40AjAAB

Motor
Speed
(min−1)

5

A: Continuous Duty Zone
B: Intermittent Duty Zone

266

5.2 SGM Servomotor

J SGMP Servomotors (1.5kW)
Ratings and Specifications
Time rating:
Thermal class:
Vibration class:
Withstand voltage:
Insulation resistance:
Enclosure:
Ambient temperature:
Ambient humidity:
Excitation:
Drive method:
Mounting:

continuous
B
15µm or below
1500 VAC
500 VDC 10MΩ min.
totally enclosed, self-cooled
IP67 (except for shaft opening)
0 to 40°C
20% to 80% (non-condensing)
permanent magnet
direct drive
flange method

Servomotor SGMP
Rated Output*1
Rated Torque *1 *2
q

04A

08A

15A

kW (HP)

0.4 (0.54)

0.75 (1.01)

1.5 (2.0)

Rated Current*1

N¡m
lb¡in
N¡m
lb¡in
A (rms)

1.27
11.2
3.82
33.8
2.6

2.39
21.1
7.1
62.8
4.1

4.77
42.2
14.3
126.6
7.5

Instantaneous Max Current*1

A (rms)

8.0

13.9

23.0

Instantaneous Peak Torque*1
q

Rated

Speed*1

min−1

5

3000

min−1

Instantaneous Max Speed*1
Torque Constant
q

4500

Rated Power Rate*1

N¡m/A (rms)
lb¡in/A (rms)
¢10−4 kg¡m2
¢10−3 oz¡in¡s2
kW/s

0.535
4.73
0.347
4.92
46.8

0.641
5.67
2.11
29.9
26.9

0.687
6.08
4.03
3.57
56.6

Rated Angular Acceleration*1

rad/s2

36700

11300

11800

Inertia Time Constant

ms

0.4

0.7

0.5

Inductive Time Constant

ms

8.5

18

22

Moment of Inertia

*1 These items and torque-motor speed characteristics quoted in combination with an SGDB
SERVOPACK at an armature winding temperature of 100°C. Other values quoted at
20°C. All values typical.
*2 Rated torques are continuous allowable torque values at 40°C with a 300¢300¢12 (mm)
(11.81¢11.81¢0.47 (in)) heat sink attached.
NOTE

The ratings and specifications above refer to a standard servomotor.
Add the numerical values below to the moment of inertia values in the table for a motor
fitted with a holding brake.
Other specifications will also change slightly.

267

USING THE DIGITAL OPERATOR
5.2.1 Ratings and Specifications cont.

Item

Type SGMPSGMP

04A

08A

15A

Moment
of Inertia
Increase

¢10−4 kg¡m2

0.109

0.875

0.875

¢10−3 lb¡in¡s2

0.0965

0.774

0.774

Static
Friction
Torque

Holding
brake
90VDC

N·m

1.91

3.58

7.15

J SGMP servomotor (1.5kW) Torque-Motor Speed Characteristics
• SGMP-15A

• SGMP-04A

4000
3000
Motor
Speed 2000
(min−1)

Motor
Speed
(min−1)

1000
00
0

5

• SGMP-08A

4000
3000
Motor
Speed
(min−1) 2000
1000
00
0

2

4
6
TORQUE (N¡m)

20
40
60
TORQUE (lb¡in)

8
80

A: Continuous Duty Zone
B: Intermittent Duty Zone

268

1

2
3
TORQUE (N¡m)

10
20
30
TORQUE (lb¡in)

4
40

5.2 SGM Servomotor

5.2.2 Mechanical Characteristics
J Allowable Radial Load, Allowable Thrust Load
The output shaft allowable loads for SGMj servomotor are shown below.
Conduct mechanical design such that the thrust loads and radial loads do not exceed the
values stated below.
Servomotor
Type

Allowable Radial
Load Fr [N(lb)]

Allowable
Thrust Load
Fs [N(lb)]

SGMG-05AjA
-09AjA
-13AjA
-20AjA
-30AjA
-44AjA
-55AjA
-75AjA
-1AAjA
-1EAjA
SGMG-03AjB
-06AjB
-09AjB
-12AjB
-20AjB
-30AjB
-44AjB
-60AjB
SGMS-10A
-15A
-20A
-30A
-44A
-50A
SGMD-22A
-32A
-40A

490 (110)
490 (110)
686 (154)
1176 (265)
1470 (331)
1470 (331)
1764 (397)
1764 (397)
1764 (397)
4998 (1125)
490 (110)
490 (110)
686 (154)
1176 (265)
1470 (331)
1470 (331)
1764 (397)
1764 (397)
686 (154)
686 (154)
686 (154)
980 (221)
1176 (265)
1176 (265)
1176 (265)
1176 (265)
1176 (265)

98 (22)
98 (22)
343 (77)
490 (110)
490 (110)
490 (110)
588 (132)
588 (132)
588 (132)
2156 (485)
98 (22)
98 (22)
343 (77)
490 (110)
490 (110)
490 (110)
588 (132)
588 (132)
196 (44)
196 (44)
196 (44)
392 (88)
392 (88)
392 (88)
490 (110)
490 (110)
490 (110)

SGMP-15A

490 (110)

147 (33)

LR
mm
(in.)

Reference Diagram

58
(2.28)
(2 28)
79
(3.11)
(3 11)
113
(4.45)
(
)
116
(4.57)
(
)
58
(2.28)
(2 28)
79
(3.11)
(3 11)

5

113
(4.45)
(
)
45
(1.77)
(1 )
63
(2.48)
(2 8)
55
(2.17)
(2 1 )
65
(2.56)
35
(1.38)

Note Allowable radial loads shown above are the maximum values that could be applied to the shaft end.

269

USING THE DIGITAL OPERATOR
5.2.2 Mechanical Characteristics cont.

J Mechanical Tolerance
The tolerances of the SGMj servomotor output shaft and installation are shown in the
table below.
Tolerance (T.I.R.)

Reference Diagram

Perpendicularity between flange
face and output shaft
A

0.04mm
(0.0016in.)

Mating concentricity of flange O.D.

0.04mm
(0.0016in.)

B
Run-out at end of shaft

C

0.02mm*
(0.00079in.)

* 0.02 mm (0.00079 in.) or more for the following servomotors.
SGMG-55AjA or above
SGMG-44AjB or above

Note T.I.R. = Total Indicator Reading
J Direction of Motor Rotation
Positive rotation of the servomotor is counterclockwise, viewing from the drive end.

5

J Impact Resistance
Mount the servomotor with the axis horizontal.
The servomotor must withstand the following vertical impacts.
• Impact Acceleration: 490 m/s2
• Number of Impacts: 2

Vertical

Horizontal shaft

(SGMP−15A)
• Impact Acceleration: 98 m/s2
• Number of Impacts: 2
NOTE

270

In SGMj servomotors, an accurate detector is attached to the shaft at the opposite end from
the load.
Avoid applying impacts directly to the shaft as these may damage the detector.

5.2 SGM Servomotor

J Vibration Resistance
Mount the servomotor with the axis horizontal.
The servomotor must withstand the following
vibration accelerations in three directions: vertical, transverse, and longitudinal.

Longitudinal
Vertical

Transverse

Horizontal
shaft

• Vibration Acceleration: 24.5 m/s2
J Vibration Class

Vibration Measurement Position

The SGMj servomotor meets the following
vibration class at rated speed.
• Vibration Class: 15µm or below

5

TERMS

Vibration Class
Vibration class 15µm or below indicates that the total amplitude of vibration of the motor
alone, running at rated speed, does not exceed 15µm.

271

USING THE DIGITAL OPERATOR
5.2.3 Option Specifications

5.2.3 Option Specifications
Option specifications for SGMG, SGMS, and SGMD servomotors are described below.
Option Specifications

SGM j − jj j j j j j j
(11)

(12)

(13)

Σ-Series
servomotor

Lead specifications

Series name of
products
G : SGMG
S : SGMS
D : SGMD

Brake, oil seal specifications
B : 90 VDC brake
C : 24 VDC brake
S : Oil seal
F : 90 VDC brake, Oil seal
G : 24 VDC brake, Oil seal

Rated output (motor capacity)
(Refer to page 19.)

Shaft specifications
Blank: Standard (straight without key)
A : Standard (straight without key, with
option specifications)
B : Straight with key,
B shaft end tap (one place)
C : Taper 1/10, with parallel key
D : Taper 1/10, with semicircle key
(for SGMG-05jA and -09AjA only)

Standard
A : YASKAWA Standard

Rated rotation speed
A : SGMG 1500 min−1
SGMS 3000 min−1
SGMD 2000 min−1
B : SGMG 1000 min−1

5

Encoder specifications

Encoder

Incremental Encoder

Motor
Series

Standard

Absolute Encoder

Option

Standard

G

2

8192P/R

6

4096P/R





S

6

4096P/R

2

8192P/R*





D





2

8192P/R

W

6

4096P/R

1024P/R
(12 bit)

* Allowable rotation speed : 3000 min−1

272

Option
S
¡
W

8192P/R
(15 bit)

S

8192P/R
(15 bit)

1024P/R
(12 bit)

5.2 SGM Servomotor

J Shaft Specifications for SGMG, SGMS, and SGMD Servomotors

SGMj − jjjjj jjj
Shaft specifications
Blank : Standard (straight without key)
(Apply when option specifications for brake, oil seal, and lead not provided.)
A : Standard (straight without key)
B : Straight with key, shaft end tap (one place)
(Keyway confirming to JISB1301-1976.)
C : Taper 1/10, with parallel key
(Keyway confirming to JISB1301-1976. SGMG series will be
interchangeable with USAGED series.)
D : Taper 1/10, with semicircle key (non-standard)
(For SGMG-05 and -09 only. Semicircle key confirming to JISB1302.)

S

A : Straight without Key

S

5

B : Straight with Key and Shaft End Tap

Section X-X
Taper 1/10

C : Taper 1/10, with Parallel Key

Section X-X
Taper 1/10

D : Taper 1/10, with Semicircle Key

273

USING THE DIGITAL OPERATOR
5.2.3 Option Specifications cont.

Type
Code

SGMS-

Specifip
cation

10

LR

A

Straight

Q
S

15

20

45
40

T

QA

5

C

QK
X
S
V
P

70
36
14
32
12.5
24
24
M12,
P1.25

M16, P1.5
8
7

7.1

8.95





Q

T
U

09A

13A

20A

30A

44A

55A

75A

1AA

79
76
0

0

19 − 0.013 22 − 0.013

+ 0.01
0

0

22 − 0.013

0

6
6
3.5

35

+ 0.01
0

116
110

116
110

22

32

55
50

40
65
60

0

0
0
0
42 − 0.016 42 − 0.016 55 + 0.030 28 − 0.013 32 − 0.016
+ 0.011

79
76
60

113
110
90

116
110
90

116
110
90

55
50
45

65
60
50

0

0
0
0
42 − 0.016 42 − 0.016 55 + 0.030 28 − 0.013 32 − 0.016
+ 0.011

10

12

12

8
5

16
10
6

8
7
4

10
8
5

M20

M8

M12

screw,

screw,

screw,

depth 40

depth 16

depth 25

132

132

21

58
22
50
19.2
32
37

82
28
70
23
42
44










M10, P1.25

M20, P1.5

M24, P2.0





5.8

7
7
10.55

10
8
13.95

82
28
70
26
55
60
M36,
P3.0
14
9
19.95


























M12 screw,
depth 25

58
18
28
12
25*1
10.3

102

16

19

4.3*3
58
18
28
12
16
10.3
16
21
M10,
P1.25
5
2
4.5

M16 screw,
depth 32
22

*1 The value will be 16 if SGMG-05A and 09A are not interchangeable.
*2 The value will be 2 if SGMG-05A and 09A are not interchangeable.
*3 The value will be 4.5 if SGMG-05A and 09A are not interchangeable.

274

35

113
110

1EA

5
5*2

42
18
36
16
28
30

QA

W

05A

80

LW

P



M5 screw,
depth 12

LR

D

60B

20

T

QK
Taper
X
1/10,
/ ,
with
S
semiV
circle key

44B

5
5
3

M8 screw,
depth 16

W
U

30B

28 − 0.013 19 − 0.013
8
7
4

U

Q

20B

58
40
25
0

0

W

LR

12B

63
55
50

LW

Taper
1/10,
1/10
with parallel key

28 − 0.013

24 − 0.013

P

09B

58
40

0

0

24 − 0.013

S

Q

50

SGMD-

06B

63
55

QK

B

40

45
40
32

LR

Straight
with k
i h key
and shaft
d h ft
end tap

30

SGMG03B







5.2SGM Servomotor

J Brake, Oil Seal Specification

SGMj − j j j j j j j j

¬ Standard f Non-standard
Code

SGMS

SGMG

SGMD

Option not provided (standard)
(Apply when optional lead specifications not provided.)

¬

¬

f

1

Option not provided (standard)

¬

¬

f

S

With oil seal

f

f

f

Blank

Specifications

Flange Angle

Type

Material

j100

SC30458

Nitrile

j130
j180

SC45629
(15kW : SC658510)

5

j220
Enclosure : IP67 (including shaft opening)
B

90 VDC brake

f

f

¬

C

24 VDC brake

f

f

f

F

90 VDC brake, oil seal

f

f

f

G

24 VDC brake, oil seal

f

f

f

275

USING THE DIGITAL OPERATOR
5.2.3 Option Specifications cont.

J Lead Specifications

SGMj − j j j j j j j j

¬ Standard f Non-standard
Code

Specifications

Blank

MS connector : Receptacle MS3102A
(Standard)

B

Outgoing-lead
Opening *1

(a)

Frame

C

SGMG

SGMD

¬

Support

Receptacle

SGMS

¬

¬

f

f *2

f

f





f





(b)

(Receptacle size is same as standard type.)

D

(a)

E

For SGMS-10, -15 and -20
Enclosure : IP44

(b)

F

With loose wire (500 mm), insertion-type pin terminal at the
,
motor end, and connector at the encoder end

(a)

G

5

With loose wire (500 mm), and MS connector at the lead end
(
(with MS3101A p g)
plug)

For SGMS-10, -15 and -20
Enclosure : IP44

(b)

*1 Outgoing-lead openings

View from
connection part

(b)

(a)

*2 Depends on motor capacity. Contact your YASKAWA representative.

276

5.2SGM Servomotor

J 90 ° Bending Support Specifications

B

A

KL2

(From center of the motor)

KL1

(From center of the motor)

C

Standard receptacle center

Receptacle

in mm
SGMG-

SGMS-

SGMD−

03
B
10
Servo With Receptacle
motor out
Side brake
A

15

20

30

40

50

06
B

09
B

12
B

20
B

30
B

44
B

60
B

05
A

09
A

13
A

20
A

30
A

44
A

55
A

75
A

1A 1E
A
A

22

32

40

MS3102A
18-10P

MS3102A
22-22P

MS3102A
18-10P

MS3102A
22-22P

MS3102A
32-17P

MS3102A
24-10P

42

48

42

48

63

48

B

79

86

79

86

113

88

C

58

62

58

62

81

64

KL1

99

118

113

143

164

183

162

KL2

77

95

91

120

131

150

139

MS3102A
20-15P

MS3102A
24-10P

MS3102A
20-15P

MS3102A
24-10P

MS3102A
32-17P

MS3102A
24-10P

A

42

48

42

48

63

48

B

79

88

79

88

113

88

C

58

64

58

64

81

64

KL1

99

118

113

143

164

183

162

KL2

77

95

91

120

131

150

139

With Receptacle
brake

Encoder side

Receptacle

MS3102A20-29P

A

42

B

79

C

58

KL1

112

KL2

90

277

5

USING THE DIGITAL OPERATOR
5.2.3 Option Specifications cont.

J Specifications of Lead with MS Connectors
• Servomotor end
50050

63 max.

44

21

86

(From center of SGMS-10, -15, -20 servomotors)

68

Waterproof
ground
Support
Standard
receptacle center

Connector

(From center of SGMS-10, -15, -20 servomotors)

Cable

• Encoder end
50050

45 max.
65
(To center of the motor)

5

Encoder cover

SGMS-10, -15, -20
Brake

Encoder End

278

Without

MS3101A18-10P

With

Servomotor End

Connector Type

MS3101A20-15P



MS3101A20-29P

5.2 SGM Servomotor

J Specifications of Lead with Connectors
• Servomotor end
63 max.

50050

21

44

68
(From center of SGMS-10, -15, -20 servomotors)
86

(From center of SGMS-10, -15, -20 servomotors)

Cable

Waterproof ground

Insertion-type pin terminal

Phase U
Phase V

V

Phase W

W

FG
(Frame ground)

E

Brake terminal*

R

Brake terminal*

Support

U

S

Standard
receptacle
center

* For servomotors with brake only

• Encoder end
50050

45 max.
65

Connector

(From center of the motor)

5

Encoder cover

SGMS-10, -15, -20
Specifications
Servomotor End

Connector Type

With brake

PC-4020M (4 connectors)
Made by NICHIFU

Without brake

Motor section : PC-4020M (4 connectors)
Brake section

: PC-2005M (2 connectors)
Made by NICHIFU

Encoder End

With incremental
encoder

Plug

: 172169−1

Pin

: 170359−1

With absolute encoder

Plug

: 172171−1

Pin

: 170359−1

Made by AMP
Made by AMP

279

USING THE DIGITAL OPERATOR
5.2.3 Option Specifications cont.

¡ Incremental Encoder Wiring Specifications

A channel output

Blue

/A channel output

White
/Blue

3

B channel output

Yellow

4

/B channel output

White
/Yellow

5

C channel output

Green

6

/C channel output

White
/Green

7

0 V (Power supply)

Black

8

+5 VDC (Power supply)

Red

9

¡ Encoder plug

1
2

¡ Encoder plug

FG (Frame ground)

Green
/Yellow

¡ 12-bit Absolute Encoder (1024 P/R) Wiring Specifications

A channel output

Blue

2

/A channel output

White
/Blue

3

B channel output

Yellow

4

/B channel output

White
/Yellow

5

Z (C) channel output

Green

6

/Z (/C) channel output

White
/Green

7

0 V (Power supply)

Black

8

+5 VDC (Power supply)

Red

9

FG (Frame ground)

Green
/Yellow

10

S channel output

Purple

11

/S channel output

White
/Purple

* (12)

(Capacitor reset)

(Grey)

13

Reset

White
/Grey

14

0 V (Battery)

White
/Orange

15

5

1

3.6 V (Battery)

Orange

*

280

Terminal to discharge capacitor for product
dispatch. Do not use.

5.2 SGM Servomotor

¡ 15-bit Absolute Encoder (8192 P/R) Wiring Specifications

1

Blue

2
¡ Encoder plug

A channel output
/A channel output

White
/Blue

3

B channel output

Yellow

4

/B channel output

White
/Yellow

5

Z (C) channel output

Green

6

/Z (/C) channel output

White
/Green

7

0 V (Power supply)

Black

8

+5 VDC (Power supply)

Red

9

FG (Frame ground)

Green
/Yellow

10





11





(12)





13

Reset

White
/Grey

14

0 V (Battery)

White
/Orange

15

3.6 V (Battery)

Orange

5

281

SERVO SELECTION AND DATA SHEETS
5.3.1 Combined Specifications

5.3

SERVOPACK Ratings and Specifications

This section presents tables of SGDB SERVOPACK ratings and specifications.

5.3.1 Combined Specifications
The following table shows the specifications obtained when SGDB SERVOPACKs are
combined with SGMG, SGMS, SGMD and SGMP servomotors:
SERVOPACK
SG
SGDBG
MG
Series Motor Type

03ADM 07ADM

10ADM

15ADM

20ADM

30ADM

44ADM

60ADM

03AjB 06AjB

09AjB

12AjB

20AjB

30AjB

44AjB

60AjB

0.9
(1.2)

1.2
(1.6)

2.0
(2.7)

3.0
(4.0)

4.4
(5.9)

6.0
(8.0)

SGMGCapacity

0.3
kW (HP) (0.4)

0.6
(0.8)

Rated/Max. 1000/2000
Motor
Speed
r/min
Applicable
Encoder
Continuous Output
Current

5

Standard: Incremental encoder (8192 P/R)
5.7

7.6

11.6

18.5

24.8

32.9

46.9

A (rms)
Max. Output
7.3
Current

13.9

16.6

28

42

56

84

110

A (rms)
Allowable Load
36.2
Inertia*
(32.0)
JL

69.5
(61.5)

103
(91.2)

159
(141)

230
(204)

338
(299)

445
(394)

625
(553)

¢10−4 kg¡m2
(¢10−3oz¡in¡s2)

282

3.0

5.3 SERVOPACK Ratings and Specifications

SERVOPACK
SG
SGDBG
MG
Series Motor Type
S

05
ADG
05
SGMG- AjA

Capacity

0.45
kW (HP) (0.6)

10
ADG
09
AjA

15
ADG
13
AjA

20
ADG
20
AjA

30
ADG
30
AjA

44
ADG
44
AjA

60
ADG
55
AjA

75
ADG
75
AjA

1A
ADG
1A
AjA

1E
ADG
1E
AjA

0.85
(1.1)

1.3
(1.7)

1.8
(2.4)

2.9
(3.9)

4.4
(5.9)

5.5
(7.4)

7.5
(10)

11
(15)

15
(20)

Rated/Max 1500/3000
. Motor
Speed

/2000

r/min
Applicable
Standard: Incremental encoder (8192 P/R)
Encoder
Continuous Output 3.8
7.1
10.7
16.7
23.8
32.8
Current

42.1

54.7

58.6

78.0

A (rms)
Max. Output
11
Current

17

28

42

56

84

110

130

140

170

A (rms)
Allowable Load
36.2
Inertia*
(32.0)
JL

69.5
(61.5)

103
(91.2)

159
(141)

230
(204)

338
(299)

445
(394)

625
(553)

1405
(1244)

1575
(1395)

30
ADD
22
AjA

44
ADD
32
AjA

50
ADD
40
AjA

2.2
(2.9)

3.2
(4.3)

4.0
(5.4)

20.9

22.8

¢10−4 kg¡m2
(¢10−3 oz¡in¡s2)

SG
SERVOPACK
MD
SGDBSeries Motor Type
S
SGMDCapacity
kW (HP)

5

Rated/Max 2000/3000
. Motor
Speed
r/min
Applicable
Standard: Absolute encoder (1024 P/R)
Encoder
Continuous Output
15.7
Current
A (rms)
Max. Output
Current

54

73

77

A (rms)
Allowable Load
Inertia*
JL

255
(226)

343
(304)

431
(382)

¢10−4 kg¡m2
(¢10−3 oz¡in¡s2)

*Allowable load inertia is five times the motor inertia for SGMG and SGMD.

283

SERVO SELECTION AND DATA SHEETS
5.3.1 Combined Specifications cont.

SG
S
MS
Series
S

SERVOPACK
SGDBMotor
Type

10ADS 15ADS 20ADS 30ADS 44ADS 50ADS
10
AjA

Capacity
kW (HP)

15
AjA

20
AjA

30
AjA

40
AjA

50
AjA

1.0
(1.3)

SGMS-

1.5
(2.0)

2.0
(2.7)

3.0
(4.0)

4.0
(5.4)

5.0
(6.7)

Rated/Max. 3000/4500
Motor
Speed
r/min
Applicable
Encoder
Continuous Output
Current

Standard: Incremental encoder (4096 P/R)
5.7

9.5

12.4

18.8

24.3

28.2

17

28

42

56

77

84

8.7
(7.7)

12.4
(11.0)

16.0
(14.2)

35.0
(31.0)

48.0
(42.5)

61.5
(54.9)

A (rms)
Max. Output Current
A (rms)
Allowable Load
Inertia*
JL
¢10−4 kg¡m2
(¢10−3 oz¡in¡s2)

SG
MP
Series
S

SERVOPACK
SGDBMotor
Type

05ADP 10ADP 15ADP
04A

08A

15Aj

0.75
(1.01)

1.5
(2.0)

SGMPCapacity

0.4
kW (HP) (0.54)

5

Rated/Max. 3000/4500
Motor
Speed
r/min
Applicable
Encoder
Continuous Output
Current

Standard: Incremental encoder (2048 P/R)
2.6

A (rms)
Max. Output Current 8.0

4.1

7.5

13.9

23.0

10.6
(150)

20.2
(286)

A (rms)
Allowable Load
Inertia*
JL

3.5
(49.6)

¢10−4 kg¡m2
(¢10−3 oz¡in¡s2)

*Allowable load inertia is five times the motor inertia for SGMS and SGMP.

284

5.3 SERVOPACK Ratings and Specifications

5.3.2 Ratings and Specifications
The ratings and specifications of the SGDB SERVOPACK are shown below. Refer to
them as required when selecting a SERVOPACK.

SERVOPACK SGDB-

Servomotor

Basic
Specifications

03

SGMG- (1500 r/min)
SGMG- (1000 r/min)
SGMSSGMDSGMPSGMMain Circuit*1

Input
Power
1
Supply Control Circuit*
Control Mode

07

10

15

20

30

Locao
tion

Ambient/Storage
Temp.*2
Ambient/Storage
Humidity
Vibration/Shock
Resistance
Structure
Approx. mass
kg(lb)
Perfor- Speed Control
a ce
mance Range
Speed
Load
RegulaRegulation*3
tion

60

75

1A

1E

55A
60A





75A






1AA






1EA






0 to 55_C/−20 to 85_C
90% or less (no-condensing)
4.9m/s2 /19.6m/s2
Base mounted (duct ventilation available as option)
4 (9)
5 (11)
8 (18)
15 (33)
23 (51)
1:5000 (provided that the lower limit of the speed control range does not cause
the motor to stop when the rated torque load is applied)
0% to 100%: 0.01% max. (at rated speed)

Rated voltage ¦10%: 0% (at rated speed)

Temperature Regulation

25¦25_C: 0.1% max. (at rated speed)

Frequency
Characteristics
Torque Control
(Repeatability)
Soft Start Time
Setting
Speed
ReferReference Voltence
age*4
Input Impedance
Circuit
Time
Constant
Torque
Reference

50

Single-phase 200 to 230 VAC +10% to −15%, 50/60 Hz

Voltage
Regulation

Input
Signal

44

Three-phase, full-wave rectification IGBT PWM (sine-wave driven)
Incremental encoder, absolute encoder

Feedback

Speed/
oq e
Torque
Control
Mode

05


05A −
09A 13A 20A 30A 44A −
03A −
06A 09A 12A 20A 30A 44A −



10A 15A 20A 30A 40A 50A






22A 32A 40A

04A −
08A 15A −




04A −
08A −




Three-phase 200 to 230 VAC +10% to −15%, 50/60 Hz

250Hz (at JL=JM)
¦2.0%
0 to 10 s (each for acceleration and deceleration)
¦6 VDC (variable setting range: ¦2 to ¦10 VDC) at rated speed (forward
rotation with positive reference)
Approx. 30 kΩ
Approx. 47 μs

Refer¦1 to ¦10 VDC at rated speed (forward rotation with positive reference)
ence Voltage*4

285

5

SERVO SELECTION AND DATA SHEETS
5.3.2 Ratings and Specifications cont.
SERVOPACK SGDB-

Speed/
Torque
Control
Mode
Speed/
Torque
Control
Mode
M d

03

Torque
Reference

Input Impedance

Input
Signal

Torque
Reference

Circuit
Time
Constant

07

10

15

20

30

44

50

60

75

1A

1E

Approx. 30 kΩ

Approx. 47 μs

Built-in Reference
Power Supply
Contact
Rotation
Speed
Direction
ReferSelection
ence
Speed

¦12 V, ¦30 mA

Bias Setting
Feed-forward Compensation
Position Complete
Width Setting
ReferType
ence
Pulse
P l
Pulse

0 to 450 r/min (setting resolution: 1 r/min)
0 to 100% (setting resolution: 1%)

Selection

Position
Control
C
l
Mode

05

Input
Signal

Performf
ance

Input
g
Signal

Buffer
Pulse
Frequency

Uses P control signal

Forward/reverse rotation current control signals are used (1st to 3rd speed
selection).
When both signals are OFF, the motor stops or enters another control mode.

0 to 250 reference units (setting resolution: 1 reference unit)
SIGN + PULSE train, 90_ phase difference 2-phase pulse (phase A + phase B),
or CCW + CW pulse train
Line driver (+5 V level), open collector (+5 V or +12 V level)
Max. 450/200 kpps (line driver/open collector)

I/O Sigas
nals

CLEAR (input pulse form identical to reference pulse)

Sequence Input

5

Control Signal
Built-in Open Collector Power Supply*5
Position Output
Output
Form
Frequency Dividing Ratio

Servo ON, P control (or forward/reverse rotation in contact input speed control
mode), forward rotation prohibited (P-OT), reverse rotation prohibited (N-OT),
alarm reset, forward rotation current limit, and reverse rotation current limit (or
contact input speed control)
Servo alarm, 3-bit alarm codes
Positioning complete (speed coincidence), TGON, servo ready, current limit,
brake release, overload warning, overload detected

Sequence Output
q
p
Any 3 of
those
signals
Analog Monitor
Output
Built-in
FuncF
tions

Any 2 of
those
signals

Dynamic Brake (DB)
Regenerative Processing
Overtravel (OT) Prevention
Protection

LED Display
Analog Monitor (5CN)

286

+12 V (with built-in 1 kΩ resistor)
Phases A, B and C: Line driver output
Phase S: Line driver output (only when 12-bit absolute encoder is used)
(16 to N)/N (N: Number of encoder pulses)

Speed: 2 V/1000 r/min or 1 V/1000 r/min
Torque: 2 V/rated torque
Error: 0.05 V/reference unit or 0.05 V/100 reference units
Activated at main power OFF, servo alarm, servo OFF or overtravel
Incorporated. For 60 to 1A types, external regenerative resistor must be
mounted.
Motor is stopped by dynamic brake, decelerates to a stop, or coasts to a stop
when P-OT or N-OT is activated.
Overcurrent, overload, regenerative error, main circuit voltage error, heat sink
overheat, power open phase, overflow, overspeed, encoder error, encoder
disconnected, overrun, CPU error, parameter error
POWER, ALARM, CHARGE
Same analog monitor signal as 1CN is available.

5.3 SERVOPACK Ratings and Specifications

SERVOPACK SGDB-

Built-in
Functions

Communication
i

Others

03

05

07

10

15

20

30

44

50

60

75

1A

1E

Interface

Digital Operator (mount type or hand type)
RS422A port such as personal computer (RS232C port can be used if some
conditions are met.)

1:N Communication
Axis Address Setting*6
Functions

N can be up to 14 when RS422A port is used.
Hexadecimal rotary switch (1SW)
1: 1:N communication, 0: 1:1 communication
Status display, user constant setting, monitor display, alarm traceback display,
jogging, autotuning, etc.
Zero-clamp, reverse rotation connection

*1 The power voltage must not exceed 230 V + 10% (253 V). If it is likely to exceed this
limit, use a step-down transformer.
*2 The ambient temperature must be within the specified range. Even if the SERVOPACK is installed in a box, the temperature inside the box must not exceed the range.
*3 Speed regulation can be calculated using the following formula:

speed – full-load
Speed regulation = (no-load motorrated motor speed motor speed) × 100%

Under actual operating conditions, voltage or temperature fluctuation causes drift
to the amplifier or changes the operating resistance, resulting in the motor speed
being changed.
The percentage of the motor speed change to the rated motor speed is called
“speed regulation”.
*4 Forward rotation is defined as the clockwise rotation when viewed from the motor on
the opposite side of the load. (It is the counterclockwise rotation when viewed from
the load or shaft.)
*5 Built-in open collector power supply is not electrically isolated from the control circuit
inside the SERVOPACK.
*6 For 1:1 communication, set the rotary switch to “0”.

287

5

SERVO SELECTION AND DATA SHEETS
5.3.3 Overload Characteristics

5.3.3 Overload Characteristics
The SERVOPACK has a built-in overload protective function to protect the SERVOPACK and
servomotor from overload. Therefore, the SERVOPACK allowable power is limited by the
overload protective function, as shown below.
The overload detection level is quoted under hot start conditions at a motor ambient temperature of 40°C.

Operating Time (s)

5

Maximum current

Rated current
Approx.

Rated current+Maximum current
2
Motor Current

Overload Characteristics

TERMS

Hot Start
Indicates that both SERVOPACK and servomotor have run long enough at rated load to be
thermally saturated.

288

5.3 SERVOPACK Ratings and Specifications

5.3.4 Starting Time and Stopping Time
The motor starting time (tr) and stopping time (tf) under constant load are calculated by
the following formulas. The motor viscous torque and friction torque are ignored.
2π ⋅ N m (J M + J L)
Starting Time: tf =
[s]
60 ⋅ (T PM·–T L)
Stopping Time: tf = 2π ⋅ N m (J M + J L)
60 ⋅ (T PM· + T L)

[ms]

T PM

NM: Motor speed used (r/min.)
JM: Motor moment of inertia (kg¡m2) . . . . . . . . . . . . . . . . . . . . . . . . (GD2M/4)
JL: Load converted to shaft moment of inertia (kg¡m2) . . . . . . . . . (GD2L/4)
TPM: Maximum instantaneous motor torque obtained in combination with SERVOPACK
(N¡m)
TL: Load torque (N¡m)
To convert the motor current value into an equivalent torque value, use the following formula:
Motor torque constant × motor current value (effective value)

5

NM

TL

Time
T PM

Motor Torque

Motor Speed

Time

Motor Torque (size) - Motor Speed Timing Chart

289

SERVO SELECTION AND DATA SHEETS
5.3.5 Load Inertia

5.3.5 Load Inertia
The larger the load inertia becomes, the worse the movement response of the load. The
size of the load inertia (JL) allowable when using a servomotor must not exceed five times
the motor inertia (JM).
If the load inertia exceeds five times the motor inertia, an overvoltage alarm may arise
during deceleration. To prevent this, take one of the following actions:
• Reduce the torque limit value.
• Reduce the slope of the deceleration curve.
• Reduce the maximum motor speed.
• Consult your Yaskawa representative.

5

290

5.3 SERVOPACK Ratings and Specifications

5.3.6 Overhanging Loads
A servomotor may not be operated under an overhanging load, that is a load which tends
to continually rotate the motor.
• Overhanging Load Example 1: Motor drive for vertical axis, using no counterweight

Motor

• Overhanging Load Example 2: Tension control drive
Tension

5

Motor
Motor subject to rotation from feed motor
to maintain applied tension.

NOTE

Under an overhanging load (e.g. when the direction of the torque applied by the motor is opposite from the direction of shaft rotation), the SERVOPACK regenerative brake is applied
continuously and the regenerative energy of the load may exceed the allowable range and
damage the SERVOPACK.
The regenerative brake capacity of the SGDB SERVOPACK is rated for short-time operation,
approximately equivalent to the deceleration stopping time.

291

USING THE DIGITAL OPERATOR
5.4.1 Servomotor Dimensional Drawings

5.4

Σ-Series Dimensional Drawings
This section presents dimensional drawings of the Σ-Series servomotor, SERVOPACK, and
Digital Operator.

5.4.1 Servomotor Dimensional Drawings
The dimensional drawings of the SGMG, SGMS, SGMD and SGMP (1.5 kW) servomotors
are shown on the following pages.
Note that the types and dimensional drawings of the SGMG servomotors differ according to
rated speed (1500 or 1000 min−1).
The dimensional drawings of each servomotor series are broadly divided into four types, according to the detector type (incremental or absolute encoder) and the presence or absence
of a brake.
• SGMG servomotor (1500 min−1) . . . . . . . . . . . . . page 293
• SGMG servomotor (1000 min−1) . . . . . . . . . . . . . page 327
• SGMS servomotor . . . . . . . . . . . . . . . . . . . . . . . . page 359

5

• SGMD servomotor . . . . . . . . . . . . . . . . . . . . . . . . page 378
• SGMP servomotor (1.5kW) . . . . . . . . . . . . . . . . . page 390
• SGM/SGMP servomotor (400W, 750W) . . . . . . . Refer to USER’S MANUAL(Manual
No. TSE−S800−15 or S800−17).

292

5.4 Σ-Series Dimensional Drawings

J SGMG-jjAjA Servomotor (1500 min−1)
Incremental encoder (8192 P/R)

(0.0016)
(ø0.0016)

(0.0008)
4-øLZ
MTG Holes
0.04
(0.0016)
(55A2A, 75A2A, 1AA2A, 1EA2A ONLY)

Detailed View of Shaft End for SGMG-05A2A to -13A2A, -1AA2A and -1EA2A

5
Detailed View of Shaft End for SGMG-20A2A to -75A2A

293

USING THE DIGITAL OPERATOR
5.4.1 Servomotor Dimensional Drawings cont.

in mm (inches)
Type
SGMG05A2A
09A2A
13A2A
20A2A
30A2A
44A2A
55A2A
75A2A
1AA2A
1EA2A

5

294

L

LL

LM

196
(7.72)
219
(8.62)
243
(9.57)
245
(9.65)
271
(10.67)
305
(12.01)
373
(14.69)
447
(17.60)
454
(17.87)
573
(22.56)

138
(5.43)
161
(6.34)
185
(7.28)
166
(6.54)
192
(7.56)
226
(8.90)
260
(10.24)
334
(13.15)
338
(13.31)
457
(17.99)

92
(3.62)
115
(4.53)
139
(5.47)
119
(4.69)
145
(5.71)
179
(7.05)
213
(8.39)
287
(11.30)
291
(11.46)
388
(15.28)

LR

LT

58
(2.28)
58
(2.28)
58
(2.28)
79
(3.11)
79
(3.11)
79
(3.11)
113
(4.45)
113
(4.45)
116
(4.57)
116
(4.57)

46
(1.81)
46
(1.81)
46
(1.81)
47
(1.85)
47
(1.85)
47
(1.85)
47
(1.85)
47
(1.85)
47
(1.85)
69
(2.72)

KB1

KB2

65
(2.56)
88
(3.46)
112
(4.41)
89
(3.50)
115
(4.53)
149
(5.87)
174
(6.85)
248
(9.76)
251
(9.88)
343
(13.50)

117
(4.61)
140
(5.51)
164
(6.46)
145
(5.71)
171
(6.73)
205
(8.07)
239
(9.41)
313
(12.32)
317
(12.48)
435
(17.13)

IE






125
(4.92)
125
(4.92)
142
(5.59)
142
(5.59)

KL1

KL2

109
(4.29)
109
(4.29)
109
(4.29)
140
(5.51)
140
(5.51)
140
(5.51)
150
(5.91)
150
(5.91)
168
(6.61)
168
(6.61)

88
(3.46)
88
(3.46)
88
(3.46)
88
(3.46)
88
(3.46)
88
(3.46)
88
(3.46)
88
(3.46)
88
(3.46)
88
(3.46)

5.4 Σ-Series Dimensional Drawings

in mm (inches)
Type
yp
SGMGSGMG
05A2A

LA
145
(5.71)

LC
130
(5.12)

Flange dimensions
LE
LF1
LF2
LG
6
6

12
(0.24) (0.24)
(0.47)

LH
165
(6.50)

LJ1
45
(1.77)

LJ2


LZ
9
(0.35)

130
(5.12)

6
(0.24)

6
(0.24)



12
(0.47)

165
(6.50)

45
(1.77)



9
(0.35)

130
(5.12)

6
(0.24)

6
(0.24)



12
(0.47)

165
(6.50)

45
(1.77)



9
(0.35)

0
180
114.3 − 0.025 (7.09)

3.2
(0.13)

3
(0.12)

0.5
18
(0.0197) (0.71)

230
(9.06)

76
(2.99)

62
(2.44)

13.5
(0.53)

3.2
(0.13)

3
(0.12)

0.5
18
(0.0197) (0.71)

230
(9.06)

76
(2.99)

62
(2.44)

13.5
(0.53)

3.2
(0.13)

3
(0.12)

0.5
18
(0.0197) (0.71)

230
(9.06)

76
(2.99)

62
(2.44)

13.5
(0.53)

3.2
(0.13)

3
(0.12)

0.5
18
(0.0197) (0.71)

230
(9.06)

76
(2.99)

62
(2.44)

13.5
(0.53)

3.2
(0.13)

3
(0.12)

0.5
18
(0.0197) (0.71)

230
(9.06)

76
(2.99)

62
(2.44)

13.5
(0.53)

220
(8.66)

4
(0.16)

4
(0.16)



18
(0.71)

270
62
(10.63) (2.44)



13.5
(0.53)

220
(8.66)

4
(0.16)

4
(0.16)



20
(0.79)

270
85
(10.63) (3.35)



13.5
(0.53)

LB
0
110 − 0.035
0

(4.33 − 0.0014)
09A2A

145
(5.71)

0

110 − 0.035
0

(4.33 − 0.0014)
13A2A

145
(5.71)

0

110 − 0.035
0

(4.33 − 0.0014)
20A2A

200
(7.87)

0

(4.50 − 0.0010)
30A2A

200
(7.87)

0
180
114.3 − 0.025 (7.09)
0

(4.50 − 0.0010)
44A2A

200
(7.87)

0
180
114.3 − 0.025 (7.09)
0

(4.50 − 0.0010)
55A2A

200
(7.87)

0
180
114.3 − 0.025 (7.09)
0

(4.50 − 0.0010)
75A2A

200
(7.87)

0
180
114.3 − 0.025 (7.09)
0

(4.50 − 0.0010)
1AA2A

235
(9.25)

0

200 − 0.046
0

(7.87 − 0.0018)
1EA2A

235
(9.25)

0

200 − 0.046
0

(7.87 − 0.0018)

295

5

USING THE DIGITAL OPERATOR
5.4.1 Servomotor Dimensional Drawings cont.

in mm (inches)
Type
SGMG
SGMG-

Shaft end dimensions
S

05A2A

Approx.
mass
kg
(lb)

S1
0

19 − 0.013
0

Q

30
(1.18)

40
(1.57)

5.5
(12.12)

30
(1.18)

40
(1.57)

7.6
(16.75)

30
(1.18)

40
(1.57)

9.6
(21.16)

45
(1.77)

76
(2.99)

14
(30.86)

45
(1.77)

76
(2.99)

18
(39.68)

45
(1.77)

76
(2.99)

23
(50.69)

45
(1.77)

110
(4.33)

30
(66.13)

45
(1.77)

110
(4.33)

40
(88.18)

45
(1.77)

110
(4.33)

57.5
(126.73)

65
(2.56)

110
(4.33)

86
(189.6)

(0.75 − 0.0005)
09A2A

0

19 − 0.013
0

(0.75 − 0.0005)
13A2A

0

22 − 0.013
0

(0.87 − 0.0005)
20A2A

35

+ 0.0004
)
0

(1.38
30A2A

35

35
(1.38

55A2A

5

+ 0.01
0
+ 0.0004
)
0

(1.38
44A2A

+ 0.01
0

+ 0.01
0
+ 0.0004
)
0
0

42 − 0.016
0

(1.65 − 0.0006)
75A2A

0

42 − 0.016
0

(1.65 − 0.0006)
1AA2A

0

42 − 0.016
0

(1.65 − 0.0006)
1EA2A

+ 0.030

55 + 0.011

+ 0.0012

(2.17 + 0.0004 )

Note

1) Incremental encoder (8192 P/R) is used as a detector.
2) SGMG-05A to -44A2A do not contain eyebolts.

296

5.4 Σ-Series Dimensional Drawings

• Connector Wiring on Detector Side
Receptacle: MS3102A20-29P
Plug (To be prepared by customer) (L type): MS3108B20-29S or
(Straight type) MS3106B20-29S
Cable Clamp: (To be prepared by customer) MS3057-12A
Encoder Wiring Specifications
A
B
C
D
E
F
G
H
J

Note

A channel output
/A channel output
B channel output
/B channel output
C channel output
/C channel output
0V
+5V DC
FG (Frame Ground)

K
L
M
N
P
R
S
T

1) Terminals K to T are not used.
2) Receptacle, plug and cable clamp are common regardless of motor capacity.
• Connector Wiring on Motor Side

5

Motor Wiring Specifications
A
B
C
D

Note

Phase U
Phase V
Phase W
Ground terminal

Receptacle, plug and cable clamp differ depending on the capacity. Refer to 6) Connectors
on Detector and Motor Sides (page 392).

297

USING THE DIGITAL OPERATOR
5.4.1 Servomotor Dimensional Drawings cont.

Incremental encoder (8192 P/R) with brake
• 0.5 to 4.4kW

(0.0016)
(ø0.0016)

MTG Holes
(0.0008)

Detailed View of Shaft End for SGMG-05A2AAB to -13A2AAB

5
Detailed View of Shaft End for SGMG-20A2AAB to -44A2AAB

298

5.4 Σ-Series Dimensional Drawings

in mm (inches)
Type
SGMG05A2AAB
09A2AAB
13A2AAB
20A2AAB
30A2AAB
44A2AAB

L

LL

234
(9.21)
257
(10.12)
281
(11.06)
296
(11.65)
322
(12.68)
356
(14.02)

176
(6.93)
199
(7.83)
223
(8.78)
217
(8.54)
243
(9.57)
277
(10.91)

LM

LR

LT

KB1

129
(5.08)
152
(5.98)
176
(6.93)
170
(6.69)
196
(7.72)
230
(9.06)

58
(2.28)
58
(2.28)
58
(2.28)
79
(3.11)
79
(3.11)
79
(3.11)

47
(1.85)
47
(1.85)
47
(1.85)
47
(1.85)
47
(1.85)
47
(1.85)

56
(2.20)
79
(3.11)
103
(4.06)
79
(3.11)
105
(4.13)
139
(5.47)

KB2
155
(2.20)
178
(7.01)
202
(7.95)
196
(7.72)
222
(8.74)
256
(10.08)

KL1

KL2

120
(4.72)
120
(4.72)
120
(4.72)
146
(5.75)
146
(5.75)
146
(5.75)

88
(3.46)
88
(3.46)
88
(3.46)
88
(3.46)
88
(3.46)
88
(3.46)

in mm (inches)
Type
yp
SGMGSGMG
05A2AAB

LA
145
(5.71)

LC
130
(5.12)

Flange dimensions
LF1
LF2
LG
6
6

12
(0.24) (0.24)
(0.47)

LH
165
(6.5)

LJ1
45
(1.77)

LJ2


LZ
9
(0.35)

130
(5.12)

6
(0.24)

6
(0.24)



12
(0.47)

165
(6.5)

45
(1.77)



9
(0.35)

130
(5.12)

6
(0.24)

6
(0.24)



12
(0.47)

165
(6.5)

45
(1.77)



9
(0.35)

0
180
114.3 − 0.025 (7.09)

3.2
(0.13)

3
(0.12)

0.5
18
(0.0197) (0.71)

230
(9.06)

76
(2.99)

62
(2.44)

13.5
(0.53)

3.2
(0.13)

3
(0.12)

0.5
18
(0.0197) (0.71)

230
(9.06)

76
(2.99)

62
(2.44)

13.5
(0.53)

3.2
(0.13)

3
(0.12)

0.5
18
(0.0197) (0.71)

230
(9.06)

76
(2.99)

62
(2.44)

13.5
(0.53)

LB
0
110 − 0.035

LE

0

(4.33 − 0.0014)
09A2AAB

145
(5.71)

0

110 − 0.035
0

(4.33 − 0.0014)
13A2AAB

145
(5.71)

0

110 − 0.035
0
(4.33 − 0.0014)

20A2AAB

200
(7.87)

0

(4.50 − 0.0010)
30A2AAB

200
(7.87)

0
180
114.3 − 0.025 (7.09)
0

(4.50 − 0.0010)
44A2AAB

200
(7.87)

0
180
114.3 − 0.025 (7.09)
0

(4.50 − 0.0010)

299

5

USING THE DIGITAL OPERATOR
5.4.1 Servomotor Dimensional Drawings cont.

in mm (inches)
Type
SGMG
SGMG-

Shaft end dimensions
S

Approx.
mass
kg
(lb)

S1

Q

30
(1.18)

40
(1.57)

7.5
(16.53)

30
(1.18)

40
(1.57)

9.6
(21.16)

30
(1.18)

40
(1.57)

12
26.45)

20A2AAB

+ 0.01
45
0
(1.77)
+ 0.0004
(1.38
)
0

76
(2.99)

19
(41.88)

30A2AAB

+ 0.01
45
0
(1.77)
+ 0.0004
(1.38
)
0

76
(2.99)

23.5
(51.79)

45
(1.77)

76
(2.99)

28.5
(62.81)

05A2AAB

0

19 − 0.013
0

(0.75 − 0.0005)
09A2AAB

0

19 − 0.013
0

(0.75 − 0.0005)
13A2AAB

0

22 − 0.013
0

(0.87 − 0.0005)
35

35

44A2AAB

35
(1.38

5

Note

+ 0.01
0
+ 0.0004
)
0

Incremental encoder (8192 P/R) is used as a detector.
• Connector Wiring on Motor Side
A
B
C
D

300

Phase U
Phase V
Phase W
Frame ground (FG)

E
F
G

Brake terminal
Brake terminal


5.4 Σ-Series Dimensional Drawings

• 5.5 to 15kW
0.06 (0.002) A
For 1AA2AAB and
1EA2AAB only
(0.0016)
(ø0.0016)

0.04
(0.0016)

MTG Holes

Detailed View of Shaft End for SGMG-55A2AAB and -75A2AAB

5
Detailed View of Shaft End for SGMG-1AA2AAB and -1EA2AAB

in mm (inches)
Type
SGMG55A2AAB

L

424
(16.69)
75A2AAB 498
(19.61)
1AA2AAB 499
(19.65)
1EA2AAB 635
(25.00)

LL

LM

LR

LT

KB1

KB2

KB3

IE

KL1

KL2

KL3

311
(12.24)
385
(15.16)
383
(15.08)
519
(20.43)

264
(10.39)
338
(13.31)
340
(13.39)
473
(18.62)

113
(4.45)
113
(4.45)
116
(4.57)
116
(4.57)

47
(1.85)
47
(1.85)
43
(1.69)
46
(1.81)

174
(6.85)
248
(9.76)
258
(10.16)
343
(13.50)

290
(11.42)
364
(14.33)
362
(14.25)
497
(19.57)

231
(9.09)
305
(12.01)
315
(12.40)
415
(16.34)

125
(4.92)
125
(4.92)
142
(5.59)
142
(5.59)

150
(5.91)
150
(5.91)
168
(6.61)
168
(6.61)

88
(3.46)
88
(3.46)
88
(3.46)
88
(3.46)

123
(4.84)
123
(4.84)
142
(5.59)
142
(5.59)

301

USING THE DIGITAL OPERATOR
5.4.1 Servomotor Dimensional Drawings cont.

in mm (inches)
Type
yp
SGMGSGMG
55A2AAB

LA
200
(7.87)

LB

LE
3.2
(0.13)

Flange dimensions
LF1
LF2
LG
3
0.5
18
(0.12) (0.0197) (0.71)

LH
230
(9.06)

LJ1
76
(2.99)

LJ2
62
(2.44)

LZ
13.5
(0.53)

3.2
(0.13)

3
(0.12)

0.5
18
(0.0197) (0.71)

230
(9.06)

76
(2.99)

62
(2.44)

13.5
(0.53)

220
(8.66)

4
(0.16)

4
(0.16)



18
(0.71)

270
(10.63)

62
(2.44)



13.5
(0.53)

220
(8.66)

4
(0.16)

4
(0.16)



20
(0.79)

270
(10.63)

85
(3.35)



13.5
(0.53)

LC

0
180
114.3 − 0.025 (7.09)
0

(4.50 − 0.0010)
75A2AAB

200
(7.87)

0
180
114.3 − 0.025 (7.09)
0

(4.50 − 0.0010)
1AA2AAB 235
(9.25)

0

200 − 0.046
0

(7.87 − 0.0018)
1EA2AAB 235
(9.25)

0

200 − 0.046
0

(7.87 − 0.0018)

in mm (inches)
Type
SGMG
SGMG-

Shaft end dimensions
S

55A2AAB

Approx.
mass
kg
(lb)

S1
0

42 − 0.016

Q

45
(1.77)

110
(4.33)

35
(77.14)

45
(1.77)

110
(4.33)

45.5
(100.28)

45
(1.77)

110
(4.33)

65
(143.26)

65
(2.56)

110
(4.33)

100
(220.47)

0

(1.65 − 0.0006)

5

75A2AAB

0

42 − 0.016
0

(1.65 − 0.0006)
1AA2AAB

0

42 − 0.016
0

(1.65 − 0.0006)
1EA2AAB

+ 0.030

55 + 0.011

+ 0.0012

(2.17 + 0.0004 )

Note

Incremental encoder (8192 P/R) is used as a detector.
• Connector Wiring on Brake and Motor Sides
A
B
C

A
B
C
D

302

Brake terminal
Brake terminal

Phase U
Phase V
Phase W
Frame ground (FG)

5.4 Σ-Series Dimensional Drawings

Absolute encoder (15bit : 8192 P/R, 12 bit : 1024 P/R)
0.06 (0.002) A
For 1AASA and
1EASA only
(0.0016)
(ø0.0016)

(0.0008)

MTG Holes

0.04
(0.0016)
(55ASA, 75ASA, 1AASA, 1EASA ONLY)

Detailed View of Shaft End for SGMG-05ASA to -13ASA, -1AASA and -1EASA

5
Detailed View of Shaft End for SGMG-20ASA to -75ASA

303

USING THE DIGITAL OPERATOR
5.4.1 Servomotor Dimensional Drawings cont.

in mm (inches)
Type
L
SGMG05ASA 210
(8.27)
09ASA 233
(9.17)
13ASA 257
(10.12)
20ASA 259
(10.20)
30ASA 285
(11.22)
44ASA 319
(12.56)
55ASA 387
(15.24)
75ASA 461
(18.15)
1AASA 468
(18.43)
1EASA 587
(23.11)

5

304

LL

LM

LR

LT

KB1

KB2

152
(5.98)
175
(6.89)
199
(7.83)
180
(7.09)
206
(8.11)
240
(9.45)
274
(10.79)
348
(13.70)
352
(13.86)
471
(18.54)

92
(3.62)
115
(4.53)
139
(5.47)
119
(4.69)
145
(5.71)
179
(7.05)
213
(8.39)
287
(11.30)
291
(11.46)
388
(15.28)

58
(2.28)
58
(2.28)
58
(2.28)
79
(3.11)
79
(3.11)
79
(3.11)
113
(4.45)
113
(4.45)
116
(4.57)
116
(4.57)

60
(2.36)
60
(2.36)
60
(2.36)
61
(2.40)
61
(2.40)
61
(2.40)
61
(2.40)
61
(2.40)
61
(2.40)
83
(3.27)

65
(2.56)
88
(3.46)
112
(4.41)
89
(3.50)
115
(4.53)
149
(5.87)
174
(6.85)
248
(9.76)
251
(9.88)
343
(13.50)

131
(5.16)
154
(6.06)
178
(7.01)
159
(6.26)
185
(7.28)
219
(8.62)
253
(9.96)
327
(12.87)
331
(13.03)
449
(17.68)

IE

KL1

KL2

125
(4.92)
125
(4.92)
142
(5.59)
142
(5.59)

109
(4.29)
109
(4.29)
109
(4.29)
140
(5.51)
140
(5.51)
140
(5.51)
150
(5.91)
150
(5.91)
168
(6.61)
168
(6.61)

88
(3.46)
88
(3.46)
88
(3.46)
88
(3.46)
88
(3.46)
88
(3.46)
88
(3.46)
88
(3.46)
88
(3.46)
88
(3.46)








5.4 Σ-Series Dimensional Drawings

in mm (inches)
Type
yp
SGMGSGMG
05ASA

LA
145
(5.71)

LC
130
(5.12)

LE
6
(0.24)

Flange dimensions
LF1
LF2
LG
6

12
(0.24)
(0.47)

130
(5.12)

6
(0.24)

6
(0.24)



12
(0.47)

165
(6.50)

45
(1.77)



9
(0.35)

130
(5.12)

6
(0.24)

6
(0.24)



12
(0.47)

165
(6.50)

45
(1.77)



9
(0.35)

0
180
114.3 − 0.025 (7.09)

3.2
(0.13)

3
(0.12)

0.5
18
(0.0197) (0.71)

230
(9.06)

76
(2.99)

62
(2.44)

13.5
(0.53)

3.2
(0.13)

3
(0.12)

0.5
18
(0.0197) (0.71)

230
(9.06)

76
(2.99)

62
(2.44)

13.5
(0.53)

3.2
(0.13)

3
(0.12)

0.5
18
(0.0197) (0.71)

230
(9.06)

76
(2.99)

62
(2.44)

13.5
(0.53)

3.2
(0.13)

3
(0.12)

0.5
18
(0.0197) (0.71)

230
(9.06)

76
(2.99)

62
(2.44)

13.5
(0.53)

3.2
(0.13)

3
(0.12)

0.5
18
(0.0197) (0.71)

230
(9.06)

76
(2.99)

62
(2.44)

13.5
(0.53)

220
(8.66)

4
(0.16)

4
(0.16)



18
(0.71)

270
(10.63)

62
(2.44)



13.5
(0.53)

220
(8.66)

4
(0.16)

4
(0.16)



20
(0.79)

270
(10.63)

85
(3.35)



13.5
(0.53)

LB
0
110 − 0.035

LH
165
(6.50)

LJ1
45
(1.77)

LJ2


LZ
9
(0.35)

0

(4.33 − 0.0014)
09ASA

145
(5.71)

0

110 − 0.035
0

(4.33 − 0.0014)
13ASA

145
(5.71)

0

110 − 0.035
0

(4.33 − 0.0014)
20ASA

200
(7.87)

0

(4.50 − 0.0010)
30ASA

200
(7.87)

0
180
114.3 − 0.025 (7.09)
0

(4.50 − 0.0010)
44ASA

200
(7.87)

0
180
114.3 − 0.025 (7.09)
0

(4.50 − 0.0010)
55ASA

200
(7.87)

0
180
114.3 − 0.025 (7.09)
0

(4.50 − 0.0010)
75ASA

200
(7.87)

0
180
114.3 − 0.025 (7.09)
0

(4.50 − 0.0010)
1AASA

235
(9.25)

0

200 − 0.046
0

(7.87 − 0.0018)
1EASA

235
(9.25)

0

200 − 0.046
0

(7.87 − 0.0018)

305

5

USING THE DIGITAL OPERATOR
5.4.1 Servomotor Dimensional Drawings cont.

in mm (inches)
Type
SGMG
SGMG-

Shaft end dimensions
S

05ASA

Approx.
mass
kg
(lb)

S1
0

19 − 0.013

Q

30
(1.18)

40
(1.57)

5.9
(13.00)

30
(1.18)

40
(1.57)

8.0
(17.63)

30
(1.18)

40
(1.57)

10
(22.04)

45
(1.77)

76
(2.99)

14
(30.86)

45
(1.77)

76
(2.99)

18.5
(40.77)

45
(1.77)

76
(2.99)

24
(52.90)

45
(1.77)

110
(4.33)

30
(66.12)

45
(1.77)

110
(4.33)

40
(88.16)

45
(1.77)

110
(4.33)

58
(127.83)

65
(2.56)

110
(4.33)

86
(189.6)

0

(0.75 − 0.0005)
09ASA

0

19 − 0.013
0

(0.75 − 0.0005)
13ASA

0

22 − 0.013
0

(0.87 − 0.0005)
20ASA

35

+ 0.0004
)
0

(1.38
30ASA

35

35
(1.38

55ASA

5

+ 0.01
0
+ 0.0004
)
0

(1.38
44ASA

+ 0.01
0

+ 0.01
0
+ 0.0004
)
0
0

42 − 0.016
0

(1.65 − 0.0006)
75ASA

0

42 − 0.016
0

(1.65 − 0.0006)
1AASA

0

42 − 0.016
0

(1.65 − 0.0006)
1EASA

+ 0.030

55 + 0.011

+ 0.0012

(2.17 + 0.0004 )

Note

1) Absolute encoder (15bit : 8192 P/R) is used as a detector.
2) SGMG-05ASA to -44ASA do not contain eyebolts.

306

5.4 Σ-Series Dimensional Drawings

• Connector Wiring on Detector Side
Receptacle: MS3102A20-29P
Plug (To be prepared by customer) (L type): MS3108B20-29S or
(Straight type) MS3106B20-29S
Cable Clamp: (To be prepared by customer) MS3057-12A
Encoder Wiring Specifications
A
B
C
D
E
F
G
H
J

Note

A channel output
/A channel output
B channel output
/B channel output
Z (C) channel output
/Z (C) channel output
0V
+5V DC
FG (Frame Ground)

K
L
M
N
P
R Reset
S 0V
T 3.6V

1) Terminals K to P are not used. Do not connect anything.
2) Receptacle, plug and cable clamp are common regardless of motor capacity.
• Connector Wiring on Motor Side

5

Motor Wiring Specifications
A
B
C
D

Note

Phase U
Phase V
Phase W
Ground terminal

Receptacle, plug and cable clamp differ depending on the capacity. Refer to 6) Connectors
on Detector and Motor Sides (page 392).

307

USING THE DIGITAL OPERATOR
5.4.1 Servomotor Dimensional Drawings cont.

Absolute encoder (15bit : 8192 P/R, 12 bit : 1024 P/R), with brake
• 0.5 to 4.4kW

0.06 (0.002) A
For 1AA2A and
1EA2A only
(0.0016)
(ø0.0016)

MTG Holes
(0.0008)

Detailed View of Shaft End for SGMG-05ASAAB to -13ASAAB

5
Detailed View of Shaft End for SGMG-20ASAAB to -44ASAAB

308

5.4 Σ-Series Dimensional Drawings

in mm (inches)
Type
SGMG05ASAAB
09ASAAB
13ASAAB
20ASAAB
30ASAAB
44ASAAB

L

LL

LM

LR

LT

KB1

KB2

KL1

KL2

248
(9.76)
271
(10.67)
295
(11.61)
310
(12.20)
336
(13.23)
370
(14.57)

190
(7.48)
213
(8.39)
237
(9.33)
231
(9.09)
257
(10.12)
291
(11.46)

129
(5.08)
152
(5.98)
176
(6.93)
170
(6.69)
196
(7.72)
230
(9.06)

58
(2.28)
58
(2.28)
58
(2.28)
79
(3.11)
79
(3.11)
79
(3.11)

61
(2.40)
61
(2.40)
61
(2.40)
61
(2.40)
61
(2.40)
61
(2.40)

56
(2.20)
79
(3.11)
103
(4.06)
79
(3.11)
105
(4.13)
139
(5.47)

169
(6.65)
192
(7.56)
216
(8.50)
210
(8.27)
236
(9.29)
270
(10.63)

120
(4.72)
120
(4.72)
120
(4.72)
146
(5.75)
146
(5.75)
146
(5.75)

88
(3.46)
88
(3.46)
88
(3.46)
88
(3.46)
88
(3.46)
88
(3.46)

in mm (inches)
Type
yp
SGMGSGMG
05ASAAB

LA
145
(5.71)

LC
130
(5.12)

Flange dimensions
LF1
LF2
LG
6
6

12
(0.24) (0.24)
(0.47)

LH
165
(6.50)

LJ1
45
(1.77)

LJ2


LZ
9
(0.35)

130
(5.12)

6
(0.24)

6
(0.24)



12
(0.47)

165
(6.50)

45
(1.77)



9
(0.35)

130
(5.12)

6
(0.24)

6
(0.24)



12
(0.47)

165
(6.50)

45
(1.77)



9
(0.35)

0
180
114.3 − 0.025 (7.09)

3.2
(0.13)

3
(0.12)

0.5
18
(0.0197) (0.71)

230
(9.06)

76
(2.99)

62
(2.44)

13.5
(0.53)

3.2
(0.13)

3
(0.12)

0.5
18
(0.0197) (0.71)

230
(9.06)

76
(2.99)

62
(2.44)

13.5
(0.53)

3.2
(0.13)

3
(0.12)

0.5
18
(0.0197) (0.71)

230
(9.06)

76
(2.99)

62
(2.44)

13.5
(0.53)

LB
0
110 − 0.035

LE

0

(4.33 − 0.0014)
09ASAAB

145
(5.71)

0

110 − 0.035
0

(4.33 − 0.0014)
13ASAAB

145
(5.71)

0

110 − 0.035
0
(4.33 − 0.0014)

20ASAAB

200
(7.87)

0

(4.50 − 0.0010)
30ASAAB

200
(7.87)

0
180
114.3 − 0.025 (7.09)
0

(4.50 − 0.0010)
44ASAAB

200
(7.87)

0
180
114.3 − 0.025 (7.09)
0

(4.50 − 0.0010)

309

5

USING THE DIGITAL OPERATOR
5.4.1 Servomotor Dimensional Drawings cont.

in mm (inches)
Type
SGMG
SGMG-

Shaft end dimensions
S

05ASAAB

Approx.
mass
kg
(lb)

S1
0

19 − 0.013

Q

30
(1.18)

40
(1.57)

7.9
(17.41)

30
(1.18)

40
(1.57)

10
(22.04)

30
(1.18)

40
(1.57)

12
(26.45)

45
(1.77)

76
(2.99)

19.5
(42.98)

45
(1.77)

76
(2.99)

23.5
(51.79)

45
(1.77)

76
(2.99)

29
(63.92)

0

(0.75 − 0.0005)
09ASAAB

0

19 − 0.013
0

(0.75 − 0.0005)
13ASAAB

0

22 − 0.013
0

(0.87 − 0.0005)
20ASAAB

35
(1.38

30ASAAB

35
(1.38

44ASAAB

35
(1.38

+ 0.01
0
+ 0.0004
)
0
+ 0.01
0
+ 0.0004
)
0
+ 0.01
0
+ 0.0004
)
0

5
Note Absolute encoder (15bit : 8192 P/R) is used as a detector.
• Connector Wiring on Motor Side
Motor Wiring Specifications
A
B
C
D

310

Phase U
Phase V
Phase W
Frame ground (FG)

E
F
G

Brake terminal
Brake terminal


5.4 Σ-Series Dimensional Drawings

• 5.5 to 15kW
0.06 (0.002) A
For 1AASAAB and
1EASAAB only
(0.0016)
(ø0.0016)

0.04
(0.0016)

MTG Holes

Detailed View of Shaft End for SGMG-55ASAAB and -75ASAAB

5
Detailed View of Shaft End for SGMG-1AASAAB and -1EASAAB

in mm (inches)
Type
SGMG55ASAAB
75ASAAB
1AASAAB
1EASAAB

L

LL

LM

LR

LT

KB1

KB2

KB3

IE

KL1

KL2

KL3

438
(17.24)
512
(20.16)
513
(20.20)
649
(25.53)

325
(12.80)
399
(15.71)
397
(15.63)
533
(20.98)

264
(10.39)
338
(13.31)
340
(13.39)
473
(18.62)

113
(4.45)
113
(4.45)
116
(4.57)
116
(4.57)

61
(2.40)
61
(2.40)
57
(2.24)
60
(2.36)

174
(6.85)
248
(9.76)
258
(10.16)
343
(13.50)

304
(11.97)
378
(14.88)
376
(14.80)
511
(20.12)

231
(9.09)
305
(12.01)
315
(12.40)
415
(16.39)

125
(4.92)
125
(4.92)
142
(5.59)
142
(5.59)

150
(5.91)
150
(5.91)
168
(6.61)
168
(6.61)

88
(3.46)
88
(3.46)
88
(3.46)
88
(3.46)

123
(4.84)
123
(4.84)
142
(5.59)
142
(5.59)

311

USING THE DIGITAL OPERATOR
5.4.1 Servomotor Dimensional Drawings cont.

in mm (inches)
Type
yp
SGMGSGMG
55ASAAB

LA
200
(7.87)

LB

LE
3.2
(0.13)

Flange dimensions
LF1
LF2
LG
3
0.5
18
(0.12) (0.0197) (0.71)

LH
230
(9.06)

LJ1
76
(2.99)

LJ2
62
(2.44)

LZ
13.5
(0.53)

3.2
(0.13)

3
(0.12)

0.5
18
(0.0197) (0.71)

230
(9.06)

76
(2.99)

62
(2.44)

13.5
(0.53)

220
(8.66)

4
(0.16)

4
(0.16)



18
(0.71)

270
(10.63)

62
(2.44)



13.5
(0.53)

220
(8.66)

4
(0.16)

4
(0.16)



20
(0.79)

270
(10.63)

85
(3.35)



13.5
(0.53)

LC

0
180
114.3 − 0.025 (7.09)
0

(4.50 − 0.0010)
75ASAAB

200
(7.87)

0
180
114.3 − 0.025 (7.09)
0

(4.50 − 0.0010)
1AASAAB

235
(9.25)

0

200 − 0.046
0

(7.87 − 0.0018)
1EASAAB

235
(9.25)

0

200 − 0.046
0

(7.87 − 0.0018)

in mm (inches)
Type
SGMG
SGMG-

Shaft end dimensions
S

55ASAAB

Approx.
mass
kg
(lb)

S1
0

42 − 0.016
0

Q

45
(1.77)

110
(4.33)

36
(79.34)

45
(1.77)

110
(4.33)

50
(110.20)

45
(1.77)

110
(4.33)

65.5
(144.36)

65
(2.56)

110
(4.33)

100
(220.47)

(1.65 − 0.0006)

5

75ASAAB

0

42 − 0.016
0

(1.65 − 0.0006)
1AASAAB

0

42 − 0.016
0

(1.65 − 0.0006)
1EASAAB

+ 0.030

55 + 0.011

+ 0.0012

(2.17 + 0.0004)

Note Absolute encoder (15bit : 8192 P/R) is used as a detector.
• Connector Wiring on Brake and Motor Sides
A
B
C

A
B
C
D

312

Brake terminal
Brake terminal

Phase U
Phase V
Phase W
Frame ground (FG)

5.4 Σ-Series Dimensional Drawings

Standard backlash gear (1500 min−1), without brake
• Foot-mounted type

φSh6

Grease-lubrication type servomotors

V

Detailed View
of Shaft End
4-φZ
MTG Holes

in mm (inches)
Motor
type
SGMG-

Gear type Gear

L

LL

LM

LT

KB1

KB2

KL1

KL2

R

A

B

380

138

92

46

65

117

109

88

242

209

152

05A2ASAR CNHX-4095

1/6

(15.0) (5.43) (3.62) (1.81) (2.56) (4.61) (4.29) (3.46) (9.53) (8.23) (5.98)

05A2ASBR CNHX-4095

1/11

380

138

92

46

65

117

109

88

242

209

152

(15.0) (5.43) (3.62) (1.81) (2.56) (4.61) (4.29) (3.46) (9.53) (8.23) (5.98)

05A2ASCR CNHX-4105

1/21

394

138

92

46

65

117

109

88

256

209

152

(15.5) (5.43) (3.62) (1.81) (2.56) (4.61) (4.29) (3.46) (10.1) (8.23) (5.98)

05A2AS7R

CNHX-4105

1/29

394

138

92

46

65

117

109

88

256

209

152

(15.5) (5.43) (3.62) (1.81) (2.56) (4.61) (4.29) (3.46) (10.1) (8.23) (5.98)

09A2ASAR CNHX-4105

1/6

417

161

115

46

88

140

109

88

256

209

152

(16.4) (6.34) (4.53) (1.81) (3.46) (5.51) (4.29) (3.46) (10.1) (8.23) (5.98)

09A2ASBR CNHX-4105

1/11

417

161

115

46

88

140

109

88

256

209

152

(16.4) (6.34) (4.53) (1.81) (3.46) (5.51) (4.29) (3.46) (10.1) (8.23) (5.98)

09A2ASCR CNHX-4115

1/21

449

161

115

46

88

140

109

88

288

257

204

(17.7) (6.34) (4.53) (1.81) (3.46) (5.51) (4.29) (3.46) (11.3) (10.1) (8.03)

09A2AS7R

C

ratio

CNHX-4115

1/29

449

161

115

46

88

140

109

88

288

257

204

(17.7) (6.34) (4.53) (1.81) (3.46) (5.51) (4.29) (3.46) (11.3) (10.1) (8.03)

13A2ASAR CNHX-4105

1/6

441

185

139

46

112

164

109

88

256

209

152

(17.4) (7.28) (5.47) (1.81) (4.41) (6.46) (4.29) (3.46) (10.1) (8.23) (5.98)

13A2ASBR CNHX-4115

1/11

473

185

139

46

112

164

109

88

288

257

204

(18.6) (7.28) (5.47) (1.81) (4.41) (6.46) (4.29) (3.46) (11.3) (10.1) (8.03)

13A2ASCR CNHX-4115

1/21

473

185

139

46

112

164

109

88

288

257

204

(18.6) (7.28) (5.47) (1.81) (4.41) (6.46) (4.29) (3.46) (11.3) (10.1) (8.03)

0
100 −0.5

Shaft
center
allowable
radial load
N

2050

0
3.94 −0.020
0
100 −0.5

2520

0
100 −0.5

4940

0
100 −0.5

5360

0
100 −0.5

3240

0
3.94−0.020

0
3.94−0.020

0
3.94−0.020

0
3.94−0.020
0
100 −0.5

3840

0
120 −0.5

6190

0
120 −0.5

6870

0
3.94−0.020

0
4.72−0.020

0
4.72−0.020
0
100 −0.5

3240

0
3.94−0.020
0
120 −0.5

4970

0
4.72−0.020
0
120 −0.5

6190

0
4.72−0.020

313

5

USING THE DIGITAL OPERATOR
5.4.1 Servomotor Dimensional Drawings cont.

Motor
type
SGMG13A2AS7R

Gear type Gear

L

LL

LM

LT

KB1

KB2

KL1

KL2

R

A

B

C

532

185

139

46

112

164

109

88

347

300

246

CHHX-4135

1/29

(20.9) (7.28) (5.47) (1.81) (4.41) (6.46) (4.29) (3.46) (13.7) (11.8) (9.69)

20A2ASAR CNHX-4115

1/6

477

166

119

47

89

145

140

88

311

260

204

(18.8) (6.54) (4.69) (1.85) (3.50) (5.71) (5.51) (3.46) (12.2) (10.2) (8.03)

20A2ASBR CNHX-4115

1/11

477

166

119

47

89

145

140

88

311

260

204

(18.8) (6.54) (4.69) (1.85) (3.50) (5.71) (5.51) (3.46) (12.2) (10.2) (8.03)

20A2ASCR CHHX-4130

1/21

536

166

119

47

89

145

140

88

370

300

246

(21.1) (6.54) (4.69) (1.85) (3.50) (5.71) (5.51) (3.46) (14.6) (11.8) (9.69)

20A2AS7R

CHHX-4135

1/29

536

166

119

47

89

145

140

88

370

300

246

(21.1) (6.54) (4.69) (1.85) (3.50) (5.71) (5.51) (3.46) (14.6) (11.8) (9.69)

30A2ASAR CNHX-4115

1/6

503

192

145

47

115

171

140

88

311

260

204

(19.8) (7.56) (5.71) (1.85) (4.53) (6.73) (5.51) (3.46) (12.2) (10.2) (8.03)

30A2ASBR CNHX-4115

1/11

503

192

145

47

115

171

140

88

311

260

204

(19.8) (7.56) (5.71) (1.85) (4.53) (6.73) (5.51) (3.46) (12.2) (10.2) (8.03)

30A2ASCR CHHX-4145

1/21

582

192

145

47

115

171

140

88

390

300

246

(22.9) (7.56) (5.71) (1.85) (4.53) (6.73) (5.51) (3.46) (15.4) (11.8) (9.69)

44A2ASAR CHHX-4130

1/6

596

226

179

47

149

205

140

88

370

300

246

(23.5) (8.90) (7.05) (1.85) (5.87) (8.07) (5.51) (3.46) (14.6) (11.8) (9.69)

5

Shaft
center
allowable
radial load
N

ratio

44A2ASBR CHHX-4135

1/11

596

226

179

47

149

205

140

88

370

300

246

(23.5) (8.90) (7.05) (1.85) (5.87) (8.07) (5.51) (3.46) (14.6) (11.8) (9.69)

55A2ASAR CHHX-4135

1/6

664

260

213

47

174

239

150

88

404

300

246

(26.1) (10.2) (8.39) (1.85) (6.85) (9.41) (5.91) (3.46) (15.9) (11.8) (9.69)

55A2ASBR CHHX-4145

1/11

684

260

213

47

174

239

150

88

424

300

246

(26.9) (10.2) (8.39) (1.85) (6.85) (9.41) (5.91) (3.46) (16.7) (11.8) (9.69)

0
150 −0.5

9900

0
120 −0.5

4050

0
5.91−0.020

0
4.72−0.020
0
120 −0.5

4970

0
4.72−0.020
0
150 −0.5

8940

0
150 −0.5

9900

0
120 −0.5

4050

0
5.91−0.020

0
5.91−0.020

0
4.72−0.020
0
120 −0.5

4970

0
4.72−0.020
0
150 −0.5

11590

0
150 −0.5

5870

0
150 −0.5

7190

0
150 −0.5

5870

0
150 −0.5

9500

0
5.91−0.020

0
5.91−0.020

0
5.91−0.020

0
5.91−0.020

0
5.91−0.020

in mm (inches)
Motor
type
SGMG-

Foot dimensions
E

F

G

K

75

90

12

40

(2.95)

05A2ASAR

(3.54)

(0.47)

(1.57)

75

90

12

40

(2.95)

05A2ASBR

(3.54)

(0.47)

(1.57)

75

90

12

40

(2.95)

05A2ASCR

(3.54)

(0.47)

(1.57)

314

90

12

40

(3.54)

(0.47)

(1.57)

75

90

12

40

(2.95)

09A2ASAR

75
(2.95)

05A2AS7R

(3.54)

(0.47)

(1.57)

M

N

180 130
(7.09)

(5.12)

180 130
(7.09)

(5.12)

180 135
(7.09)

(5.31)

180 135
(7.09)

(5.31)

180 135
(7.09)

(5.31)

Shaft end dimensions
XR

XC

Z

Q

QK

S
0
−0.013
0
φ1.10 −0.0005

45

60

11

35

32

(1.77)

(2.36)

(0.43)

(1.38)

(1.26)

φ28

45

60

11

35

32

(1.77)

(2.36)

(0.43)

(1.38)

(1.26)

φ1.10
φ28

45

60

11

35

32

(1.77)

(2.36)

(0.43)

(1.38)

(1.26)

45

60

11

35

32

(1.77)

(2.36)

(0.43)

(1.38)

(1.26)

45

60

11

35

32

(1.77)

(2.36)

(0.43)

(1.38)

(1.26)

φ28

φ1.10

0
−0.013
0
−0.0005
0
−0.013
0
−0.0005

0
−0.013
0
φ1.10 −0.0005

φ28

0
−0.013
0
φ1.10 −0.0005

φ28

T

U

Approx.

W

7

4

8

(0.28)

(0.16)

(0.31)

7

4

8

(0.28)

(0.16)

(0.31)

7

4

8

(0.28)

(0.16)

(0.31)

7

4

8

(0.28)

(0.16)

(0.31)

7

4

8

(0.28)

(0.16)

(0.31)

V

mass
kg (lb)

M8 screw,
depth 19

20.5
(45.2)

M8 screw,
depth 19

20.5
(45.2)

M8 screw,
depth 19

22.5
(49.6)

M8 screw,
depth 19

22.5
(49.6)

M8 screw,
depth 19

24.6
(54.2)

5.4 Σ-Series Dimensional Drawings

Motor
type
SGMG-

Foot dimensions
E

F

G

K

75

90

12

40

(2.95)

09A2ASBR

(3.54)

(0.47)

(1.57)

95

115

15

55

(3.74)

09A2ASCR

(4.53)

(0.59)

(2.17)

95

115

15

55

(3.74)

09A2AS7R

(4.53)

(0.59)

(2.17)

75

90

12

40

(2.95)

13A2ASAR

(3.54)

(0.47)

(1.57)

95

115

15

55

(3.74)

13A2ASBR

(4.53)

(0.59)

(2.17)

13A2AS7R

95

115

15

55

(3.74)

13A2ASCR

(4.53)

(0.59)

(2.17)

145 145
(5.71)

(5.71)

22

65

(0.87)

(2.56)

95

115

15

55

(3.74)

20A2ASAR

(4.53)

(0.59)

(2.17)

20A2ASCR

95

115

15

55

(3.74)

20A2ASBR

(4.53)

(0.59)

(2.17)

145 145
(5.71)

20A2AS7R

(5.71)

145 145
(5.71)

(5.71)

22

65

(0.87)

(2.56)

22

65

(0.87)

(2.56)

95

115

15

55

(3.74)

30A2ASAR

(4.53)

(0.59)

(2.17)

30A2ASCR

95

115

15

55

(3.74)

30A2ASBR

(4.53)

(0.59)

(2.17)

145 145
(5.71)

44A2ASAR

145 145
(5.71)

44A2ASBR

(5.71)

145 145
(5.71)

55A2ASBR

(5.71)

145 145
(5.71)

55A2ASAR

(5.71)

(5.71)

145 145
(5.71)

(5.71)

22

65

(0.87)

(2.56)

22

65

(0.87)

(2.56)

22

65

(0.87)

(2.56)

22

65

(0.87)

(2.56)

22

65

(0.87)

(2.56)

M

N

180 135
(7.09)

(5.31)

230 155
(9.06)

(6.10)

230 155
(9.06)

(6.10)

180 135
(7.09)

(5.31)

230 155
(9.06)

(6.10)

230 155
(9.06)

(6.10)

330 195
(13.0)

(7.68)

230 155
(9.06)

(6.10)

230 155
(9.06)

(6.10)

330 195
(13.0)

(7.68)

330 195
(13.0)

(7.68)

230 155
(9.06)

(6.10)

230 155
(9.06)

(6.10)

330 195
(13.0)

(7.68)

330 195
(13.0)

(7.68)

330 195
(13.0)

(7.68)

330 195
(13.0)

(7.68)

330 195
(13.0)

(7.68)

Shaft end dimensions
XR

XC

Z

Q

QK

S
0
−0.013
0
φ1.10 −0.0005

45

60

11

35

32

(1.77)

(2.36)

(0.43)

(1.38)

(1.26)

62

82

14

55

50

(2.44)

(3.23)

(0.55)

(2.17)

(1.97)

62

82

14

55

50

(2.44)

(3.23)

(0.55)

(2.17)

(1.97)

45

60

11

35

32

(1.77)

(2.36)

(0.43)

(1.38)

(1.26)

62

82

14

55

50

(2.44)

(3.23)

(0.55)

(2.17)

(1.97)

62

82

14

55

50

(2.44)

(3.23)

(0.55)

(2.17)

(1.97)

75

100

18

70

56

(2.95)

(3.94)

(0.71)

(2.76)

(2.20)

62

82

14

55

50

(2.44)

(3.23)

(0.55)

(2.17)

(1.97)

62

82

14

55

50

(2.44)

(3.23)

(0.55)

(2.17)

(1.97)

95

100

18

70

56

(3.74)

(3.94)

(0.71)

(2.76)

(2.20)

75

100

18

70

56

(2.95)

(3.94)

(0.71)

(2.76)

(2.20)

62

82

14

55

50

(2.44)

(3.23)

(0.55)

(2.17)

(1.97)

62

82

14

55

50

(2.44)

(3.23)

(0.55)

(2.17)

(1.97)

95

120

18

90

80

(3.74)

(4.72)

(0.71)

(3.54)

(3.15)

75

100

18

70

56

(2.95)

(3.94)

(0.71)

(2.76)

(2.20)

75

100

18

70

56

(2.95)

(3.94)

(0.71)

(2.76)

(2.20)

75

100

18

70

56

(2.95)

(3.94)

(0.71)

(2.76)

(2.20)

95

120

18

90

80

(3.74)

(4.72)

(0.71)

(3.54)

(3.15)

φ28

0
−0.016
0
φ1.50 −0.0006

φ38

T

U

Approx.

V
M8 screw,
depth 19

24.6
(54.2)

M10 screw,
depth 22

34.6
(76.3)

M10 screw,
depth 22

34.6
(76.3)

M8 screw,
depth 19

26.6
(58.7)

M10 screw,
depth 22

36.6
(80.7)

M10 screw,
depth 22

36.6
(80.7)

7

4

8

(0.28)

(0.16)

(0.31)

8

5

10

(0.31)

(0.20)

(0.39)

0
−0.016
0
φ1.50 −0.0006

8

5

10

(0.31)

(0.20)

(0.39)

0
−0.013
0
φ1.10 −0.0005

7

4

8

(0.28)

(0.16)

(0.31)

0
−0.016
0
φ1.50 −0.0006

8

5

10

(0.31)

(0.20)

(0.39)

0
−0.016
0
φ1.50 −0.0006

8

5

10

(0.31)

(0.20)

(0.39)

φ38

φ28

φ38

φ38

0
−0.016
0
φ1.97 −0.0006

φ50

9

5.5

14

(0.35)

(0.22)

(0.55)

0
−0.016
0
φ1.50 −0.0006

8

5

10

(0.31)

(0.20)

(0.39)

0
−0.016
0
φ1.50 −0.0006

8

5

10

(0.31)

(0.20)

(0.39)

0
−0.016
0
φ1.97 −0.0006

9

5.5

14

(0.35)

(0.22)

(0.55)

0
−0.016
0
φ1.97 −0.0006

9

5.5

14

(0.35)

(0.22)

(0.55)

0
−0.016
0
φ1.50 −0.0006

8

5

10

(0.31)

(0.20)

(0.39)

0
−0.016
0
φ1.50 −0.0006

8

5

10

(0.31)

(0.20)

(0.39)

0
−0.016
0
φ1.97 −0.0006

9

5.5

14

(0.35)

(0.22)

(0.55)

0
−0.016
0
φ1.97 −0.0006

9

5.5

14

(0.35)

(0.22)

(0.55)

0
−0.016
0
φ1.97 −0.0006

9

5.5

14

(0.35)

(0.22)

(0.55)

0
−0.016
0
φ1.97 −0.0006

9

5.5

14

(0.35)

(0.22)

(0.55)

0
−0.016
0
φ1.97 −0.0006

9

5.5

14

(0.35)

(0.22)

(0.55)

φ38

φ38

φ50

φ50

φ38

φ38

φ50

φ50

φ50

φ50

φ50

mass

W

kg (lb)

M10 screw, 57.6
(127.0)
depth 18
M10 screw,
depth 22

43
(94.8)

M10 screw,
depth 22

43
(94.8)

M10 screw,
67
(147.7)
depth 18
M10 screw,
67
(147.7)
depth 18
M10 screw,
47
(103.6)
depth 22
M10 screw,
47
(103.6)
depth 22
M10 screw,
72
(158.7)
depth 18
M10 screw,
76
(167.5)
depth 18
M10 screw,
76
(167.5)
depth 18
M10 screw,
88
(194.0)
depth 18
M10 screw,
89
(196.2)
depth 18

315

5

USING THE DIGITAL OPERATOR
5.4.1 Servomotor Dimensional Drawings cont.

Oil-lubrication type servomotors

φSh6

Oil inlet plug

Oil
outlet plug

Oil
outlet plug

4-φZ
MTG
Holes

V

Detailed View
of Shaft End

in mm (inches)
Motor
type
SGMG30A2AS7R

Gear type Gear

L

LL

LM

LT

KB1

KB2

KL1

KL2

R

A

B

687

192

145

47

115

171

140

88

495

319

318

CHHJ-4160

1/29

(27.1) (7.56) (5.71) (1.85) (4.53) (6.73) (5.51) (3.46) (19.5) (12.6) (12.5)

44A2ASCR CHHJ-4160

1/21

721

226

179

47

149

205

140

88

495

319

318

(28.4) (8.90) (7.05) (1.85) (5.87) (8.07) (5.51) (3.46) (19.5) (12.6) (12.5)

5

44A2AS7R

CHHJ-4170

1/29

785

226

179

47

149

205

140

88

559

382

363

(30.9) (8.90) (7.05) (1.85) (5.87) (8.07) (5.51) (3.46) (22.0) (15.0) (14.3)

55A2ASCR CHHJ-4170

1/21

853

260

213

47

174

239

150

88

593

382

363

(33.6) (10.2) (8.39) (1.85) (6.85) (9.41) (5.91) (3.46) (23.4) (15.0) (14.3)

55A2AS7R

CHHJ-4175

1/29

853

260

213

47

174

239

150

88

593

382

363

(33.6) (10.2) (8.39) (1.85) (6.85) (9.41) (5.91) (3.46) (23.4) (15.0) (14.3)

75A2ASBR CHHJ-4160

1/11

863

334

287

47

248

313

150

88

529

319

318

(34.0) (13.2) (11.3) (1.85) (9.76) (12.3) (5.91) (3.46) (20.8) (12.6) (12.5)

75A2ASCR CHHJ-4175

1/21

927

334

287

47

248

313

150

88

593

381

363

(36.5) (13.2) (11.3) (1.85) (9.76) (12.3) (5.91) (3.46) (23.4) (15.0) (14.3)

75A2AS7R

CHHJ-4180

1/29

977

334

287

47

248

313

150

88

643

417

392

(38.5) (13.2) (11.3) (1.85) (9.76) (12.3) (5.91) (3.46) (25.3) (16.4) (15.4)
1AA2ASBR

CHHJ-4170

1/11

934

338

291

47

251

317

168

88

596

382

363

(36.8) (13.3) (11.5) (1.85) (9.88) (12.5) (6.61) (3.46) (23.5) (15.0) (14.3)
1AA2ASCR

CHHJ-4185

1/21

984

338

291

47

251

317

168

88

646

417

392

(38.7) (13.3) (11.5) (1.85) (9.88) (12.5) (6.61) (3.46) (25.4) (16.4) (15.4)

1AA2AS7R CHHJ-4190

1/29

1077

338

291

47

251

317

168

88

739

477

454

(42.4) (13.3) (11.5) (1.85) (9.88) (12.5) (6.61) (3.46) (29.1) (18.8) (17.9)

316

C

ratio

Shaft
center
allowable
radial load
N

0
160 −0.5

16290

0
160 −0.5

14640

0
200 −0.5

19020

0
200 −0.5

17180

0
200 −0.5

19020

0
160 −0.5

11740

0
200 −0.5

17180

0
220 −0.5

25600

0
200 −0.5

13800

0
220 −0.5

23010

0
250 −0.5

35810

0
6.30−0.020

0
6.30−0.020

0
7.87−0.020

0
7.87−0.020

0
7.87−0.020

0
6.30−0.020

0
7.87−0.020

0
8.66−0.020

0
7.87−0.020

0
8.66−0.020

0
9.84−0.020

5.4 Σ-Series Dimensional Drawings

in mm (inches)
Motor
type
SGMG30A2AS7R

Foot dimensions
E

185 150
(7.28)

44A2ASCR

(10.8)

210 320
(8.27)

1AA2AS7R

(12.6)

190 275
(7.48)

1AA2ASCR

(10.8)

210 320
(8.27)

1AA2ASBR

(5.91)

190 275
(7.48)

75A2AS7R

(10.8)

185 150
(7.28)

75A2ASCR

(10.8)

190 275
(7.48)

75A2ASBR

(10.8)

190 275
(7.48)

55A2AS7R

(5.91)

190 275
(7.48)

55A2ASCR

(5.91)

185 150
(7.28)

44A2AS7R

F

(12.6)

240 380
(9.45)

(15.0)

G

K

25

75

(0.98)

(2.95)

25

75

(0.98)

(2.95)

30

80

(1.18)

(3.15)

30

80

(1.18)

(3.15)

30

80

(1.18)

(3.15)

25

75

(0.98)

(2.95)

30

80

(1.18)

(3.15)

30

85

(1.18)

(3.35)

30

80

(1.18)

(3.15)

30

85

(1.18)

(3.35)

35

90

(1.38)

(3.54)

M

N

410 238
(16.1)

(9.37)

410 238
(16.1)

(9.37)

430 335
(16.9)

(13.2)

430 335
(16.9)

(13.2)

430 335
(16.9)

(13.2)

410 238
(16.1)

(9.37)

430 335
(16.9)

(13.2)

Shaft end dimensions
XR

XC

Z

Q

QK

S

95

139

18

90

80

(3.74)

(5.47)

(0.71)

(3.54)

(3.15)

0
−0.019
0
φ2.36 −0.0007

95

139

18

90

80

(3.74)

(5.47)

(0.71)

(3.54)

(3.15)

95

125

22

90

80

(4.92)

(0.87)

(3.54)

(3.15)

φ2.76
φ70

95

125

22

90

80

(4.92)

(0.87)

(3.54)

(3.15)

φ2.76

95

125

22

90

80

φ70

(3.74)

(4.92)

(0.87)

(3.54)

(3.15)

95

139

18

90

80

(3.74)

(5.47)

(0.71)

(3.54)

(3.15)

0
−0.016
0
−0.0006

22

90

80

φ70

(0.87)

(3.54)

(3.15)

φ2.76

0
−0.016
0
φ3.15 −0.0006

(5.71)

22

110

100

(0.87)

(4.33)

(3.94)

95

125

22

90

80

(3.74)

(4.92)

(0.87)

(3.54)

(3.15)

115 145
(4.53)

(5.71)

530 440 140 170
(17.3)

0
−0.019
0
φ2.36 −0.0007

φ60

125

470 380

(20.9)

0
−0.016
0
−0.0006

(4.92)

(18.5)

(15.0)

0
−0.016
0
−0.0006

95

115 145

(13.2)

φ2.76

0
−0.016
0
−0.0006

(3.74)

(4.53)

430 335

φ70

(3.74)

470 380

(16.9)

0
−0.019
0
φ2.36 −0.0007

φ60

(3.74)

(18.5)

(15.0)

φ60

(5.51)

(6.69)

22

110

100

(0.87)

(4.33)

(3.94)

26
(1.02)

135 125
(5.31)

(4.92)

φ80

T

U

Approx.

W

11

7

18

(0.43)

(0.28)

(0.71)

11

7

18

(0.43)

(0.28)

(0.71)

12

7.5

20

(0.47)

(0.30)

(0.79)

12

7.5

20

(0.47)

(0.30)

(0.79)

12

7.5

20

(0.47)

(0.30)

(0.79)

11

7

18

(0.43)

(0.28)

(0.71)

12

7.5

20

(0.47)

(0.30)

(0.79)

14

9

22

(0.55)

(0.35)

(0.87)

0
−0.016
0
−0.0006

12

7.5

20

(0.47)

(0.30)

(0.79)

0
−0.016
0
φ3.15 −0.0006

14

9

22

(0.55)

(0.35)

(0.87)

φ70
φ2.76
φ80

0
−0.022
0
φ3.74 −0.0009

φ95

14

9

25

(0.55)

(0.35)

(0.98)

V

mass
kg (lb)

M10 screw,
126
(277.8)
depth 18
M10 screw,
131
(288.8)
depth 18
M12 screw,
176
(388.0)
depth 24
M12 screw,
191
(421.1)
depth 24
M12 screw,
191
(421.1)
depth 24
M10 screw,
155
(341.7)
depth 18
M12 screw,
201
(443.1)
depth 24
M12 screw,
245
(540.1)
depth 24

230.5

M12 screw,
depth 24

(508.2)

M12 screw,
depth 24

(609.6)

M20 screw,
depth 34

(788.1)

276.5
357.5

317

5

USING THE DIGITAL OPERATOR
5.4.1 Servomotor Dimensional Drawings cont.

• Flange-mounted type

φSh6

Grease-lubrication type servomotors

φLBf8

V

4-MTG Holes

6-MTG Holes

Detailed View
of Shaft End

in mm (inches)
Motor type
SGMG05A2ATAR

Gear type

Gear

L

LL

LM

LT

KB1

KB2

KL1

KL2

R

CNVX-4095

1/6

138

92

46

65

117

109

88

242

(5.43)

(3.62)

(1.81)

(2.56)

(4.61)

(4.29)

(3.46)

5

CNVX-4105 1/21

380

138

92

46

65

117

109

88

242

(5.43)

(3.62)

(1.81)

(2.56)

(4.61)

(4.29)

(3.46)

CNVX-4105 1/29

394

138

92

46

65

117

109

88

256

(5.43)

(3.62)

(1.81)

(2.56)

(4.61)

(4.29)

(3.46)

CNVX-4105

1/6

394

138

92

46

65

117

109

88

256

(5.43)

(3.62)

(1.81)

(2.56)

(4.61)

(4.29)

(3.46)

CNVX-4105 1/11

417

161

115

46

88

140

109

88

256

(6.34)

(4.53)

(1.81)

(3.46)

(5.51)

(4.29)

(3.46)

CNVX-4115 1/21

417

161

115

46

88

140

109

88

256

(6.34)

(4.53)

(1.81)

(3.46)

(5.51)

(4.29)

(3.46)

CNVX-4115 1/29

449

161

115

46

88

140

109

88

288

(6.34)

(4.53)

(1.81)

(3.46)

(5.51)

(4.29)

(3.46)

CNVX-4105

1/6

449

161

115

46

88

140

109

88

288

(6.34)

(4.53)

(1.81)

(3.46)

(5.51)

(4.29)

(3.46)

CNVX-4115 1/11

441

185

139

46

112

164

109

88

256

(7.28)

(5.47)

(1.81)

(4.41)

(6.46)

(4.29)

(3.46)

CNVX-4115 1/21

473

185

139

46

112

164

109

88

288

(7.28)

(5.47)

(1.81)

(4.41)

(6.46)

(4.29)

(3.46)

CNVX-4115

1/6

473

185

139

46

112

164

109

88

288

(7.28)

(5.47)

(1.81)

(4.41)

(6.46)

(4.29)

(3.46)

CNVX-4115 1/11

477

166

119

47

89

145

140

88

311

(6.54)

(4.69)

(1.85)

(3.50)

(5.71)

(5.51)

(3.46)

CNVX-4115

1/6

477

166

119

47

89

145

140

88

311

(6.54)

(4.69)

(1.85)

(3.50)

(5.71)

(5.51)

(3.46)

CNVX-4115 1/11

503

192

145

47

115

171

140

88

311

(7.56)

(5.71)

(1.85)

(4.53)

(6.73)

(5.51)

(3.46)

20.5
(45.2)



3240

22.6
(49.8)



3840

22.6
(49.8)



6190

33.6
(74.1)



6870

33.6
(74.1)



3240

24.6
(54.2)



4970

35.6
(78.5)



6190

35.6
(78.5)



4050

42
(92.6)



4970

42
(92.6)



4050

(12.2)

192

145

47

115

171

140

88

311

(7.56)

(5.71)

(1.85)

(4.53)

(6.73)

(5.51)

(3.46)

mass
kg (lb)

46
(101.4)

(12.2)



4970

46
(101.4)

582

192

145

47

115

171

140

88

390

209

(22.9)

318

CHVX-4145 1/21

503
(19.8)

30A2ATCR

5360

(12.2)

(19.8)

30A2ATBR



(12.2)

(18.8)

30A2ATAR

20.5
(45.2)

(11.3)

(18.8)

20A2ATBR

4940

(11.3)

(18.6)

20A2ATAR



(10.1)

(18.6)

13A2ATCR

18.5
(40.8)

(11.3)

(17.4)

13A2ATBR

2520

(11.3)

(17.7)

13A2ATAR



(10.1)

(17.7)

09A2AT7R

18.5
(40.8)

(10.1)

(16.4)

09A2ATCR

2050

(10.1)

(16.4)

09A2ATBR



(10.1)

(15.5)

09A2ATAR

Approx.

(9.53)

(15.5)

05A2AT7R

Axis center
allowable
radial load
N

(9.53)

(15.0)

05A2ATCR

CNVX-4095 1/11

380
(15.0)

05A2ATBR

A

ratio

(7.56)

(5.71)

(1.85)

(4.53)

(6.73)

(5.51)

(3.46)

(15.4)

(8.23)

11590

71
(156.5)

5.4 Σ-Series Dimensional Drawings

in mm (inches)
Motor
type
SGMG

Flange dimensions
LA

LB

LC

LE

LG

LR

N

LZ

Q

QK

05A2ATAR

134

−0.036
110 −0.090

160

3

9

48

4

11

35

32

φ28

(6.30)

(0.12)

(0.35)

(1.89)

(0.16)

(0.43)

(1.38)

(1.26)

φ1.10

(5.28)

05A2ATBR

134
(5.28)

05A2ATCR

134
(5.28)

05A2AT7R

134
(5.28)

09A2ATAR

134
(5.28)

09A2ATBR

134
(5.28)

09A2ATCR

180
(7.09)

09A2AT7R

180
(7.09)

13A2ATAR

134
(5.28)

13A2ATBR

180
(7.09)

13A2ATCR

180
(7.09)

20A2ATAR

180
(7.09)

20A2ATBR

180
(7.09)

30A2ATAR

180
(7.09)

30A2ATBR

180
(7.09)

30A2ATCR

230
(9.06)

−0.0014
4.33−0.0035
−0.036
110 −0.090

−0.0014
4.33−0.0035
−0.036
110 −0.090

−0.0014
4.33−0.0035
−0.036
110 −0.090

−0.0014
4.33−0.0035

Shaft end dimensions
S

160

3

9

48

4

11

35

32

φ28

(6.30)

(0.12)

(0.35)

(1.89)

(0.16)

(0.43)

(1.38)

(1.26)

φ1.10
φ28

160

3

9

48

4

11

35

32

(6.30)

(0.12)

(0.35)

(1.89)

(0.16)

(0.43)

(1.38)

(1.26)

φ1.10
φ38

160

3

9

48

4

11

35

32

(6.30)

(0.12)

(0.35)

(1.89)

(0.16)

(0.43)

(1.38)

(1.26)

φ1.50
φ28

160

3

9

48

4

11

35

32

−0.0014
4.33−0.0035

(6.30)

(0.12)

(0.35)

(1.89)

(0.16)

(0.43)

(1.38)

(1.26)

φ1.10

−0.036
110 −0.090

160

3

9

48

4

11

35

32

φ28

(6.30)

(0.12)

(0.35)

(1.89)

(0.16)

(0.43)

(1.38)

(1.26)

φ1.10

−0.036
110 −0.090

−0.0014
4.33−0.0035
−0.043
140 −0.106

−0.0017
5.51−0.0042
−0.043
140 −0.106

−0.0017
5.51−0.0042
−0.036
110 −0.090

−0.0014
4.33−0.0035

210

4

13

69

6

11

55

50

φ38

(8.27)

(0.16)

(0.51)

(2.72)

(0.24)

(0.43)

(2.17)

(1.97)

φ1.50
φ38

210

4

13

69

6

11

55

50

(8.27)

(0.16)

(0.51)

(2.72)

(0.24)

(0.43)

(2.17)

(1.97)

φ1.50
φ28

160

3

9

48

4

11

35

32

(6.30)

(0.12)

(0.35)

(1.89)

(0.16)

(0.43)

(1.38)

(1.26)

φ1.10
φ38

210

4

13

69

6

11

55

50

−0.0017
5.51−0.0042

(8.27)

(0.16)

(0.51)

(2.72)

(0.24)

(0.43)

(2.17)

(1.97)

−0.043
140 −0.106

210

4

13

69

6

11

55

50

φ38

(8.27)

(0.16)

(0.51)

(2.72)

(0.24)

(0.43)

(2.17)

(1.97)

φ1.50

−0.043
140 −0.106

−0.0017
5.51−0.0042
−0.043
140 −0.106

−0.0017
5.51−0.0042
−0.043
140 −0.106

−0.0017
5.51−0.0042

φ1.50

210

4

13

69

6

11

55

50

φ38

(8.27)

(0.16)

(0.51)

(2.72)

(0.24)

(0.43)

(2.17)

(1.97)

φ1.50
φ38

210

4

13

69

6

11

55

50

(8.27)

(0.16)

(0.51)

(2.72)

(0.24)

(0.43)

(2.17)

(1.97)

φ1.50
φ38

210

4

13

69

6

11

55

50

−0.0017
5.51−0.0042

(8.27)

(0.16)

(0.51)

(2.72)

(0.24)

(0.43)

(2.17)

(1.97)

φ1.50

−0.043
140 −0.106

210

4

13

69

6

11

55

50

φ38

(8.27)

(0.16)

(0.51)

(2.72)

(0.24)

(0.43)

(2.17)

(1.97)

φ1.50

−0.043
140 −0.106

−0.0017
5.51−0.0042
−0.050
200 −0.122

−0.0020
7.87−0.0048

260

4

15

96

6

11

90

80

φ50

(10.2)

(0.16)

(0.59)

(3.78)

(0.24)

(0.43)

(3.54)

(3.15)

φ1.97

0
−0.013
0
−0.0005
0
−0.013
0
−0.0005

T

U

W

7

4

8

(0.28)

(0.16)

(0.31)

7

4

8

(0.28)

(0.16)

(0.31)

0
−0.013
0
−0.0005

7

4

8

(0.28)

(0.16)

(0.31)

0
−0.016
0
−0.0006

7

4

8

(0.28)

(0.16)

(0.31)

0
−0.013
0
−0.0005

7

4

8

(0.28)

(0.16)

(0.31)

0
−0.013
0
−0.0005
0
−0.016
0
−0.0006
0
−0.016
0
−0.0006
0
−0.013
0
−0.0005
0
−0.016
0
−0.0006
0
−0.016
0
−0.0006
0
−0.016
0
−0.0006
0
−0.016
0
−0.0006
0
−0.016
0
−0.0006
0
−0.016
0
−0.0006
0
−0.016
0
−0.0006

7

4

8

(0.28)

(0.16)

(0.31)

8

5

10

(0.31)

(0.20)

(0.39)

8

5

10

(0.31)

(0.20)

(0.39)

7

4

8

(0.28)

(0.16)

(0.31)

8

5

10

(0.31)

(0.20)

(0.39)

8

5

10

(0.31)

(0.20)

(0.39)

8

5

10

(0.31)

(0.20)

(0.39)

8

5

10

(0.31)

(0.20)

(0.39)

8

5

10

(0.31)

(0.20)

(0.39)

8

5

10

(0.31)

(0.20)

(0.39)

9

5.5

14

(0.35)

(0.22)

(0.55)

V
M8 screw,
depth 19
M8 screw,
depth 19
M8 screw,
depth 19
M8 screw,
depth 19
M8 screw,
depth 19
M8 screw,
depth 19
M10 screw,
depth 22
M10 screw,
depth 22
M8 screw,
depth 19
M10 screw,
depth 22
M10 screw,
depth 22
M10 screw,
depth 22
M10 screw,
depth 22
M10 screw,
depth 22
M10 screw,
depth 22
M10 screw,
depth 18

319

5

USING THE DIGITAL OPERATOR
5.4.1 Servomotor Dimensional Drawings cont.

φSh6

Oil-lubrication type small size servomotors

Oil inlet tap

φLBf8

V
Oil outlet plug

MTG Holes

Detailed View
of Shaft End

Oil outlet plug

in mm (inches)
Motor type
SGMG13A2AT7R

Gear type

Gear

L

LL

LM

LT

KB1

KB2

KL1

KL2

R

A

ratio

185

139

46

112

164

109

88

347

209

(7.28)

(5.47)

(1.81)

(4.41)

(6.46)

(4.29)

(3.46)

(13.7)

(8.23)

166

119

47

89

145

140

88

370

(4.69)

(1.85)

(3.50)

(5.71)

(5.51)

(3.46)

(14.6)

1/6

536

166

119

47

89

145

140

88

370

(4.69)

(1.85)

(3.50)

(5.71)

(5.51)

(3.46)

(14.6)

596

226

179

47

149

205

140

88

370

(7.05)

(1.85)

(5.87)

(8.07)

(5.51)

(3.46)

(14.6)

5

1/6

596

226

179

47

149

205

140

88

370

(7.05)

(1.85)

(5.87)

(8.07)

(5.51)

(3.46)

(14.6)

CHVX-4145 1/11

5870

(8.23)

664

260

213

47

174

239

150

88

404

(8.39)

(1.85)

(6.85)

(9.41)

(5.91)

(3.46)

(15.9)

7190

(8.23)

684

260

213

47

174

239

150

88

424

(10.2)

(8.39)

(1.85)

(6.85)

(9.41)

(5.91)

(3.46)

(16.7)

5870

75
75
87
(191.8)

209

(26.9)

66

(165.3)

209

(10.2)

66

(165.3)

209

(8.90)

56.6

(145.5)

(8.23)

(26.1)

55A2ATBR

CHVX-4135

9900

209

(8.90)

mass
kg (lb)

(145.5)

(8.23)

(23.5)

55A2ATAR

CHVX-4135 1/11

8940

209

(6.54)

Approx.

(124.8)

(8.23)

(23.5)

44A2ATBR

CHVX-4130

9900

209

(6.54)

(21.1)

44A2ATAR

CHVX-4135 1/29

536
(21.1)

20A2AT7R

CHVX-4130 1/21

532
(20.9)

20A2ATCR

CHVX-4135 1/29

Axis center
allowable
radial load
N

(8.23)

9500

88
(194.0)

in mm (inches)
Motor
type
SGMG

LA

LB

Flange dimensions
LC

LE

LG

LR

N

LZ

Q

QK

13A2AT7R

230

−0.050
200 −0.122

260

4

15

76

6

11

70

56

φ50

(10.2)

(0.16)

(0.59)

(2.99)

(0.24)

(0.43)

(2.76)

(2.20)

φ1.97

(9.06)

20A2ATCR

230
(9.06)

20A2AT7R

230
(9.06)

44A2ATAR

230
(9.06)

44A2ATBR

230
(9.06)

55A2ATAR

230
(9.06)

55A2ATBR

230
(9.06)

320

−0.0020
7.87−0.0048
−0.050
200 −0.122

−0.0020
7.87−0.0048
−0.050
200 −0.122

−0.0020
7.87−0.0048

Shaft end dimensions
S

260

4

15

76

6

11

70

56

φ50

(10.2)

(0.16)

(0.59)

(2.99)

(0.24)

(0.43)

(2.76)

(2.20)

φ1.97
φ50

260

4

15

76

6

11

70

56

(10.2)

(0.16)

(0.59)

(2.99)

(0.24)

(0.43)

(2.76)

(2.20)

φ1.97
φ50

260

4

15

76

6

11

70

56

−0.0020
7.87−0.0048

(10.2)

(0.16)

(0.59)

(2.99)

(0.24)

(0.43)

(2.76)

(2.20)

φ1.97

−0.050
200 −0.122

260

4

15

76

6

11

70

56

φ50

(10.2)

(0.16)

(0.59)

(2.99)

(0.24)

(0.43)

(2.76)

(2.20)

φ1.97

−0.050
200 −0.122

−0.0020
7.87−0.0048
−0.050
200 −0.122

−0.0020
7.87−0.0048
−0.050
200 −0.122

−0.0020
7.87−0.0048

260

4

15

76

6

11

70

56

φ50

(10.2)

(0.16)

(0.59)

(2.99)

(0.24)

(0.43)

(2.76)

(2.20)

φ1.97

260

4

15

96

6

11

90

80

φ50

(10.2)

(0.16)

(0.59)

(3.78)

(0.24)

(0.43)

(3.54)

(3.15)

φ1.97

0
−0.016
0
−0.0006
0
−0.016
0
−0.0006
0
−0.016
0
−0.0006
0
−0.016
0
−0.0006
0
−0.016
0
−0.0006
0
−0.016
0
−0.0006
0
−0.016
0
−0.0006

T

U

W

V
M10 screw,
depth 18

9

5.5

14

(0.35)

(0.22)

(0.55)

9

5.5

14

(0.35)

(0.22)

(0.55)

9

5.5

14

(0.35)

(0.22)

(0.55)

9

5.5

14

(0.35)

(0.22)

(0.55)

9

5.5

14

(0.35)

(0.22)

(0.55)

9

5.5

14

(0.35)

(0.22)

(0.55)

9

5.5

14

(0.35)

(0.22)

(0.55)

M10 screw,
depth 18
M10 screw,
depth 18
M10 screw,
depth 18
M10 screw,
depth 18
M10 screw,
depth 18
M10 screw,
depth 18

5.4 Σ-Series Dimensional Drawings

Oil-lubrication type large size servomotors

φSh6

Oil outlet
plug
Oil inlet
tap
φLBf8

V

Detailed View
of Shaft End

Oil outlet plug

in mm (inches)
Motor type
SGMG30A2AT7R

Gear type

Gear

L

LL

LM

LT

KB1

KB2

KL1

KL2

R

A

ratio

145

47

115

171

140

88

495

228

(5.71)

(1.85)

(4.53)

(6.73)

(5.51)

(3.46)

(19.5)

(8.98)

226

179

47

149

205

140

88

495

228

(8.90)

(7.05)

(1.85)

(5.87)

(8.07)

(5.51)

(3.46)

(19.5)

785

226

179

47

149

205

140

88

559

243

(8.90)

(7.05)

(1.85)

(5.87)

(8.07)

(5.51)

(3.46)

(22.0)

260

213

47

174

239

150

88

593

243

(10.2)

(8.39)

(1.85)

(6.85)

(9.41)

(5.91)

(3.46)

(23.4)

75A2ATCR

260

213

47

174

239

150

88

593

243

(10.2)

(8.39)

(1.85)

(6.85)

(9.41)

(5.91)

(3.46)

(23.4)

863

334

287

47

248

313

150

88

529

228

(13.2)

(11.3)

(1.85)

(9.76)

(12.3)

(5.91)

(3.46)

(20.8)

334

287

47

248

313

150

88

593

243

(13.2)

(11.3)

(1.85)

(9.76)

(12.3)

(5.91)

(3.46)

(23.4)

334

287

47

248

313

150

88

643

258

(13.2)

(11.3)

(1.85)

(9.76)

(12.3)

(5.91)

(3.46)

(25.3)

CHVJ-4190

1/21
1/29

17180

934

338

291

47

251

317

168

88

596

243

(13.3)

(11.5)

(1.85)

(9.88)

(12.5)

(6.61)

(3.46)

(23.5)

19020

338

291

47

251

317

168

88

646

258

(13.3)

(11.5)

(1.85)

(9.88)

(12.5)

(6.61)

(3.46)

(25.4)

11740

1077

338

291

47

251

317

168

88

739

285

(13.3)

(11.5)

(1.85)

(9.88)

(12.5)

(6.61)

(3.46)

(29.1)

(11.2)

191
191
150
(330.7)

17180

201
(443.1)

25600

232
(511.5)

13800

230.5
(508.2)

(10.2)

(42.4)

176

(421.1)

(9.57)

984

126

(421.1)

(10.2)

(38.7)

1AA2AT7R

CHVJ-4185

1/11

977

121

(388.0)

(9.57)

(36.8)

1AA2ATCR

CHVJ-4170

1/29

19020

(8.98)

927

mass
kg (lb)

(277.8)

(9.57)

(38.5)

1AA2ATBR

CHVJ-4180

1/21

853

(36.5)

75A2AT7R

CHVJ-4175

1/11

14640

(9.57)

(34.0)

CHVJ-4160

1/29

853

Approx.

(266.8)

(9.57)

(33.6)

75A2ATBR

CHVJ-4175

1/21

16290

(8.98)

(33.6)

55A2AT7R

CHVJ-4170

1/29

721

(30.9)

55A2ATCR

CHVJ-4170

1/21

192
(7.56)

(28.4)

44A2AT7R

CHVJ-4160

1/29

687
(27.1)

44A2ATCR

CHVJ-4160

Axis center
allowable
radial load
N

23010

263.5
(580.9)

35810

342.5
(755.1)

321

5

USING THE DIGITAL OPERATOR
5.4.1 Servomotor Dimensional Drawings cont.

in mm (inches)
Motor
type
SGMG

Flange dimensions
LA

LB

LC

LE

LG

LR

N

LZ

Q

QK

30A2AT7R

310

−0.056
270 −0.137

340

4

20

89

6

11

90

80

φ60

(13.4)

(0.16)

(0.79)

(3.50)

(0.24)

(0.43)

(3.54)

(3.15)

φ2.36

(12.2)

44A2ATCR

310
(12.2)

44A2AT7R

360
(14.2)

55A2ATCR

360
(14.2)

55A2AT7R

360
(14.2)

75A2ATBR

310
(12.2)

75A2ATCR

360
(14.2)

−0.056
270 −0.137

−0.0022
10.6−0.0054

S

340

4

20

89

6

11

90

80

φ60

(13.4)

(0.16)

(0.79)

(3.50)

(0.24)

(0.43)

(3.54)

(3.15)

φ2.36
φ70

400

5

22

94

8

14

90

80

−0.0024
12.4−0.0059

(15.8)

(0.20)

(0.87)

(3.70)

(0.31)

(0.55)

(3.54)

(3.15)

φ2.76

−0.062
316 −0.151

400

5

22

94

8

14

90

80

φ70

−0.0024
12.4−0.0059

(15.8)

(0.20)

(0.87)

(3.70)

(0.31)

(0.55)

(3.54)

(3.15)

φ2.76

−0.062
316 −0.151

400

5

22

94

8

14

90

80

φ70

−0.0024
12.4−0.0059

(15.8)

(0.20)

(0.87)

(3.70)

(0.31)

(0.55)

(3.54)

(3.15)

φ2.76

−0.056
270 −0.137

340

4

20

89

6

11

90

80

φ60

(13.4)

(0.16)

(0.79)

(3.50)

(0.24)

(0.43)

(3.54)

(3.15)

φ2.36

−0.062
316 −0.151

−0.0022
10.6−0.0054
−0.062
316 −0.151

−0.0024
12.4−0.0059

0
−0.019
0
−0.0007
0
−0.019
0
−0.0007
0
−0.016
0
−0.0006
0
−0.016
0
−0.0006
0
−0.016
0
−0.0006
0
−0.019
0
−0.0007
0
−0.016
0
−0.0006

400

5

22

94

8

14

90

80

φ70

(15.8)

(0.20)

(0.87)

(3.70)

(0.31)

(0.55)

(3.54)

(3.15)

φ2.76

0
−0.016
0
φ3.15 −0.0006

1AA2ATBR

430

5

22

110

8

18

110

100

(15.4)

75A2AT7R

390

−0.0022
10.6−0.0054

Shaft end dimensions

−0.0024
13.58 −0.0059

(16.9)

(0.20)

(0.87)

(4.33)

(0.31)

(0.71)

(4.33)

(3.94)

360

−0.062
316 −0.151

400

5

22

94

8

14

90

80

−0.0024
12.4−0.0059

(15.8)

(0.20)

(0.87)

(3.70)

(0.31)

(0.55)

(3.54)

(3.15)

φ2.76

−0.062
345 −0.151

430

5

22

100

8

18

110

100

0
−0.016
0
φ3.15 −0.0006

(14.2)

5

1AA2ATCR

390

−0.062
345 −0.151

(15.4)

1AA2AT7R

−0.0024
13.58 −0.0059

(16.9)

(0.20)

(0.87)

(3.94)

(0.31)

(0.71)

(4.33)

(3.94)

450

−0.062
400 −0.151

490

6

30

145

12

18

135

125

(19.3)

(0.24)

(1.18)

(5.71)

(0.47)

(0.71)

(5.31)

(4.92)

(17.7)

322

−0.0024
15.7−0.0059

φ80

φ70

0
−0.016
0
−0.0006

φ80

0
−0.022
0
φ3.74 −0.0009

φ95

T

U

W

V
M10 screw,
depth 18

11

7

18

(0.43)

(0.28)

(0.71)

11

7

18

(0.43)

(0.28)

(0.71)

12

7.5

20

(0.47)

(0.30)

(0.79)

12

7.5

20

(0.47)

(0.30)

(0.79)

12

7.5

20

(0.47)

(0.30)

(0.79)

11

7

18

(0.43)

(0.28)

(0.71)

12

7.5

20

(0.47)

(0.30)

(0.79)

14

9

22

(0.55)

(0.35)

(0.87)

12

7.5

20

(0.47)

(0.30)

(0.79)

14

9

22

(0.55)

(0.35)

(0.87)

14

9

25

(0.55)

(0.35)

(0.98)

M10 screw,
depth 18
M12 screw,
depth 24
M12 screw,
depth 24
M12 screw,
depth 24
M10 screw,
depth 18
M12 screw,
depth 24
M12 screw,
depth 24
M12 screw,
depth 24
M12 screw,
depth 24
M20 screw,
depth 34

5.4 Σ-Series Dimensional Drawings

Low-backlash gear (1500 min−1), without brake
• Frange-mounted type

φLBh7

φSh6

Grease-lubrication type small size servomotors

Detailed View
of Shaft End

in mm (inches)
Motor type
SGMG-

Gear type

Gear
ratio

05A2AL1K

L

1/5

LL

LM

LR

LT

KB1

KB2

KL1

KL2

R

Axis center
allowable
radial load
N

Approx.
mass
kg (lb)

833

14
(30.9)

05A2AL2K

980

14
(30.9)

833

16
(35.3)

980

16
(35.3)

394

138

92

100

46

65

117

109

88

256

(15.5)

(5.43)

(3.62)

(3.94)

(1.81)

(2.56)

(4.61)

(4.29)

(3.46)

(10.1)

1/9
BL2

09A2AL1K

406

138

92

100

46

65

117

109

88

268

(16.0)

(5.43)

(3.62)

(3.94)

(1.81)

(2.56)

(4.61)

(4.29)

(3.46)

(10.6)

1/5

09A2AL2K

417

161

115

100

46

88

140

109

88

256

(16.4)

(6.34)

(4.53)

(3.94)

(1.81)

(3.46)

(5.51)

(4.29)

(3.46)

(10.1)

1/9

429

161

115

100

46

88

140

109

88

268

(16.9)

(6.34)

(4.53)

(3.94)

(1.81)

(3.46)

(5.51)

(4.29)

(3.46)

(10.6)

in mm (inches)
Motor type
yp
SGMG05A2AL1K

Flange dimensions
LA
160

LB
0
130 −0.040

(6.30)

05A2AL2K

0
5.12−0.0016

160

0
130 −0.040

(6.30)

09A2AL1K

160

0
5.12−0.0016
0
130 −0.040

(6.30)

09A2AL2K

0
5.12−0.0016

160

0
130 −0.040

(6.30)

0
5.12−0.0016

LC

LE

LG

Shaft end dimensions
LH

N

LZ

S
0
35 −0.016

140

3

12

185

4

12

(5.51)

(0.12)

(0.47)

(7.28)

(0.16)

(0.47)

0
1.38−0.0006
0
35 −0.016

140

3

12

185

4

12

(5.51)

(0.12)

(0.47)

(7.28)

(0.16)

(0.47)

0
1.38−0.0006
0
35 −0.016

140

3

12

185

4

12

(5.51)

(0.12)

(0.47)

(7.28)

(0.16)

(0.47)

0
1.38−0.0006
0
35 −0.016

140

3

12

185

4

12

(5.51)

(0.12)

(0.47)

(7.28)

(0.16)

(0.47)

0
1.38−0.0006

Q

QK

QR

T

U

W

55

47

1

8

5

10

(2.17)

(1.85)

(0.039)

(0.31)

(0.20)

(0.39)

55

47

1

8

5

10

(2.17)

(1.85)

(0.039)

(0.31)

(0.20)

(0.39)

55

47

1

8

5

10

(2.17)

(1.85)

(0.039)

(0.31)

(0.20)

(0.39)

55

47

1

8

5

10

(2.17)

(1.85)

(0.039)

(0.31)

(0.20)

(0.39)

323

5

USING THE DIGITAL OPERATOR
5.4.1 Servomotor Dimensional Drawings cont.

φLBh7

φSh6

Grease-lubrication type large size servomotors

Detailed View
of Shaft End

in mm (inches)
Motor type
SGMG-

Gear type

05A2AL5K

Gear
ratio
1/20

L

LL

LM

LR

LT

KB1

KB2

KL1

KL2

R

Axis center
allowable
radial load
N

2650

05A2AL7K

138

92

140

46

65

117

109

88

353

(5.43)

(3.62)

(5.51)

(1.81)

(2.56)

(4.61)

(4.29)

(3.46)

(13.9)

BL3

09A2AL5K

1/45

491

138

92

140

46

65

117

109

88

353

(19.3)

05A2AL8K

1/29

491
(19.3)

(5.43)

(3.62)

(5.51)

(1.81)

(2.56)

(4.61)

(4.29)

(3.46)

1/20

501

138

92

140

46

65

117

109

88

363

(5.43)

(3.62)

(5.51)

(1.81)

(2.56)

(4.61)

(4.29)

(3.46)

09A2AL7K

514

161

115

140

46

88

140

109

88

353

(6.34)

(4.53)

(5.51)

(1.81)

(3.46)

(5.51)

(4.29)

(3.46)

5

BL4

13A2AL1K

1/45

514

161

115

140

46

88

140

109

88

353

(6.34)

(4.53)

(5.51)

(1.81)

(3.46)

(5.51)

(4.29)

(3.46)

565

161

115

160

46

88

140

109

88

404

(6.34)

(4.53)

(6.30)

(1.81)

(3.46)

(5.51)

(4.29)

(3.46)

BL3

13A2AL5K

1/9

507

185

139

140

46

112

164

109

88

322

(7.28)

(5.47)

(5.51)

(1.81)

(4.41)

(6.46)

(4.29)

(3.46)

1/20

534

185

139

140

46

112

164

109

88

349

(7.28)

(5.47)

(5.51)

(1.81)

(4.41)

(6.46)

(4.29)

(3.46)

13A2AL8K

1/29
BL4

538

185

139

140

46

112

164

109

88

353

(7.28)

(5.47)

(5.51)

(1.81)

(4.41)

(6.46)

(4.29)

(3.46)

579

185

139

160

46

112

164

109

88

394

(7.28)

(5.47)

(6.30)

(1.81)

(4.41)

(6.46)

(4.29)

(3.46)

20A2AL2K

1/5
BL3

589

185

139

160

46

112

164

109

88

404

(7.28)

(5.47)

(6.30)

(1.81)

(4.41)

(6.46)

(4.29)

(3.46)

509

166

119

140

47

89

145

140

88

343

(6.54)

(4.69)

(5.51)

(1.85)

(3.50)

(5.71)

(5.51)

(3.46)

1/20

536

166

119

140

47

89

145

140

88

370

(6.54)

(4.69)

(5.51)

(1.85)

(3.50)

(5.71)

(5.51)

(3.46)

20A2AL7K

1/29

581

166

119

160

47

89

145

140

88

415

(6.54)

(4.69)

(6.30)

(1.85)

(3.50)

(5.71)

(5.51)

(3.46)

166

119

160

47

89

145

140

88

415

(6.54)

(4.69)

(6.30)

(1.85)

(3.50)

(5.71)

(5.51)

(3.46)

30A2AL5K

BL4

1/9

575

192

145

160

47

115

171

140

88

383

(7.56)

(5.71)

(6.30)

(1.85)

(4.53)

(6.73)

(5.51)

(3.46)

607

192

145

160

47

115

171

140

88

415

(7.56)

(5.71)

(6.30)

(1.85)

(4.53)

(6.73)

(5.51)

(3.46)

44A2AL1K

607

192

145

160

47

115

171

140

88

415

(7.56)

(5.71)

(6.30)

(1.85)

(4.53)

(6.73)

(5.51)

(3.46)

226

179

160

47

149

205

140

88

383

(8.90)

(7.05)

(6.30)

(1.85)

(5.87)

(8.07)

(5.51)

(3.46)

6860

641

226

179

160

47

149

205

140

88

415

(8.90)

(7.05)

(6.30)

(1.85)

(5.87)

(8.07)

(5.51)

(3.46)

(16.3)

55
(121.3)

8040

55
(121.3)

1670

32
(70.5)

1960

39
(86.0)

6080

39
(86.0)

6860

39
(86.0)

3820

53
(116.8)

4700

63
(138.9)

6080

63
(138.9)

(15.1)

(25.2)

324

1/9

609

35
(77.1)

(16.3)

(24.0)

44A2AL2K

1/5

2650

(16.3)

(23.9)

35
(77.1)

(15.1)

(23.9)

1/20

1960

(16.3)

(22.6)

30A2AL2K

1/5

581

28
(61.7)

(16.3)

(22.9)

30A2AL1K

1670

(14.6)

(22.9)

53
(116.8)

(13.5)

(21.1)

20A2AL5K

1/9

8040

(15.9)

(20.0)

33
(72.8)

(15.5)

(23.2)

20A2AL1K

1/45

2940

(13.9)

(22.8)

33
(72.8)

(13.7)

(21.2)

13A2AL7K

2650

(12.7)

(21.0)

31
(68.3)

(15.9)

(20.0)

13A2AL2K

1/5

3430

(13.9)

(22.2)

31
(68.3)

(13.9)

(20.2)

09A2AL8K

1/29

2940

(14.3)

(20.2)

31
(68.3)

(13.9)

(19.7)

Approx.
mass
kg (lb)

3820

58
(127.9)

4700

68
(149.9)

5.4 Σ-Series Dimensional Drawings

in mm (inches)
Motor type
yp
SGMG05A2AL5K

Flange dimensions
LA
220

LB
0
190 −0.046

(8.66)

05A2AL7K

0
7.48−0.0018

220

0
190 −0.046

LC

LE

LG

Shaft end dimensions
N

LZ

S
0
50 −0.016

245

5

15

6

12

(9.65)

(0.20)

(0.59)

(0.24)

(0.47)

0
1.97−0.0006
0
50 −0.016

05A2AL8K

245

5

15

6

12

(8.66)

0
7.48−0.0018

(9.65)

(0.20)

(0.59)

(0.24)

(0.47)

0
1.97−0.0006

220

0
190 −0.046

245

5

15

6

12

(9.65)

(0.20)

(0.59)

(0.24)

(0.47)

0
50 −0.016

0
1.97−0.0006
0
50 −0.016

(8.66)

09A2AL5K

0
7.48−0.0018

220

0
190 −0.046

(8.66)

09A2AL7K

0
7.48−0.0018

220

0
190 −0.046

(8.66)

09A2AL8K

0
7.48−0.0018

280

0
240 −0.046

245

5

15

6

12

(9.65)

(0.20)

(0.59)

(0.24)

(0.47)

0
1.97−0.0006

245

5

15

6

12

(9.65)

(0.20)

(0.59)

(0.24)

(0.47)

0
1.97−0.0006
0
60 −0.019

0
50 −0.016

13A2AL1K

310

5

18

6

14

(11.0)

0
9.45−0.0018

(12.2)

(0.20)

(0.71)

(0.24)

(0.55)

0
2.36−0.0007

220

0
190 −0.046

245

5

15

6

12

(9.65)

(0.20)

(0.59)

(0.24)

(0.47)

0
50 −0.016

(8.66)

13A2AL2K

0
7.48−0.0018

220

0
190 −0.046

(8.66)

13A2AL5K

0
7.48−0.0018

220

0
190 −0.046

(8.66)

13A2AL7K

0
240 −0.046

0
50 −0.016

245

5

15

6

12

(9.65)

(0.20)

(0.59)

(0.24)

(0.47)

0
1.97−0.0006
0
50 −0.016

245

5

15

6

12

(9.65)

(0.20)

(0.59)

(0.24)

(0.47)

0
1.97−0.0006
0
60 −0.019

QK

QR

T

U

W

75

65

1

9

5.5

14

(2.95)

(2.56)

(0.039)

(0.35)

(0.22)

(0.55)

75

65

1

9

5.5

14

(2.95)

(2.56)

(0.039)

(0.35)

(0.22)

(0.55)

75

65

1

9

5.5

14

(2.95)

(2.56)

(0.039)

(0.35)

(0.22)

(0.55)

75

65

1

9

5.5

14

(2.95)

(2.56)

(0.039)

(0.35)

(0.22)

(0.55)

75

65

1

9

5.5

14

(2.95)

(2.56)

(0.039)

(0.35)

(0.22)

(0.55)

90

78

1

11

7

18

(3.54)

(3.07)

(0.039)

(0.43)

(0.28)

(0.71)

75

65

1

9

5.5

14

(2.95)

(2.56)

(0.039)

(0.35)

(0.22)

(0.55)

75

65

1

9

5.5

14

(2.95)

(2.56)

(0.039)

(0.35)

(0.22)

(0.55)

75

65

1

9

5.5

14

(2.95)

(2.56)

(0.039)

(0.35)

(0.22)

(0.55)

310

5

18

6

14

90

78

1

11

7

18

(11.0)

13A2AL8K

280

0
7.48−0.0018

0
1.97−0.0006

Q

0
9.45−0.0018

(12.2)

(0.20)

(0.71)

(0.24)

(0.55)

0
2.36−0.0007

(3.54)

(3.07)

(0.039)

(0.43)

(0.28)

(0.71)

280

0
240 −0.046

310

5

18

6

14

90

78

1

11

7

18

(12.2)

(0.20)

(0.71)

(0.24)

(0.55)

0
60 −0.019

0
2.36−0.0007

(3.54)

(3.07)

(0.039)

(0.43)

(0.28)

(0.71)

0
50 −0.016

(11.0)

20A2AL1K

0
9.45−0.0018

220

0
190 −0.046

(8.66)

20A2AL2K

0
7.48−0.0018

220

0
190 −0.046

245

5

15

6

12

(9.65)

(0.20)

(0.59)

(0.24)

(0.47)

0
1.97−0.0006
0
50 −0.016

20A2AL5K

245

5

15

6

12

(8.66)

0
7.48−0.0018

(9.65)

(0.20)

(0.59)

(0.24)

(0.47)

0
1.97−0.0006

280

0
240 −0.046

310

5

18

6

14

(12.2)

(0.20)

(0.71)

(0.24)

(0.55)

0
60 −0.019

0
2.36−0.0007
0
60 −0.019

(11.0)

20A2AL7K

0
9.45−0.0018

280

0
240 −0.046

(11.0)

30A2AL1K

0
9.45−0.0018

280

0
240 −0.046

(11.0)

30A2AL2K

0
9.45−0.0018

280

0
240 −0.046

(11.0)

30A2AL5K

0
9.45−0.0018

280

0
240 −0.046

(11.0)

44A2AL1K

0
9.45−0.0018

280

0
240 −0.046

(11.0)

44A2AL2K

0
9.45−0.0018

280

0
240 −0.046

(11.0)

0
9.45−0.0018

310

5

18

6

14

(12.2)

(0.20)

(0.71)

(0.24)

(0.55)

0
2.36−0.0007
0
60 −0.019

310

5

18

6

14

(12.2)

(0.20)

(0.71)

(0.24)

(0.55)

0
2.36−0.0007
0
60 −0.019

310

5

18

6

14

(12.2)

(0.20)

(0.71)

(0.24)

(0.55)

0
2.36−0.0007
0
60 −0.019

310

5

18

6

14

(12.2)

(0.20)

(0.71)

(0.24)

(0.55)

0
2.36−0.0007
0
60 −0.019

310

5

18

6

14

(12.2)

(0.20)

(0.71)

(0.24)

(0.55)

0
2.36−0.0007
0
60 −0.019

310

5

18

6

14

(12.2)

(0.20)

(0.71)

(0.24)

(0.55)

0
2.36−0.0007

75

65

1

9

5.5

14

(2.95)

(2.56)

(0.039)

(0.35)

(0.22)

(0.55)

75

65

1

9

5.5

14

(2.95)

(2.56)

(0.039)

(0.35)

(0.22)

(0.55)

90

78

1

11

7

18

(3.54)

(3.07)

(0.039)

(0.43)

(0.28)

(0.71)

90

78

1

11

7

18

(3.54)

(3.07)

(0.039)

(0.43)

(0.28)

(0.71)

90

78

1

11

7

18

(3.54)

(3.07)

(0.039)

(0.43)

(0.28)

(0.71)

90

78

1

11

7

18

(3.54)

(3.07)

(0.039)

(0.43)

(0.28)

(0.71)

90

78

1

11

7

18

(3.54)

(3.07)

(0.039)

(0.43)

(0.28)

(0.71)

90

78

1

11

7

18

(3.54)

(3.07)

(0.039)

(0.43)

(0.28)

(0.71)

90

78

1

11

7

18

(3.54)

(3.07)

(0.039)

(0.43)

(0.28)

(0.71)

325

5

USING THE DIGITAL OPERATOR
5.4.1 Servomotor Dimensional Drawings cont.

Shaft end tap specifications
d tap×L

in mm (inches)
Gear type

Shaft
diameter
S

Shaft
length
Q

d×L

BL2

35 (1.38)

55 (2.17)

M8 × 16

BL3

50 (1.97)

75 (2.95)

M10 × 20

BL4

60 (2.36)

90 (3.54)

M12 × 24

Detailed dimensions of IMT gear
in mm (inches)
Gear ratio

A

1/5

6 (0.24)

1/9

18 (0.71)

1/20, 1/29

39 (1.54)

1/45

(Motor)

47 (1.85)

5

in mm (inches)
Gear ratio

A

1/5

11 (0.43)

1/9

38 (1.50)

1/20, 1/29

46 (1.81)

1/45

(Motor)

52 (2.05)

in mm (inches)
Gear ratio

A

1/5

48 (1.89)
55 (2.17)

1/45

326

1/9
1/20, 1/29

(Motor)

16 (0.63)

58 (2.28)

5.4 Σ-Series Dimensional Drawings

J SGMG-jjAjB Servomotor (1000 min−1)
Incremental encoder (8192 P/R)

(0.0016)

(ø0.0016)

(0.0008)

MTG Holes

0.04
(0.0016)
(44A2B, 60A2B ONLY)

Detailed View of Shaft End for SGMG-03A2B to -09A2B

5
Detailed View of Shaft End for SGMG-12A2B to -60A2B

327

USING THE DIGITAL OPERATOR
5.4.1 Servomotor Dimensional Drawings cont.

in mm (inches)
Type
SGMG03A2B
06A2B
09A2B
12A2B
20A2B
30A2B
44A2B
60A2B

L

LL

LM

LR

LT

KB1

KB2

196
(7.72)
219
(8.62)
243
(9.57)
245
(9.65)
271
(10.67)
305
(12.01)
373
(14.69)
447
(17.60)

138
(5.43)
161
(6.34)
185
(7.28)
166
(6.54)
192
(7.56)
226
(8.90)
260
(10.24)
334
(13.15)

92
(3.62)
115
(4.53)
139
(5.47)
119
(4.69)
145
(5.71)
179
(7.05)
213
(8.39)
287
(11.30)

58
(2.28)
58
(2.28)
58
(2.28)
79
(3.11)
79
(3.11)
79
(3.11)
113
(4.45)
113
(4.45)

46
(1.81)
46
(1.81)
46
(1.81)
47
(1.85)
47
(1.85)
47
(1.85)
47
(1.85)
47
(1.85)

65
(2.56)
88
(3.46)
112
(4.41)
89
(3.50)
115
(4.53)
149
(5.87)
174
(6.85)
248
(9.76)

117
(4.61)
140
(5.51)
164
(6.46)
145
(5.71)
171
(6.73)
205
(8.07)
239
(9.41)
313
(12.32)

IE

KL1

KL2

125
(4.92)
125
(4.92)

109
(4.29)
109
(4.29)
109
(4.29)
140
(5.51)
140
(5.51)
140
(5.51)
150
(5.91)
150
(5.91)

88
(3.46)
88
(3.46)
88
(3.46)
88
(3.46)
88
(3.46)
88
(3.46)
88
(3.46)
88
(3.46)








in mm (inches)
Type
yp
SGMGSGMG
03A2B

LA
145
(5.71)

LC
130
(5.12)

Flange dimensions
LE
LF1
LF2
LG
6
6

12
(0.24) (0.24)
(0.47)

LH
165
(6.50)

LJ1
45
(1.77)

LJ2


LZ
9
(0.35)

130
(5.12)

6
(0.24)

6
(0.24)



12
(0.47)

165
(6.50)

45
(1.77)



9
(0.35)

130
(5.12)

6
(0.24)

6
(0.24)



12
(0.47)

165
(6.50)

45
(1.77)



9
(0.35)

0
180
114.3 − 0.025 (7.09)

3.2
(0.13)

3
(0.12)

0.5
18
(0.0197) (0.71)

230
(9.06)

76
(2.99)

62
(2.44)

13.5
(0.53)

3.2
(0.13)

3
(0.12)

0.5
18
(0.0197) (0.71)

230
(9.06)

76
(2.99)

62
(2.44)

13.5
(0.53)

3.2
(0.13)

3
(0.12)

0.5
18
(0.0197) (0.71)

230
(9.06)

76
(2.99)

62
(2.44)

13.5
(0.53)

3.2
(0.13)

3
(0.12)

0.5
18
(0.0197) (0.71)

230
(9.06)

76
(2.99)

62
(2.44)

13.5
(0.53)

3.2
(0.13)

3
(0.12)

0.5
18
(0.0197) (0.71)

230
(9.06)

76
(2.99)

62
(2.44)

13.5
(0.53)

LB
0
110 − 0.035
0

(4.33 − 0.0014)
06A2B

5

145
(5.71)

0

110 − 0.035
0

(4.33 − 0.0014)
09A2B

145
(5.71)

0

110 − 0.035
0

(4.33 − 0.0014)
12A2B

200
(7.87)

0

(4.50 − 0.0010)
20A2B

200
(7.87)

0
180
114.3 − 0.025 (7.09)
0

(4.50 − 0.0010)
30A2B

200
(7.87)

0
180
114.3 − 0.025 (7.09)
0

(4.50 − 0.0010)
44A2B

200
(7.87)

0
180
114.3 − 0.025 (7.09)
0

(4.50 − 0.0010)
60A2B

200
(7.87)

0
180
114.3 − 0.025 (7.09)
0

(4.50 − 0.0010)

328

5.4 Σ-Series Dimensional Drawings

in mm (inches)
Type
SGMG
SGMG-

Shaft end dimensions
S

03A2B

Approx.
mass
kg
(lb)

S1

Q

30
(1.18)

40
(1.57)

5.5
(12.12)

30
(1.18)

40
(1.57)

7.6
(16.75)

30
(1.18)

40
(1.57)

9.6
(21.16)

45
(1.77)

76
(2.99)

14
(30.86)

45
(1.77)

76
(2.99)

18
(39.62)

+ 0.01
45
0
(1.77)
+ 0.0004
(1.38
)
0

76
(2.99)

23
(50.69)

45
(1.77)

110
(4.33)

30
(66.12)

45
(1.77)

110
(4.33)

40
(88.16)

0

19 − 0.013
0

(0.75 − 0.0005)
06A2B

0

19 − 0.013
0

(0.75 − 0.0005)
09A2B

0

22 − 0.013
0

(0.87 − 0.0005)
12A2B

35
(1.38

20A2B

35
(1.38

30A2B

44A2B

+ 0.01
0
+ 0.0004
)
0
+ 0.01
0
+ 0.0004
)
0

35

0

42 − 0.016

5

0

(1.65 − 0.0006)
60A2B

0

42 − 0.016
0

(1.65 − 0.0006)

Note

1) Incremental encoder (8192 P/R) is used as a detector.
2) SGMG-03A2B to -30A2B do not contain eyebolts.

329

USING THE DIGITAL OPERATOR
5.4.1 Servomotor Dimensional Drawings cont.

• Connector Wiring on Detector Side
Receptacle: MS3102A20-29P
Plug (To be prepared by customer) (L type): MS3108B20-29S or
(Straight type) MS3106B20-29S
Cable Clamp: (To be prepared by customer) MS3057-12A
Encoder Wiring Specifications
A
B
C
D
E
F
G
H
J

Note

A channel output
A channel output
B channel output
B channel output
C channel output
C channel output
0V
+5V DC
FG (Frame Ground)

K
L
M
N
P
R
S
T

1) Terminals K to T are not used.
2) Receptacle, plug and cable clamp are common regardless of motor capacity.
• Connector Wiring on Motor Side

5

Motor Wiring Specifications
A
B
C
D

Note

330

Phase U
Phase V
Phase W
Ground terminal

Receptacle, plug and cable clamp differ depending on the capacity. Refer to 6) Connectors
on Detector and Motor Sides (page 392).

5.4 Σ-Series Dimensional Drawings

Incremental encoder (8192 P/R), with brake
• 0.3 to 3.0kW

(0.0016)
(ø0.0016)

MTG Holes
(0.0008)

Detailed View of Shaft End for SGMG-03A2BAB to -09A2BAB

5
Detailed View of Shaft End for SGMG-12A2BAB to -30A2BAB

331

USING THE DIGITAL OPERATOR
5.4.1 Servomotor Dimensional Drawings cont.

in mm (inches)
Type
yp
SGMGSGMG
03A2BAB

LA
145
(5.71)

LC
130
(5.12)

Flange dimensions
LE
LF1
LF2
LG
6
6

12
(0.24) (0.24)
(0.47)

LH
165
(6.50)

LJ1
45
(1.77)

LJ2


LZ
9
(0.35)

130
(5.12)

6
(0.24)

6
(0.24)



12
(0.47)

165
(6.50)

45
(1.77)



9
(0.35)

130
(5.12)

6
(0.24)

6
(0.24)



12
(0.47)

165
(6.50)

45
(1.77)



9
(0.35)

0
180
114.3 − 0.025 (7.09)

3.2
(0.13)

3
(0.12)

0.5
18
(0.0197) (0.71)

230
(9.06)

76
(2.99)

62
(2.44)

13.5
(0.53)

3.2
(0.13)

3
(0.12)

0.5
18
(0.0197) (0.71)

230
(9.06)

76
(2.99)

62
(2.44)

13.5
(13.5)

3.2
(0.13)

3
(0.12)

0.5
18
(0.0197) (0.71)

230
(9.06)

76
(2.99)

62
(2.44)

13.5
(0.53)

LB
0
110 − 0.035
0

(4.33 − 0.0014)
06A2BAB

145
(5.71)

0

110 − 0.035
0

(4.33 − 0.0014)
09A2BAB

145
(5.71)

0

110 − 0.035
0

(4.33 − 0.0014)
12A2BAB

200
(7.87)

0

(4.50 − 0.0010)
20A2BAB

200
(7.87)

0
180
114.3 − 0.025 (7.09)
0

(4.50 − 0.0010)
30A2BAB

5

332

200
(7.87)

0
180
114.3 − 0.025 (7.09)
0
(4.50 − 0.0010)

5.4 Σ-Series Dimensional Drawings

in mm (inches)
Type
SGMG
SGMG-

Shaft end dimensions
S

03A2BAB

Approx.
mass
kg
(bl)

S1
0

19 − 0.013

Q

30
(1.18)

40
(1.57)

7.5
(16.53)

30
(1.18)

40
(1.57)

9.6
(21.16)

30
(1.18)

40
(1.57)

12
(26.45)

45
(1.77)

76
(2.99)

19
(41.88)

45
(1.77)

76
(2.99)

23.5
(51.79)

45
(1.77)

76
(2.99)

28.5
(62.81)

0

(0.75 − 0.0005)
06A2BAB

0

19 − 0.013
0

(0.75 − 0.0005)
09A2BAB

0

22 − 0.013
0

(0.87 − 0.0005)
12A2BAB

35
(1.38

20A2BAB

35
(1.38

30A2BAB

35
(1.38

Note

+ 0.01
0
+ 0.0004
)
0
+ 0.01
0
+ 0.0004
)
0
+ 0.01
0
+ 0.0004
)
0

5

Incremental encoder (8192 P/R) is used as a detector.
• Connector Wiring on Motor Side
A
B
C
D

Phase U
Phase V
Phase W
Frame ground (FG)

E
F
G

Brake terminal
Brake terminal


333

USING THE DIGITAL OPERATOR
5.4.1 Servomotor Dimensional Drawings cont.

• 4.4 to 6.0kW

(0.0016)

(ø0.0016)

0.04
(0.0016)

MTG Holes

Detailed View of Shaft End

5
in mm (inches)
Type
SGMG44A2BAB
60A2BAB

L

LL

LM

LR

LT

KB1

KB2

KB3

IE

KL1

KL2

KL3

424
(16.69)
498
(19.61)

311
(12.24)
385
(15.16)

264
(10.39)
338
(13.31)

113
(4.45)
113
(4.45)

47
(1.85)
47
(1.85)

174
(6.85)
248
(9.76)

290
(11.42)
364
(14.33)

231
(9.09)
305
(12.01)

125
(4.92)
125
(4.92)

150
(5.91)
150
(5.91)

88
(3.46)
88
(3.46)

123
(4.84)
123
(4.84)

in mm (inches)
Type
yp
SGMGSGMG
44A2BAB

LA
200
(7.87)

LB

LC

0
180
114.3 − 0.025 (7.09)

Flange dimensions
LE
LF1
LF2
LG
3.2
3
0.5
18
(0.13) (0.12) (0.0197) (0.71)

LH
230
(9.06)

LJ1
76
(2.99)

LJ2
62
(2.44)

LZ
13.5
(0.53)

3.2
(0.13)

230
(9.06)

76
(2.99)

62
(2.44)

13.5
(0.53)

0

(4.50 − 0.0010)
60A2BAB

200
(7.87)

0
180
114.3 − 0.025 (7.09)
0

(4.50 − 0.0010)

334

3
(0.12)

0.5
18
(0.0197) (0.71)

5.4 Σ-Series Dimensional Drawings

in mm (inches)
Type
SGMG
SGMG-

Shaft end dimensions
S

44A2BAB

Approx.
mass
kg
(lb)

S1
0

42 − 0.016

Q

45
(1.77)

110
(4.33)

35
(77.14)

45
(1.77)

110
(4.33)

45.5
(100.28)

0

(1.65 − 0.0006)
60A2BAB

0

42 − 0.016
0

(1.65 − 0.0006)

Note

Incremental encoder (8192 P/R) is used as a detector.
• Connector Wiring on Motor Side
A
B
C

Brake terminal
Brake terminal

A
B
C
D

Phase U
Phase V
Phase W
Frame ground (FG)

5

335

USING THE DIGITAL OPERATOR
5.4.1 Servomotor Dimensional Drawings cont.

Absolute encoder (15bit : 8192 P/R, 12 bit : 1024 P/R)

(0.0016)

(3.94)

(ø0.0016)

(0.0008)

MTG Holes

0.04
(0.0016)
(44ASB, 60ASB ONLY)

Detailed View of Shaft End for SGMG-03ASB to -09ASB

5
Detailed View of Shaft End for SGMG-12ASB to -60ASB

336

5.4 Σ-Series Dimensional Drawings

in mm (inches)
Type
SGMG03ASB
06ASB
09ASB
12ASB
20ASB
30ASB
44ASB
60ASB

L

LL

LM

LR

LT

KB1

KB2

210
(8.27)
233
(9.17)
257
(10.12)
259
(10.20)
285
(11.22)
319
(12.56)
387
(15.24)
461
(18.15)

152
(5.98)
175
(6.89)
199
(7.83)
180
(7.09)
206
(8.11)
240
(9.45)
274
(10.79)
348
(13.70)

92
(3.62)
115
(4.53)
139
(5.47)
119
(4.69)
145
(5.71)
179
(7.05)
213
(8.39)
287
(11.30)

58
(2.28)
58
(2.28)
58
(2.28)
79
(3.11)
79
(3.11)
79
(3.11)
113
(4.45)
113
(4.45)

60
(2.36)
60
(2.36)
60
(2.36)
61
(2.40)
61
(2.40)
61
(2.40)
61
(2.40)
61
(2.40)

65
(2.56)
88
(3.46)
112
(4.41)
89
(3.50)
115
(4.53)
149
(5.87)
174
(6.85)
248
(9.76)

131
(5.16)
154
(6.06)
178
(7.01)
159
(6.26)
185
(7.28)
219
(8.62)
253
(9.96)
327
(12.87)

IE

KL1

KL2

125
(4.92)
125
(4.92)

109
(4.29)
109
(4.29)
109
(4.29)
140
(5.51)
140
(5.51)
140
(5.51)
150
(5.91)
150
(5.91)

88
(3.46)
88
(3.46)
88
(3.46)
88
(3.46)
88
(3.46)
88
(3.46)
88
(3.46)
88
(3.46)








in mm (inches)
Type
yp
SGMGSGMG
03ASB

LA
145
(5.71)

LC
130
(5.12)

Flange dimensions
LF1
LF2
LG
6
6

12
(0.24) (0.24)
(0.47)

LH
165
(6.50)

LJ1
45
(1.77)

LJ2


130
(5.12)

6
(0.24)

6
(0.24)



12
(0.47)

165
(6.50)

45
(1.77)



9
(0.35)

130
(5.12)

6
(0.24)

6
(0.24)



12
(0.47)

165
(6.50)

45
(1.77)



9
(0.35)

0
180
114.3 − 0.025 (7.09)

3.2
(0.13)

3
(0.12)

0.5
18
(0.0197) (0.71)

230
(9.06)

76
(2.99)

62
(2.44)

13.5
(0.53)

3.2
(0.13)

3
(0.12)

0.5
18
(0.0197) (0.71)

230
(9.06)

76
(2.99)

62
(2.44)

13.5
(0.53)

3.2
(0.13)

3
(0.12)

0.5
18
(0.0197) (0.71)

230
(9.06)

76
(2.99)

62
(2.44)

13.5
(0.53)

LB
0

110 − 0.035
0

LE

LZ
9
(0.35)

(4.33 − 0.0014)
06ASB

145
(5.71)

0

110 − 0.035

5

0

(4.33 − 0.0014)
09ASB

145
(5.71)

0

110 − 0.035
0

(4.33 − 0.0014)
12ASB

200
(7.87)

0

(4.50 − 0.0010)
20ASB

200
(7.87)

0
180
114.3 − 0.025 (7.09)
0

(4.50 − 0.0010)
30ASB

200
(7.87)

0
180
114.3 − 0.025 (7.09)
0

(4.50 − 0.0010)
44ASB

200
(7.87)

0
180
114.3 − 0.025 (7.09)
0
(4.50 − 0.0010)

3.2
(0.13)

3
(0.12)

0.5
18
(0.0197) (0.71)

230
(9.06)

76
(2.99)

62
(2.44)

13.5
(0.53)

60ASB

200
(7.87)

0
180
114.3 − 0.025 (7.09)

3.2
(0.13)

3
(0.12)

0.5
18
(0.0197) (0.71)

230
(9.06)

76
(2.99)

62
(2.44)

13.5
(0.53)

0

(4.50 − 0.0010)

337

USING THE DIGITAL OPERATOR
5.4.1 Servomotor Dimensional Drawings cont.

in mm (inches)
Type
SGMG
SGMG-

Shaft end dimensions
S

03ASB

Approx.
mass
kg
(lb)

S1

Q

30
(1.18)

40
(1.57)

5.9
(13.00)

30
(1.18)

40
(1.57)

8.0
(17.63)

30
(1.18)

40
(1.57)

10
(22.04)

45
(1.77)

76
(2.99)

14
(30.86)

+ 0.01
45
0
(1.77)
+ 0.0004
(1.38
)
0

76
(2.99)

18.5
(40.77)

45
(1.77)

76
(2.99)

24
(52.90)

45
(1.77)

110
(4.33)

30
(66.12)

45
(1.77)

110
(4.33)

40
(88.16)

0

19 − 0.013
0

(0.75 − 0.0005)
06ASB

0

19 − 0.013
0

(0.75 − 0.0005)
09ASB

0

22 − 0.013
0

(0.87 − 0.0005)
12ASB

35
(1.38

20ASB

30ASB

5

+ 0.0004
)
0

35

35
(1.38

44ASB

+ 0.01
0

+ 0.01
0
+ 0.0004
)
0
0

42 − 0.016
0

(1.65 − 0.0006)
60ASB

0

42 − 0.016
0

(1.65 − 0.0006)

Note

1) Absolute encoder (15bit : 8192 P/R) is used as a detector.
2) SGMG-03ASB to -30ASB do not contain eyebolts.

338

5.4 Σ-Series Dimensional Drawings

• Connector Wiring on Detector Side
Receptacle: MS3102A20-29P
Plug (To be prepared by customer) (L type): MS3108B20-29S or
(Straight type) MS3106B20-29S
Cable Clamp: (To be prepared by customer) MS3057-12A
Encoder Wiring Specifications
A
B
C
D
E
F
G
H
J

Note

A channel output
/A channel output
B channel output
/B channel output
Z (C) channel output
/Z (C) channel output
0V
+5V DC
FG (Frame Ground)

K
L
M
N
P
R Reset
S 0V (battery)
T 3.6V (battery)

1) Terminals K to P are not used.
2) Receptacle, plug and cable clamp are common regardless of motor capacity.
• Connector Wiring on Motor Side

5

Motor Wiring Specifications
A
B
C
D

Note

Phase U
Phase V
Phase W
Ground terminal

Receptacle, plug and cable clamp differ depending on the capacity. Refer to 6) Connectors
on Detector and Motor Sides (page 392).

339

USING THE DIGITAL OPERATOR
5.4.1 Servomotor Dimensional Drawings cont.

Absolute encoder (15bit : 8192 P/R, 12 bit : 1024 P/R), with brake
• 0.3 to 3.0kW

(0.0016)
(ø0.0016)

MTG Holes
(0.0008)

Detailed View of Shaft End for SGMG-03ASBAB to -09ASBAB

5
Detailed View of Shaft End for SGMG-12ASBAB to -30ASBAB

340

5.4 Σ-Series Dimensional Drawings

in mm (inches)
Type
yp
SGMGSGMG
03ASBAB

LA
145
(5.71)

LC
130
(5.12)

Flange dimensions
LE
LF1
LF2
LG
6
6

12
(0.24) (0.24)
(0.47)

LH
165
(6.50)

LJ1
45
(1.77)

LJ2


LZ
9
(0.35)

130
(5.12)

6
(0.24)

6
(0.24)



12
(0.47)

165
(6.50)

45
(1.77)



9
(0.35)

130
(5.12)

6
(0.24)

6
(0.24)



12
(0.47)

165
(6.50)

45
(1.77)



9
(0.35)

0
180
114.3 − 0.025 (7.09)

3.2
(0.13)

3
(0.12)

0.5
18
(0.0197) (0.71)

230
(9.06)

76
(2.99)

62
(2.44)

13.5
(0.53)

3.2
(0.13)

3
(0.12)

0.5
18
(0.0197) (0.71)

230
(9.06)

76
(2.99)

62
(2.44)

13.5
(0.53)

3.2
(0.13)

3
(0.12)

0.5
18
(0.0197) (0.71)

230
(9.06)

76
(2.99)

62
(2.44)

13.5
(0.53)

LB
0
110 − 0.035
0

(4.33 − 0.0014)
06ASBAB

145
(5.71)

0

110 − 0.035
0

(4.33 − 0.0014)
09ASBAB

145
(5.71)

0

110 − 0.035
0

(4.33 − 0.0014)
12ASBAB

200
(7.87)

0

(4.50 − 0.0010)
20ASBAB

200
(7.87)

0
180
114.3 − 0.025 (7.09)
0

(4.50 − 0.0010)
30ASBAB

200
(7.87)

0
180
114.3 − 0.025 (7.09)
0

(4.50 − 0.0010)

5

341

USING THE DIGITAL OPERATOR
5.4.1 Servomotor Dimensional Drawings cont.

in mm (inches)
Type
SGMG
SGMG-

Shaft end dimensions
S

03ASBAB

Approx.
mass
kg
(lb)

S1
0

19 − 0.013

Q

30
(1.18)

40
(1.57)

7.9
(17.41)

30
(1.18)

40
(1.57)

10
(22.04)

30
(1.18)

40
(1.57)

12
(26.45)

45
(1.77)

76
(2.99)

19.5
(42.98)

45
(1.77)

76
(2.99)

23.5
(51.79)

45
(1.77)

76
(2.99)

29
(63.92)

0

(0.75 − 0.0005)
06ASBAB

0

19 − 0.013
0

(0.75 − 0.0005)
09ASBAB

0

22 − 0.013
0

(0.87 − 0.0005)
12ASBAB

35
(1.38

20ASBAB

35
(1.38

30ASBAB

35
(1.38

5

+ 0.01
0
+ 0.0004
)
0
+ 0.01
0
+ 0.0004
)
0
+ 0.01
0
+ 0.004
)
0

Note Absolute encoder (15bit : 8192 P/R) is used as a detector.
• Connector Wiring on Motor Side
Motor Wiring Specifications
A
B
C
D

342

Phase U
Phase V
Phase W
Frame ground (FG)

E
F
G

Brake terminal
Brake terminal


5.4 Σ-Series Dimensional Drawings

• 4.4 to 6.0kW

(0.0016)
(ø0.0016)

0.04
(0.0016)

MTG Holes

Detailed View of Shaft End

5
in mm (inches)
Type
SGMG44ASBAB
60ASBAB

L

LL

LM

LR

LT

KB1

KB2

KB3

IE

KL1

KL2

KL3

438
(17.24)
512
(20.16)

325
(12.80)
399
(15.71)

264
(10.39)
338
(13.31)

113
(4.45)
113
(4.45)

61
(2.40)
61
(2.40)

174
(6.85)
248
(9.76)

304
(11.97)
378
(14.88)

231
(9.09)
305
(12.01)

125
(4.92)
125
(4.92)

150
(5.91)
150
(5.91)

88
(3.46)
88
(3.46)

123
(4.84)
123
(4.84)

in mm (inches)
Type
yp
SGMGSGMG
44ASBAB

LA
200
(7.87)

LB

LC

0
180
114.3 − 0.025 (7.09)

Flange dimensions
LE
LF1
LF2
LG
3.2
3
0.5
18
(0.13) (0.12) (0.0197) (0.71)

LH
230
(9.06)

LJ1
76
(2.99)

LJ2
62
(2.44)

LZ
13.5
(0.53)

3.2
(0.13)

230
(9.06)

76
(2.99)

62
(2.44)

13.5
(0.53)

0

(4.50 − 0.0010)
60ASBAB

200
(7.87)

0
180
114.3 − 0.025 (7.09)

3
(0.12)

0.5
18
(0.0197) (0.71)

0

(4.50 − 0.0010)

343

USING THE DIGITAL OPERATOR
5.4.1 Servomotor Dimensional Drawings cont.

in mm (inches)
Type
SGMG
SGMG-

Shaft end dimensions
S

44ASBAB

Approx.
mass
kg
(lb)

S1
0

42 − 0.016

Q

45
(1.77)

110
(4.33)

36
(79.34)

45
(1.77)

110
(4.33)

50
(110.20)

0

(1.65 − 0.0006)
60ASBAB

0

42 − 0.016
0

(1.65 − 0.0006)

Note Absolute encoder (15bit : 8192 P/R) is used as a detector.
• Connector Wiring on Brake and Motor Sides
A
B
C

A
B
C
D

5

344

Brake terminal
Brake terminal

Phase U
Phase V
Phase W
Frame ground (FG)

5.4 Σ-Series Dimensional Drawings

Standard backlash gear (1000 min−1), without brake
• Foot-mounted type

φSh6

Grease-lubrication type servomotors

V

Detailed View
of Shaft End
4-φZ
MTG Holes

in mm (inches)
Motor type
SGMG-

Gear type

Gear

L

LL

LM

LT

ratio

03A2BSAR CNHX-4095

1/6

KB
1

KB
2

KL1 KL2

R

A

B

380

138

92

46

65

117

109

88

242

209

152

(15.0)

(5.43)

(3.62)

(1.81)

(2.56)

(4.61)

(4.29)

(3.46)

(9.53)

(8.23)

(5.98)

03A2BSBR CNHX-4095 1/11 380

138

92

46

65

117

109

88

242

209

152

(15.0)

(5.43)

(3.62)

(1.81)

(2.56)

(4.61)

(4.29)

(3.46)

(9.53)

(8.23)

(5.98)

03A2BSCR CNHX-4105 1/21 394

138

92

46

65

117

109

88

256

209

152

(15.5)

(5.43)

(3.62)

(1.81)

(2.56)

(4.61)

(4.29)

(3.46)

(10.1)

(8.23)

(5.98)

03A2BS7R

CNHX-4105 1/29 394

138

92

46

65

117

109

88

256

209

152

(15.5)

(5.43)

(3.62)

(1.81)

(2.56)

(4.61)

(4.29)

(3.46)

(10.1)

(8.23)

(5.98)

06A2BSAR CNHX-4105

1/6

417

161

115

46

88

140

109

88

256

209

152

(16.4)

(6.34)

(4.53)

(1.81)

(3.46)

(5.51)

(4.29)

(3.46)

(10.1)

(8.23)

(5.98)

06A2BSBR CNHX-4105 1/11 417

161

115

46

88

140

109

88

256

209

152

(16.4)

(6.34)

(4.53)

(1.81)

(3.46)

(5.51)

(4.29)

(3.46)

(10.1)

(8.23)

(5.98)

06A2BSCR CNHX-4115 1/21 449

161

115

46

88

140

109

88

288

257

204

(17.7)

(6.34)

(4.53)

(1.81)

(3.46)

(5.51)

(4.29)

(3.46)

(11.3)

(10.1)

(8.03)

06A2BS7R

CNHX-4115 1/29 449

161

115

46

88

140

109

88

288

257

204

(17.7)

(6.34)

(4.53)

(1.81)

(3.46)

(5.51)

(4.29)

(3.46)

(11.3)

(10.1)

(8.03)

09A2BSAR CNHX-4105

1/6

441

185

139

46

112

164

109

88

256

209

152

(17.4)

(7.28)

(5.47)

(1.81)

(4.41)

(6.46)

(4.29)

(3.46)

(10.1)

(8.23)

(5.98)

09A2BSBR CNHX-4105 1/11 441

185

139

46

112

164

109

88

256

209

152

(17.4)

(7.28)

(5.47)

(1.81)

(4.41)

(6.46)

(4.29)

(3.46)

(10.1)

(8.23)

(5.98)

C

Shaft
center
allowable
radial load
N

0
100−0.5

2360

0
100−0.5

2890

0
100−0.5

5390

0
100−0.5

5390

0
100−0.5

3720

0
100−0.5

4550

0
120−0.5

7070

0
120−0.5

7860

0
100−0.5

3720

0
100−0.5

4550

20.5
(45.2)

0
3.94−0.020

20.5
(45.2)

0
3.94−0.020

22.5
(49.6)

0
3.94−0.020

22.5
(49.6)

0
3.94−0.020

24.6
(54.2)

0
3.94−0.020

24.6
(54.2)

0
3.94−0.020

34.6
(76.3)

0
4.72−0.020

34.6
(76.3)

0
4.72−0.020

26.6
(58.6)

0
3.94−0.020

0
3.94−0.020

Approx.
mass
kg (lb)

26.6
(58.6)

345

5

USING THE DIGITAL OPERATOR
5.4.1 Servomotor Dimensional Drawings cont.

Motor type
SGMG-

Gear type

Gear

L

LL

LM

LT

ratio

KB
1

KB KL1 KL2
2

R

A

B

C

09A2BSCR CNHX-4115 1/21 473

185

139

46

112

164

109

88

288

257

(7.28)

(5.47)

(1.81)

(4.41)

(6.46)

(4.29)

(3.46)

(11.3)

(10.1)

CNHX-4115 1/29 473

185

139

46

112

164

109

88

288

257

(7.28)

(5.47)

(1.81)

(4.41)

(6.46)

(4.29)

(3.46)

(11.3)

(10.1)

477

166

119

47

89

145

140

88

311

260

(18.8)

(6.54)

(4.69)

(1.85)

(3.50)

(5.71)

(5.51)

(3.46)

(12.2)

(10.2)

12A2BSBR CNHX-4115 1/11 477

166

119

47

89

145

140

88

311

260

(6.54)

(4.69)

(1.85)

(3.50)

(5.71)

(5.51)

(3.46)

(12.2)

(10.2)

166

119

47

89

145

140

88

370

300

(6.54)

(4.69)

(1.85)

(3.50)

(5.71)

(5.51)

(3.46)

(14.6)

(11.8)

12A2BS7R

CNHX-4135 1/29 536

166

119

47

89

145

140

88

370

300

(6.54)

(4.69)

(1.85)

(3.50)

(5.71)

(5.51)

(3.46)

(14.6)

(11.8)

20A2BSAR CNHX-4115

1/6

503

192

145

47

115

171

140

88

311

260

(7.56)

(5.71)

(1.85)

(4.53)

(6.73)

(5.51)

(3.46)

(12.2)

(10.2)

20A2BSBR CNHX-4115 1/11 503

192

145

47

115

171

140

88

311

260

(7.56)

(5.71)

(1.85)

(4.53)

(6.73)

(5.51)

(3.46)

(12.2)

(10.2)

20A2BSCR CNHX-4145 1/21 582

192

145

47

115

171

140

88

390

300

(7.56)

(5.71)

(1.85)

(4.53)

(6.73)

(5.51)

(3.46)

(15.4)

(11.8)

30A2BSAR CHHX-4130

1/6

596

226

179

47

149

205

140

88

370

300

(8.90)

(7.05)

(1.85)

(5.87)

(8.07)

(5.51)

(3.46)

(14.6)

(11.8)

30A2BSBR CHHX-4135 1/11 596

226

179

47

149

205

140

88

370

300

(8.90)

(7.05)

(1.85)

(5.87)

(8.07)

(5.51)

(3.46)

(14.6)

(11.8)

44A2BSAR CHHX-4135

1/6

664

260

213

47

174

239

150

88

404

300

(10.2)

(8.39)

(1.85)

(6.85)

(9.41)

(5.91)

(3.46)

(15.9)

(11.8)

44A2BSBR CHHX-4145 1/11 684

260

213

47

174

239

150

88

424

300

(10.2)

(8.39)

(1.85)

(6.85)

(9.41)

(5.91)

(3.46)

(16.7)

(11.8)

(9.69)

10740

76
88
(194.0)

0
5.91−0.020

246

(26.9)

6740

0
150−0.5

(9.69)

76

(167.5)

0
5.91−0.020

246

(26.1)

8240

0
150−0.5

(9.69)

72

(167.5)

0
5.91−0.020

246

(23.5)

6740

0
150−0.5

(9.69)

47

(158.7)

0
5.91−0.020

246

(23.5)

13040

0
150−0.5

(9.69)

47

(103.6)

0
4.72−0.020

246

(22.9)

5700

0
150−0.5

(8.03)

67

(103.6)

0
4.72−0.020

204

(19.8)

4660

0
120−0.5

(8.03)

67

(147.7)

0
5.91−0.020

204

(19.8)

43

(147.7)

0
5.91−0.020

(9.69)

43

(94.8)

0
4.72−0.020

246

(21.1)

36.6

(94.8)

0
4.72−0.020

(9.69)

36.6

(80.7)

0
4.72−0.020

246

(21.1)

11320

0
120−0.5

(8.03)

12A2BSCR CNHX-4130 1/21 536

10180

0
150−0.5

204

(18.8)

5700

0
150−0.5

(8.03)

1/6

kg (lb)

4660

0
120−0.5

204

12A2BSAR CNHX-4115

7860

0
120−0.5

(8.03)

Approx.
mass

(80.7)

0
4.72−0.020

204

(18.6)

7070

0
120−0.5

(8.03)

09A2BS7R

5

0
120−0.5

204

(18.6)

Shaft
center
allowable
radial load
N

89
(196.2)

0
5.91−0.020

in mm (inches)
Motor type
SGMG-

E

F

G

K

M

N

XR

XC

Z

Q

QK

03A2BSAR

75

90

12

40

180

130

45

60

11

35

32

(2.95)

(3.54)

(0.47)

(1.57)

(7.09)

(5.12)

(1.77)

(2.36)

(0.43)

(1.38)

(1.26)

03A2BSBR

Foot dimensions

Shaft end dimensions

03A2BSCR

75

90

12

40

180

130

45

60

11

35

32

(2.95)

(3.54)

(0.47)

(1.57)

(7.09)

(5.12)

(1.77)

(2.36)

(0.43)

(1.38)

(1.26)

S
φ28
φ1.10
φ28
φ1.10

03A2BS7R

75

90

12

40

180

135

45

60

11

35

32

φ28

(2.95)

(3.54)

(0.47)

(1.57)

(7.09)

(5.31)

(1.77)

(2.36)

(0.43)

(1.38)

(1.26)

φ1.10
φ28

346

75

90

12

40

180

135

45

60

11

35

32

(2.95)

(3.54)

(0.47)

(1.57)

(7.09)

(5.31)

(1.77)

(2.36)

(0.43)

(1.38)

(1.26)

φ1.10

T

U

W

0
−0.013
0
−0.0005

7

4

8

(0.28)

(0.16)

(0.31)

0
−0.013
0
−0.0005

7

4

8

(0.28)

(0.16)

(0.31)

0
−0.013
0
−0.0005
0
−0.013
0
−0.0005

7

4

8

(0.28)

(0.16)

(0.31)

7

4

8

(0.28)

(0.16)

(0.31)

V
M8 screw,
depth 19
M8 screw,
depth 19
M8 screw,
depth 19
M8 screw,
depth 19

5.4 Σ-Series Dimensional Drawings

Motor type
SGMG-

06A2BSAR

Foot dimensions
E

F

G

K

M

N

Shaft end dimensions
XR

XC

Z

Q

QK

S

06A2BSBR

75

90

12

40

180

135

45

60

11

35

32

φ28

(2.95)

(3.54)

(0.47)

(1.57)

(7.09)

(5.31)

(1.77)

(2.36)

(0.43)

(1.38)

(1.26)

φ1.10

06A2BSCR

75

90

12

40

180

135

45

60

11

35

32

φ28

(2.95)

(3.54)

(0.47)

(1.57)

(7.09)

(5.31)

(1.77)

(2.36)

(0.43)

(1.38)

(1.26)

φ1.10
φ38

06A2BS7R

95

115

15

55

230

155

62

82

14

55

50

(3.74)

(4.53)

(0.59)

(2.17)

(9.06)

(6.10)

(2.44)

(3.23)

(0.55)

(2.17)

(1.97)

φ1.50
φ38

09A2BSAR

95

115

15

55

230

155

62

82

14

55

50

(3.74)

(4.53)

(0.59)

(2.17)

(9.06)

(6.10)

(2.44)

(3.23)

(0.55)

(2.17)

(1.97)

09A2BSBR

75

90

12

40

180

135

45

60

11

35

32

(2.95)

(3.54)

(0.47)

(1.57)

(7.09)

(5.31)

(1.77)

(2.36)

(0.43)

(1.38)

(1.26)

φ1.50
φ28
φ1.10

09A2BSCR

75

90

12

40

180

135

45

60

11

35

32

φ28

(2.95)

(3.54)

(0.47)

(1.57)

(7.09)

(5.31)

(1.77)

(2.36)

(0.43)

(1.38)

(1.26)

φ1.10

09A2BS7R

95

115

15

55

230

155

62

82

14

55

50

φ38

(3.74)

(4.53)

(0.59)

(2.17)

(9.06)

(6.10)

(2.44)

(3.23)

(0.55)

(2.17)

(1.97)

φ1.50
φ38

12A2BSAR

95

115

15

55

230

155

62

82

14

55

50

(3.74)

(4.53)

(0.59)

(2.17)

(9.06)

(6.10)

(2.44)

(3.23)

(0.55)

(2.17)

(1.97)

φ1.50
φ38

12A2BS7R

15

55

230

155

62

82

14

55

50

(0.59)

(2.17)

(9.06)

(6.10)

(2.44)

(3.23)

(0.55)

(2.17)

(1.97)

φ1.50

95

115

15

55

230

155

62

82

14

55

50

φ38

(4.53)

(0.59)

(2.17)

(9.06)

(6.10)

(2.44)

(3.23)

(0.55)

(2.17)

(1.97)

φ1.50

145

145

22

65

330

195

75

100

18

70

56

φ50

(5.71)

12A2BSCR

115
(4.53)

(3.74)

12A2BSBR

95
(3.74)

(5.71)

(0.87)

(2.56)

(13.0)

(7.68)

(2.95)

(3.94)

(0.71)

(2.76)

(2.20)

φ1.97

20A2BSAR

145

145

22

65

330

195

75

100

18

70

56

φ50

(5.71)

(5.71)

(0.87)

(2.56)

(13.0)

(7.68)

(2.95)

(3.94)

(0.71)

(2.76)

(2.20)

φ1.97
φ38

30A2BSAR

15

55

230

155

62

82

14

55

50

(0.59)

(2.17)

(9.06)

(6.10)

(2.44)

(3.23)

(0.55)

(2.17)

(1.97)

95

115

15

55

230

155

62

82

14

55

50

(4.53)

(0.59)

(2.17)

(9.06)

(6.10)

(2.44)

(3.23)

(0.55)

(2.17)

(1.97)

φ1.50

145

145

22

65

330

195

95

120

18

90

80

φ50

(5.71)

20A2BSCR

115
(4.53)

(3.74)

20A2BSBR

95
(3.74)

(5.71)

(0.87)

(2.56)

(13.0)

(7.68)

(3.74)

(4.72)

(0.71)

(3.54)

(3.15)

φ1.97
φ50

30A2BSBR

145

145

22

65

330

195

75

100

18

70

56

(5.71)

(5.71)

(0.87)

(2.56)

(13.0)

(7.68)

(2.95)

(3.94)

(0.71)

(2.76)

(2.20)

φ1.50
φ38

φ1.97

44A2BSAR

145

145

22

65

330

195

75

100

18

70

56

φ50

(5.71)

(5.71)

(0.87)

(2.56)

(13.0)

(7.68)

(2.95)

(3.94)

(0.71)

(2.76)

(2.20)

φ1.97
φ50

44A2BSBR

145

145

22

65

330

195

75

100

18

70

56

(5.71)

(5.71)

(0.87)

(2.56)

(13.0)

(7.68)

(2.95)

(3.94)

(0.71)

(2.76)

(2.20)

φ1.97
φ50

145

145

22

65

330

195

95

120

18

90

80

(5.71)

(5.71)

(0.87)

(2.56)

(13.0)

(7.68)

(3.74)

(4.72)

(0.71)

(3.54)

(3.15)

φ1.97

0
−0.013
0
−0.0005

T

U

W

7

4

8

(0.28)

(0.16)

(0.31)

0
−0.013
0
−0.0005

7

4

8

(0.28)

(0.16)

(0.31)

0
−0.016
0
−0.0006

8

5

10

(0.31)

(0.20)

(0.39)

0
−0.016
0
−0.0006

8

5

10

(0.31)

(0.20)

(0.39)

0
−0.013
0
−0.0005

7

4

8

(0.28)

(0.16)

(0.31)

0
−0.013
0
−0.0005

7

4

8

(0.28)

(0.16)

(0.31)

0
−0.016
0
−0.0006
0
−0.016
0
−0.0006
0
−0.016
0
−0.0006

8

5

10

(0.31)

(0.20)

(0.39)

8

5

10

(0.31)

(0.20)

(0.39)

8

5

10

(0.31)

(0.20)

(0.39)

0
−0.016
0
−0.0006

8

5

10

(0.31)

(0.20)

(0.39)

0
−0.016
0
−0.0006

9

5.5

14

(0.35)

(0.22)

(0.55)

0
−0.016
0
−0.0006
0
−0.016
0
−0.0006
0
−0.016
0
−0.0006
0
−0.016
0
−0.0006

9

5.5

14

(0.35)

(0.22)

(0.55)

8

5

10

(0.31)

(0.20)

(0.39)

8

5

10

(0.31)

(0.20)

(0.39)

9

5.5

14

(0.35)

(0.22)

(0.55)

0
−0.016
0
−0.0006

9

5.5

14

(0.35)

(0.22)

(0.55)

0
−0.016
0
−0.0006

9

5.5

14

(0.35)

(0.22)

(0.55)

0
−0.016
0
−0.0006
0
−0.016
0
−0.0006

9

5.5

14

(0.35)

(0.22)

(0.55)

9

5.5

14

(0.35)

(0.22)

(0.55)

V
M8 screw,
depth 19
M8 screw,
depth 19
M10 screw,
depth 22
M10 screw,
depth 22
M8 screw,
depth 19
M8 screw,
depth 19
M10 screw,
depth 22
M10 screw,
depth 22
M10 screw,
depth 22
M10 screw,
depth 22
M10 screw,
depth 18
M10 screw,
depth 18
M10 screw,
depth 22
M10 screw,
depth 22
M10 screw,
depth 18
M10 screw,
depth 18
M10 screw,
depth 18
M10 screw,
depth 18
M10 screw,
depth 18

347

5

USING THE DIGITAL OPERATOR
5.4.1 Servomotor Dimensional Drawings cont.

Oil-lubrication type servomotors

φSh6

Oil inlet tap

Oil
outlet plug

Oil
outlet plug

4-φZ
MTG Holes

V

Detailed View
of Shaft End

in mm (inches)
Motor
type
SGMG-

Gear type

20A2BS7R

CHHJ-4160

Gear

L

LL

LM

LT

KB1 KB2 KL1 KL2

R

A

B

ratio

145

47

115

171

140

88

495

319

318

(5.71)

(1.85)

(4.53)

(6.73)

(5.51)

(3.46)

(19.5)

(12.6)

(12.5)

226

179

47

149

205

140

88

495

319

318

(8.90)

(7.05)

(1.85)

(5.87)

(8.07)

(5.51)

(3.46)

(19.5)

(12.6)

(12.5)

226

179

47

149

205

140

88

559

382

363

(8.90)

(7.05)

(1.85)

(5.87)

(8.07)

(5.51)

(3.46)

(22.0)

(15.0)

(14.3)

260

213

47

174

239

150

88

593

382

363

(10.2)

(8.39)

(1.85)

(6.85)

(9.41)

(5.91)

(3.46)

(23.4)

(15.0)

(14.3)

260

213

47

174

239

150

88

593

382

363

(10.2)

(8.39)

(1.85)

(6.85)

(9.41)

(5.91)

(3.46)

(23.4)

(15.0)

(14.3)

334

287

47

248

313

150

88

529

319

318

(13.2)

(11.3)

(1.85)

(9.76)

(12.3)

(5.91)

(3.46)

(20.8)

(12.6)

(12.5)

348

1/29

927

334

287

47

248

313

150

88

593

382

363

(13.2)

(11.3)

(1.85)

(9.76)

(12.3)

(5.91)

(3.46)

(23.4)

(15.0)

(14.3)

977

334

287

47

248

313

150

88

643

417

393

(38.5)

60A2BS7R

CHHJ-4185

1/21

863

(36.5)

60A2BSCR

CHHJ-4175

1/11

853

(34.0)

60A2BSBR

CHHJ-4160

1/29

853

(33.6)

44A2BS7R

CHHJ-4175

1/21

785

(33.6)

44A2BSCR

CHHJ-4170

1/29

721

(30.9)

30A2BS7R

CHHJ-4170

1/21

192
(7.56)

(28.4)

5

CHHJ-4160

1/29

687
(27.1)

30A2BSCR

C

(13.2)

(11.3)

(1.85)

(9.76)

(12.3)

(5.91)

(3.46)

(25.3)

(16.4)

(15.5)

0
160 −0.5

Shaft
center
allowable
radial load
N

18520

16740

21770

19560

21790

13470

19560

0
8.66−0.020

155

201
(443.1)

0
7.87 −0.020
0
220 −0.5

191

(341.7)

0
6.30−0.020

0
200 −0.5

191

(421.1)

0
7.87 −0.020
0
160 −0.5

176

(421.1)

0
7.87 −0.020
0
200 −0.5

131

(388.0)

0
7.87 −0.020
0
200 −0.5

126

(288.8)

0
6.30−0.020

0
200 −0.5

mass
kg (lb)

(277.8)

0
6.30−0.020

0
160 −0.5

Approx.

29200

245
(540.1)

5.4 Σ-Series Dimensional Drawings

in mm (inches)
Motor type
SGMG-

Foot dimensions

Shaft end dimensions

30A2BSCR

F

G

K

M

N

XR

XC

Z

Q

QK

185

150

25

75

410

238

95

139

18

90

80

(7.28)

20A2BS7R

E

(5.91)

(0.98)

(2.95)

(16.1)

(9.37)

(3.74)

(5.47)

(0.71)

(3.54)

(3.15)

S
φ60
φ2.36

30A2BS7R

185

150

25

75

410

238

95

139

18

90

80

φ60

(7.28)

(5.91)

(0.98)

(2.95)

(16.1)

(9.37)

(3.74)

(5.47)

(0.71)

(3.54)

(3.15)

φ2.36
φ70

44A2BSCR

190

275

30

80

430

335

95

125

22

90

80

(7.48)

(10.8)

(1.18)

(3.15)

(16.9)

(13.2)

(3.74)

(4.92)

(0.87)

(3.54)

(3.15)

φ2.76
φ70

60A2BSBR

275

30

80

430

335

95

125

22

90

80

(10.8)

(1.18)

(3.15)

(16.9)

(13.2)

(3.74)

(4.92)

(0.87)

(3.54)

(3.15)

φ2.76

190

275

30

80

430

335

95

125

22

90

80

φ70

(7.48)

44A2BS7R

190
(7.48)

(10.8)

(1.18)

(3.15)

(16.9)

(13.2)

(3.74)

(4.92)

(0.87)

(3.54)

(3.15)

φ2.76
φ60

60A2BSCR

185

150

25

75

410

238

95

139

18

90

80

(7.28)

(5.91)

(0.98)

(2.95)

(16.1)

(9.37)

(3.74)

(5.47)

(0.71)

(3.54)

(3.15)

22

110

100

(0.87)

(4.33)

(3.94)

20
(0.79)

14

9

22

(0.35)

(0.87)

φ2.76

145

7.5
(0.30)

(0.55)

φ70

(5.71)

12
(0.47)

0
−0.016
0
φ3.15 −0.0006

80
(3.15)

115

20
(0.79)

20

90
(3.54)

(4.53)

7.5
(0.30)

(0.79)

22
(0.87)

380

12
(0.47)

7.5

125
(4.92)

(15.0)

20
(0.79)

(0.30)

95
(3.74)

470

7.5
(0.30)

12

335
(13.2)

(18.5)

12
(0.47)

(0.47)

430
(16.9)

85

18
(0.71)

0
−0.016
0
−0.0006

φ2.36

80

(3.35)

7
(0.28)

18

(3.15)

30

11
(0.43)

(0.71)

30

(1.18)

18
(0.71)

7

(1.18)

320

0
−0.016
0
−0.0006

7
(0.28)

(0.28)

275

(12.6)

0
−0.016
0
−0.0006

11
(0.43)

11

(10.8)

210

0
−0.016
0
−0.0006

W

(0.43)

190

(8.27)

0
−0.019
0
−0.0007

U

0
−0.019
0
−0.0007

(7.48)

60A2BS7R

0
−0.019
0
−0.0007

T

φ80

V
M10 screw,
depth 18
M10 screw,
depth 18
M12 screw,
depth 24
M12 screw,
depth 24
M12 screw,
depth 24
M10 screw,
depth 18
M12 screw,
depth 24
M12 screw,
depth 24

5

349

USING THE DIGITAL OPERATOR
5.4.1 Servomotor Dimensional Drawings cont.

• Frange-mounted Type

φSh6

Grease-lubrication type servomotors

φLBf8

V

4-MTG Holes

Detailed View
of Shaft End

6-MTG Holes

in mm (inches)
Motor type
SGMG-

Gear type

03A2BTAR

CNVX-4095

Gear

L

LL

LM

LT

KB1

KB2

KL1

KL2

R

Shaft center
allowable
radial load
N

2360

ratio

138

92

46

65

117

109

88

242

(5.43)

(3.62)

(1.81)

(2.56)

(4.61)

(4.29)

(3.46)

(9.53)

138

92

46

65

117

109

88

242

(5.43)

(3.62)

(1.81)

(2.56)

(4.61)

(4.29)

(3.46)

5

138

92

46

65

117

109

88

256

(5.43)

(3.62)

(1.81)

(2.56)

(4.61)

(4.29)

(3.46)

1/6

394

138

92

46

65

117

109

88

256

(5.43)

(3.62)

(1.81)

(2.56)

(4.61)

(4.29)

(3.46)

161

115

46

88

140

109

88

256

(6.34)

(4.53)

(1.81)

(3.46)

(5.51)

(4.29)

(3.46)

417

161

115

46

88

140

109

88

256

(6.34)

(4.53)

(1.81)

(3.46)

(5.51)

(4.29)

(3.46)

161

115

46

88

140

109

88

288

(6.34)

(4.53)

(1.81)

(3.46)

(5.51)

(4.29)

(3.46)

1/6

449

161

115

46

88

140

109

88

288

(6.34)

(4.53)

(1.81)

(3.46)

(5.51)

(4.29)

(3.46)

185

139

46

112

164

109

88

256

(7.28)

(5.47)

(1.81)

(4.41)

(6.46)

(4.29)

(3.46)

441

185

139

46

112

164

109

88

256

(7.28)

(5.47)

(1.81)

(4.41)

(6.46)

(4.29)

(3.46)

185

139

46

112

164

109

88

288

(7.28)

(5.47)

(1.81)

(4.41)

(6.46)

(4.29)

(3.46)

1/6

473

185

139

46

112

164

109

88

288

(7.28)

(5.47)

(1.81)

(4.41)

(6.46)

(4.29)

(3.46)

166

119

47

89

145

140

88

311

(6.54)

(4.69)

(1.85)

(3.50)

(5.71)

(5.51)

(3.46)

1/6

477

166

119

47

89

145

140

88

311

(6.54)

(4.69)

(1.85)

(3.50)

(5.71)

(5.51)

(3.46)

192

145

47

115

171

140

88

311

(7.56)

(5.71)

(1.85)

(4.53)

(6.73)

(5.51)

(3.46)

7860

503

192

145

47

115

171

140

88

311

(7.56)

(5.71)

(1.85)

(4.53)

(6.73)

(5.51)

(3.46)

(12.2)

33.6
(74.1)

3720

24.6
(54.2)

4550

24.6
(54.2)

7070

35.6
(78.5)

7860

35.6
(78.5)

4660

42
(92.6)

5700

42
(92.6)

(12.2)

(19.8)

350

CNVX-4115 1/11

503

33.6
(74.1)

(12.2)

(19.8)

20A2BTBR

CNVX-4115

7070

(12.2)

(18.8)

20A2BTAR

CNVX-4115 1/11

477

22.6
(49.8)

(11.3)

(18.8)

12A2BTBR

CNVX-4115

4550

(11.3)

(18.6)

12A2BTAR

CNVX-4115 1/29

473

22.6
(49.8)

(10.1)

(18.6)

09A2BT7R

CNVX-4115 1/21

3720

(10.1)

(17.4)

09A2BTCR

CNVX-4105 1/11

441

20.5
(45.2)

(11.3)

(17.4)

09A2BTBR

CNVX-4105

5390

(11.3)

(17.7)

09A2BTAR

CNVX-4115 1/29

449

20.5
(45.2)

(10.1)

(17.7)

06A2BT7R

CNVX-4115 1/21

5390

(10.1)

(16.4)

06A2BTCR

CNVX-4105 1/11

417

18.5
(40.8)

(10.1)

(16.4)

06A2BTBR

CNVX-4105

2890

(10.1)

(15.5)

06A2BTAR

CNVX-4105 1/29

394

18.5
(40.8)

(9.53)

(15.5)

03A2BT7R

CNVX-4105 1/21

380
(15.0)

03A2BTCR

CNVX-4095 1/11

380
(15.0)

03A2BTBR

1/6

Approx.
mass
kg (lb)

4660

46
(101.4)

5700

46
(101.4)

5.4 Σ-Series Dimensional Drawings

in mm (inches)
Motor type
SGMG-

Flange dimensions
LA

LB

LC

LE

LG

LR

N

LZ

Q

QK

03A2BTAR

134

−0.036
110 −0.090

160

3

9

48

4

11

35

32

(6.30)

(0.12)

(0.35)

(1.89)

(0.16)

(0.43)

(1.38)

(1.26)

(5.28)

03A2BTBR

134
(5.28)

03A2BTCR

134
(5.28)

03A2BT7R

134
(5.28)

06A2BTAR

134
(5.28)

06A2BTBR

134
(5.28)

06A2BTCR

180
(7.09)

06A2BT7R

180
(7.09)

09A2BTAR

134
(5.28)

09A2BTBR

134
(5.28)

09A2BTCR

180
(7.09)

09A2BT7R

180
(7.09)

12A2BTAR

180
(7.09)

12A2BTBR

180
(7.09)

20A2BTAR

180
(7.09)

20A2BTBR

180
(7.09)

−0.0014
4.33−0.0035
−0.036
110 −0.090

−0.0014
4.33−0.0035
−0.036
110 −0.090

−0.0014
4.33−0.0035
−0.036
110 −0.090

Shaft end dimensions

160

3

9

48

4

11

35

32

(6.30)

(0.12)

(0.35)

(1.89)

(0.16)

(0.43)

(1.38)

(1.26)

S
φ28
φ1.10
φ28
φ1.10

160

3

9

48

4

11

35

32

(6.30)

(0.12)

(0.35)

(1.89)

(0.16)

(0.43)

(1.38)

(1.26)

φ1.10
φ28

φ28

160

3

9

48

4

11

35

32

−0.0014
4.33−0.0035

(6.30)

(0.12)

(0.35)

(1.89)

(0.16)

(0.43)

(1.38)

(1.26)

φ1.10

−0.036
110 −0.090

160

3

9

48

4

11

35

32

φ28

−0.0014
4.33−0.0035

(6.30)

(0.12)

(0.35)

(1.89)

(0.16)

(0.43)

(1.38)

(1.26)

φ1.10

−0.036
110 −0.090

160

3

9

48

4

11

35

32

φ28

(6.30)

(0.12)

(0.35)

(1.89)

(0.16)

(0.43)

(1.38)

(1.26)

φ1.10

−0.0014
4.33−0.0035
−0.043
140 −0.106

−0.0017
5.51−0.0042
−0.043
140 −0.106

−0.0017
5.51−0.0042
−0.036
110 −0.090

−0.0014
4.33−0.0035

210

4

13

69

6

11

55

50

φ38

(8.27)

(0.16)

(0.51)

(2.72)

(0.24)

(0.43)

(2.17)

(1.97)

φ1.50
φ38

210

4

13

69

6

11

55

50

(8.27)

(0.16)

(0.51)

(2.72)

(0.24)

(0.43)

(2.17)

(1.97)

160

3

9

48

4

11

35

32

(6.30)

(0.12)

(0.35)

(1.89)

(0.16)

(0.43)

(1.38)

(1.26)

φ1.50
φ28
φ1.10

160

3

9

48

4

11

35

32

−0.0014
4.33−0.0035

(6.30)

(0.12)

(0.35)

(1.89)

(0.16)

(0.43)

(1.38)

(1.26)

φ1.10

−0.043
140 −0.106

210

4

13

69

6

11

55

50

φ38

(8.27)

(0.16)

(0.51)

(2.72)

(0.24)

(0.43)

(2.17)

(1.97)

φ1.50

−0.036
110 −0.090

−0.0017
5.51−0.0042
−0.043
140 −0.106

−0.0017
5.51−0.0042
−0.043
140 −0.106

−0.0017
5.51−0.0042
−0.043
140 −0.106

−0.0017
5.51−0.0042
−0.043
140 −0.106

−0.0017
5.51−0.0042
−0.043
140 −0.106

−0.0017
5.51−0.0042

φ28

210

4

13

69

6

11

55

50

φ38

(8.27)

(0.16)

(0.51)

(2.72)

(0.24)

(0.43)

(2.17)

(1.97)

φ1.50
φ38

210

4

13

69

6

11

55

50

(8.27)

(0.16)

(0.51)

(2.72)

(0.24)

(0.43)

(2.17)

(1.97)

φ1.50
φ38

210

4

13

69

6

11

55

50

(8.27)

(0.16)

(0.51)

(2.72)

(0.24)

(0.43)

(2.17)

(1.97)

φ1.50
φ38

210

4

13

69

6

11

55

50

(8.27)

(0.16)

(0.51)

(2.72)

(0.24)

(0.43)

(2.17)

(1.97)

φ1.50

210

4

13

69

6

11

55

50

φ38

(8.27)

(0.16)

(0.51)

(2.72)

(0.24)

(0.43)

(2.17)

(1.97)

φ1.50

T

U

W

0
−0.013
0
−0.0005

7

4

8

(0.28)

(0.16)

(0.31)

0
−0.013
0
−0.0005

7

4

8

(0.28)

(0.16)

(0.31)

0
−0.013
0
−0.0005
0
−0.013
0
−0.0005
0
−0.013
0
−0.0005

7

4

8

(0.28)

(0.16)

(0.31)

7

4

8

(0.28)

(0.16)

(0.31)

7

4

8

(0.28)

(0.16)

(0.31)

0
−0.013
0
−0.0005

7

4

8

(0.28)

(0.16)

(0.31)

0
−0.016
0
−0.0006

8

5

10

(0.31)

(0.20)

(0.39)

0
−0.016
0
−0.0006

8

5

10

(0.31)

(0.20)

(0.39)

0
−0.013
0
−0.0005

7

4

8

(0.28)

(0.16)

(0.31)

0
−0.013
0
−0.0005

7

4

8

(0.28)

(0.16)

(0.31)

0
−0.016
0
−0.0006
0
−0.016
0
−0.0006
0
−0.016
0
−0.0006

8

5

10

(0.31)

(0.20)

(0.39)

8

5

10

(0.31)

(0.20)

(0.39)

8

5

10

(0.31)

(0.20)

(0.39)

0
−0.016
0
−0.0006

8

5

10

(0.31)

(0.20)

(0.39)

0
−0.016
0
−0.0006

8

5

10

(0.31)

(0.20)

(0.39)

0
−0.016
0
−0.0006

8

5

10

(0.31)

(0.20)

(0.39)

V
M8 screw,
depth 19
M8 screw,
depth 19
M8 screw,
depth 19
M8 screw,
depth 19
M8 screw,
depth 19
M8 screw,
depth 19
M10 screw,
depth 22
M10 screw,
depth 22
M8 screw,
depth 19
M8 screw,
depth 19
M10 screw,
depth 22
M10 screw,
depth 22
M10 screw,
depth 22
M10 screw,
depth 22
M10 screw,
depth 22
M10 screw,
depth 22

351

5

USING THE DIGITAL OPERATOR
5.4.1 Servomotor Dimensional Drawings cont.

φSh6

Oil-lubrication type small size servomotors

Oil
inlet
tap
φLBf8

V
Oil outlet
plug
Oil outlet plug

Detailed View
of Shaft End

in mm (inches)
Motor type
SGMG-

12A2BTCR

Gear type

L

Gear

LL

LM

LT

KB1

KB2

KL1

KL2

R

A

Shaft
center
allowable
radial load
N

10180

ratio

166

119

47

89

145

140

88

370

209

(6.54)

(4.69)

(1.85)

(3.50)

(5.71)

(5.51)

(3.46)

(14.6)

(8.23)

166

119

47

89

145

140

88

370

(4.69)

(1.85)

(3.50)

(5.71)

(5.51)

(3.46)

(14.6)

(8.23)

5

1/6

192

145

47

115

171

140

88

390

(5.71)

(1.85)

(4.53)

(6.73)

(5.51)

(3.46)

(15.4)

226

179

47

149

205

140

88

370

(7.05)

(1.85)

(5.87)

(8.07)

(5.51)

(3.46)

(14.6)

1/6

226

179

47

149

205

140

88

370

(7.05)

(1.85)

(5.87)

(8.07)

(5.51)

(3.46)

(14.6)

75
(165.3)

(8.23)

664

CHVX-4145 1/11

6740

209

(8.90)

260

213

47

174

239

150

88

404

(10.2)

(8.39)

(1.85)

(6.85)

(9.41)

(5.91)

(3.46)

(15.9)

8240

75
(165.3)

209

(26.1)

44A2BTBR

CHVX-4135

596

(8.23)

684

260

213

47

174

239

150

88

424

(10.2)

(8.39)

(1.85)

(6.85)

(9.41)

(5.91)

(3.46)

(16.7)

6740

87
(191.8)

209

(26.9)

71
(156.5)

(8.23)

(23.5)

44A2BTAR

13040

209

(8.90)

66
(145.5)

(8.23)

596

CHVX-4135 1/11

11320

209

(7.56)

(23.5)

30A2BTBR

CHVX-4130

582

66
(145.5)

209

(6.54)

(22.9)

30A2BTAR

CHVX-4145 1/21

536
(21.1)

20A2BTCR

CHVX-4135 1/29

536
(21.1)

12A2BT7R

CHVX-4130 1/21

Approx.
mass
kg (lb)

(8.23)

10740

88
(194.0)

in mm (inches)
Motor type
SGMG-

12A2BTCR

Frange dimensions
LA

LB

230

+0.122
200 +0.050

(9.06)

12A2BT7R

230
(9.06)

20A2BTCR

230
(9.06)

30A2BTAR

230
(9.06)

30A2BTBR

230
(9.06)

352

+0.0048
7.87+0.0020
+0.122
200 +0.050

LC

LE

LG

Shaft end dimensions
LR

N

LZ

Q

QK

S

260

4

15

76

6

11

70

56

φ50

(10.2)

(0.16)

(0.59)

(2.99)

(0.24)

(0.43)

(2.76)

(2.20)

φ1.97
φ50

260

4

15

76

6

11

70

56

+0.0048
7.87+0.0020

(10.2)

(0.16)

(0.59)

(2.99)

(0.24)

(0.43)

(2.76)

(2.20)

φ1.97

+0.122
200 +0.050

260

4

15

96

6

11

90

80

φ50

(10.2)

(0.16)

(0.59)

(3.78)

(0.24)

(0.43)

(3.54)

(3.15)

φ1.97
φ50

+0.0048
7.87+0.0020
+0.122
200 +0.050

+0.0048
7.87+0.0020

200

+0.122
+0.050
+0.0048
7.87+0.0020

260

4

15

76

6

11

70

56

(10.2)

(0.16)

(0.59)

(2.99)

(0.24)

(0.43)

(2.76)

(2.20)

φ1.97

260

4

15

76

6

11

70

56

φ50

(10.2)

(0.16)

(0.59)

(2.99)

(0.24)

(0.43)

(2.76)

(2.20)

φ1.97

0
−0.016
0
−0.0006
0
−0.016
0
−0.0006
0
−0.016
0
−0.0006

T

U

W

V
M10 screw,
depth 18

9

5.5

14

(0.35)

(0.22)

(0.55)

9

5.5

14

(0.35)

(0.22)

(0.55)

9

5.5

14

(0.35)

(0.22)

(0.55)

0
−0.016
0
−0.0006

9

5.5

14

(0.35)

(0.22)

(0.55)

0
−0.016
0
−0.0006

9

5.5

14

(0.35)

(0.22)

(0.55)

M10 screw,
depth 18
M10 screw,
depth 18
M10 screw,
depth 18
M10 screw,
depth 18

5.4 Σ-Series Dimensional Drawings

Motor type
SGMG-

44A2BTAR

Frange dimensions
LA

LB

230

+0.122
200 +0.050

(9.06)

44A2BTBR

230
(9.06)

LC

+0.0048
7.87+0.0020
+0.122
200 +0.050

+0.0048
7.87+0.0020

LE

LG

Shaft end dimensions
LR

N

LZ

Q

QK

S

260

4

15

76

6

11

70

56

φ50

(10.2)

(0.16)

(0.59)

(2.99)

(0.24)

(0.43)

(2.76)

(2.20)

φ1.97

260

4

15

96

6

11

90

80

φ50

(10.2)

(0.16)

(0.59)

(3.78)

(0.24)

(0.43)

(3.54)

(3.15)

φ1.97

T

0
−0.016
0
−0.0006
0
−0.016
0
−0.0006

U

W

V
M10 screw,
depth 18

9

5.5

14

(0.35)

(0.22)

(0.55)

9

5.5

14

(0.35)

(0.22)

(0.55)

M10 screw,
depth 18

Oil-lubrication type large size servomotors

Oil
outlet
plug

φLBf8

φSh6

Oil
inlet
tap

MTG Holes

V

Detailed View
of Shaft End

Oil outlet plug
6-MTG Holes

8-MTG Holes

in mm (inches)
Motor type
SGMG-

Gear type

20A2BT7R

CHVJ-4160

Gear

L

LL

LM

LT

KB1

KB2

KL1

KL2

R

A

Shaft
center
allowable
radial load
N

18520

ratio

145

47

115

171

140

88

495

228

(5.71)

(1.85)

(4.53)

(6.73)

(5.51)

(3.46)

(19.5)

(8.98)

226

179

47

149

205

140

88

495

228

(8.90)

(7.05)

(1.85)

(5.87)

(8.07)

(5.51)

(3.46)

(19.5)

226

179

47

149

205

140

88

559

243

(8.90)

(7.05)

(1.85)

(5.87)

(8.07)

(5.51)

(3.46)

(22.0)

853

260

213

47

174

239

150

88

593

243

(10.2)

(8.39)

(1.85)

(6.85)

(9.41)

(5.91)

(3.46)

(23.4)

260

213

47

174

239

150

88

593

243

(10.2)

(8.39)

(1.85)

(6.85)

(9.41)

(5.91)

(3.46)

(23.4)

CHVJ-4185

1/21
1/29

21770

863

334

287

47

248

313

150

88

529

228

(13.2)

(11.3)

(1.85)

(9.76)

(12.3)

(5.91)

(3.46)

(20.8)

19560

334

287

47

248

313

150

88

593

243

(13.2)

(11.3)

(1.85)

(9.76)

(12.3)

(5.91)

(3.46)

(23.4)

21790

977

334

287

47

248

313

150

88

643

258

(13.2)

(11.3)

(1.85)

(9.76)

(12.3)

(5.91)

(3.46)

(25.3)

(10.2)

191
(421.1)

13470

150
(330.7)

(9.57)

(38.5)

191
(421.1)

(8.98)

927

176
(388.0)

(9.57)

(36.5)

60A2BT7R

CHVJ-4175

1/11

853

126
(277.8)

(9.57)

(34.0)

60A2BTCR

CHVJ-4160

1/29

16740

(9.57)

(33.6)

60A2BTBR

CHVJ-4175

1/21

785

121
(266.8)

(8.98)

(33.6)

44A2BT7R

CHVJ-4170

1/29

721

(30.9)

44A2BTCR

CHVJ-4170

1/21

192
(7.56)

(28.4)

30A2BT7R

CHVJ-4160

687
(27.1)

30A2BTCR

1/29

Approx.
mass
kg (lb)

19560

201
(443.1)

29200

232
(511.5)

353

5

USING THE DIGITAL OPERATOR
5.4.1 Servomotor Dimensional Drawings cont.

in mm (inches)
Motor type
SGMG-

Flange dimensions
LA

LB

LC

LE

LG

LR

N

LZ

Q

QK

20A2BT7R

310

+0.137
270 +0.056

340

4

20

89

6

11

90

80

(13.4)

(0.16)

(0.79)

(3.50)

(0.24)

(0.43)

(3.54)

(3.15)

(12.2)

30A2BTCR

310

+0.0054
10.6+0.0022

270

(12.2)

30A2BT7R

+0.137
+0.056
+0.0054
10.6+0.0022

360

+0.151
316 +0.062

(14.2)

44A2BTCR

360
(14.2)

44A2BT7R

360
(14.2)

60A2BTBR

310
(12.2)

60A2BTCR

360

+0.0059
12.4+0.0024
+0.151
316 +0.062

5

354

φ60
φ2.36

340

4

20

89

6

11

90

80

φ60

(13.4)

(0.16)

(0.79)

(3.50)

(0.24)

(0.43)

(3.54)

(3.15)

φ2.36
φ70

400

5

22

94

8

14

90

80

(15.7)

(0.20)

(0.87)

(3.70)

(0.31)

(0.55)

(3.54)

(3.15)

φ2.76
φ70

400

5

22

94

8

14

90

80

(15.7)

(0.20)

(0.87)

(3.70)

(0.31)

(0.55)

(3.54)

(3.15)

φ2.76

+0.151
316 +0.062

400

5

22

94

8

14

90

80

φ70

(15.7)

(0.20)

(0.87)

(3.70)

(0.31)

(0.55)

(3.54)

(3.15)

φ2.76
φ60

+0.0059
12.4+0.0024
+0.137
270 +0.056

+0.0054
10.6+0.0022

316

+0.151
+0.062
+0.0059
12.4+0.0024

390

+0.151
345 +0.062

(15.4)

S

+0.0059
12.4+0.0024

(14.2)

60A2BT7R

Shaft end dimensions

+0.0059
13.58 +0.0024

340

4

20

89

6

11

90

80

(13.4)

(0.16)

(0.79)

(3.50)

(0.24)

(0.43)

(3.54)

(3.15)

100
(3.94)

7.5

20

(0.30)

(0.79)

12

7.5

20

(0.47)

(0.30)

(0.79)

20

0
−0.016
0
φ3.15 −0.0006

14

9

22

(0.55)

(0.35)

(0.87)

φ2.76

110

12
(0.47)

(0.79)

φ70

(4.33)

20
(0.79)

7.5

80
(3.15)

18

7.5
(0.30)

(0.30)

90
(3.54)

(0.71)

12
(0.47)

12

14
(0.55)

8

18
(0.71)

(0.47)

8
(0.31)

(0.31)

7
(0.28)

0
−0.016
0
−0.0006

φ2.36

94
110

11
(0.43)

18

(3.70)

(4.33)

18
(0.71)

(0.71)

22
22

7
(0.28)

5

(0.87)

(0.87)

0
−0.016
0
−0.0006

M10 screw,
depth 18

11
(0.43)

(0.20)

5
5

0
−0.016
0
−0.0006

V

11

(0.20)

(0.20)

0
−0.016
0
−0.0006

W

(0.43)

400
430

0
−0.019
0
−0.0007

U

0
−0.019
0
−0.0007

(15.7)

(16.9)

0
−0.019
0
−0.0007

T

φ80

M10 screw,
depth 18
M12 screw,
depth 24
M12 screw,
depth 24
M12 screw,
depth 24
M10 screw,
depth 18
M12 screw,
depth 24
M12 screw,
depth 24

5.4 Σ-Series Dimensional Drawings

Standard backlash gear (1000 min−1), without brake
• Flange-mounted type

φLBh7

φSh6

Grease-lubrication type small size servomotors

Detailed View
of Shaft End

in mm (inches)
Motor type
SGMG-

Gear type

L

Gear

LL

LM

LR

LT

KB1

KB2

KL1

KL2

R

Shaft
center
allowable
radial load
N

833

ratio

03A2BL1K

1/9

394

138

92

100

46

65

117

109

88

256

(15.5)

03A2BL2K

1/5

(5.43)

(3.62)

(3.94)

(1.81)

(2.56)

(4.61)

(4.29)

(3.46)

(10.1)

03A2BL5K

1/20

406

138

92

100

46

65

117

109

88

(5.43)

(3.62)

(3.94)

(1.81)

(2.56)

(4.61)

(4.29)

(3.46)

(10.6)

138

92

100

46

65

117

109

88

(3.62)

(3.94)

(1.81)

(2.56)

(4.61)

(4.29)

(3.46)

09A2BL1K

1/9

BL2

1/5

14
(30.9)

(11.3)

417

161

115

100

46

88

140

109

88

(6.34)

(4.53)

(3.94)

(1.81)

(3.46)

(5.51)

(4.29)

(3.46)

161

115

100

46

88

140

109

88

268

(6.34)

(4.53)

(3.94)

(1.81)

(3.46)

(5.51)

(4.29)

(3.46)

16
(35.3)

(10.1)

429

1270

256

(16.4)

BL2

980

287

(5.43)

(16.9)

06A2BL2K

1/5

425
(16.7)

06A2BL1K

14
(30.9)

268

(16.0)

BL2

(10.6)

441

185

139

100

46

112

164

109

88

(7.28)

(5.47)

(3.94)

(1.81)

(4.41)

(6.46)

(4.29)

(3.46)

833

16
(35.3)

980

16
(35.3)

256

(17.4)

Approx.
mass
kg (lb)

(10.1)

833

18
(39.7)

in mm (inches)
Motor type
yp
SGMG03A2BL1K

Flange dimensions
LA
160

LB
0
130 −0.040

(6.30)

03A2BL2K

0
5.12−0.0016

160

0
130 −0.040

(6.30)

03A2BL5K

160

0
5.12−0.0016
0
130 −0.040

(6.30)

06A2BL1K

0
5.12−0.0016

160

0
130 −0.040

LC

LE

LG

Shaft end dimensions
LH

N

LZ

S
0
35 −0.016

140

3

12

185

4

12

(5.51)

(0.12)

(0.47)

(7.28)

(0.16)

(0.47)

0
1.38−0.0006
0
35 −0.016

140

3

12

185

4

12

(5.51)

(0.12)

(0.47)

(7.28)

(0.16)

(0.47)

0
1.38−0.0006

140

3

12

185

4

12

(5.51)

(0.12)

(0.47)

(7.28)

(0.16)

(0.47)

0
1.38−0.0006
0
35 −0.016

0
35 −0.016

06A2BL2K

140

3

12

185

4

12

(6.30)

0
5.12−0.0016

(5.51)

(0.12)

(0.47)

(7.28)

(0.16)

(0.47)

0
1.38−0.0006

160

0
130 −0.040

140

3

12

185

4

12

(5.51)

(0.12)

(0.47)

(7.28)

(0.16)

(0.47)

0
35 −0.016

0
1.38−0.0006
0
35 −0.016

(6.30)

09A2BL1K

0
5.12−0.0016

160

0
130 −0.040

(6.30)

0
5.12−0.0016

140

3

12

185

4

12

(5.51)

(0.12)

(0.47)

(7.28)

(0.16)

(0.47)

0
1.38−0.0006

Q

QK

QR

T

U

W

55

47

1

8

5

10

(2.17)

(1.85)

(0.039)

(0.31)

(0.20)

(0.39)

55

47

1

8

5

10

(2.17)

(1.85)

(0.039)

(0.31)

(0.20)

(0.39)

55

47

1

8

5

10

(2.17)

(1.85)

(0.039)

(0.31)

(0.20)

(0.39)

55

47

1

8

5

10

(2.17)

(1.85)

(0.039)

(0.31)

(0.20)

(0.39)

55

47

1

8

5

10

(2.17)

(1.85)

(0.039)

(0.31)

(0.20)

(0.39)

55

47

1

8

5

10

(2.17)

(1.85)

(0.039)

(0.31)

(0.20)

(0.39)

355

5

USING THE DIGITAL OPERATOR
5.4.1 Servomotor Dimensional Drawings cont.

φSh6

Grease-lubrication type large size servomotors

Detailed View
of Shaft End

in mm (inches)
Motor type
SGMG-

Gear type

L

LL

LM

LR

LT

KB1

KB2

KL1

KL2

R

Shaft center
allowable
radial load
N

2940

ratio

03A2BL7K
03A2BL8K

Gear

1/29
BL3

138

92

140

46

65

117

109

88

353

(5.43)

(3.62)

(5.51)

(1.81)

(2.56)

(4.61)

(4.29)

(3.46)

(13.9)

06A2BL7K

1/20
BL3

501

138

92

140

46

65

117

109

88

363

(19.7)

06A2BL5K

1/45

491
(19.3)

(5.43)

(3.62)

(5.51)

(1.81)

(2.56)

(4.61)

(4.29)

(3.46)

161

115

140

46

88

140

109

88

353

(6.34)

(4.53)

(5.51)

(1.81)

(3.46)

(5.51)

(4.29)

(3.46)

BL4

514

161

115

140

46

88

140

109

88

353

(6.34)

(4.53)

(5.51)

(1.81)

(3.46)

(5.51)

(4.29)

(3.46)

5

09A2BL5K

1/9
BL3

565

161

115

160

46

88

140

109

88

404

(6.34)

(4.53)

(6.30)

(1.81)

(3.46)

(5.51)

(4.29)

(3.46)

534

185

139

140

46

112

164

109

88

349

(7.28)

(5.47)

(5.51)

(1.81)

(4.41)

(6.46)

(4.29)

(3.46)

09A2BL8K

1/29
BL4

538

185

139

140

46

112

164

109

88

353

(7.28)

(5.47)

(5.51)

(1.81)

(4.41)

(6.46)

(4.29)

(3.46)

579

185

139

160

46

112

164

109

88

394

(7.28)

(5.47)

(6.30)

(1.81)

(4.41)

(6.46)

(4.29)

(3.46)

12A2BL2K

1/5
BL3

589

185

139

160

46

112

164

109

88

404

(7.28)

(5.47)

(6.30)

(1.81)

(4.41)

(6.46)

(4.29)

(3.46)

509

166

119

140

47

89

145

140

88

343

(6.54)

(4.69)

(5.51)

(1.85)

(3.50)

(5.71)

(5.51)

(3.46)

166

119

140

47

89

145

140

88

370

(6.54)

(4.69)

(5.51)

(1.85)

(3.50)

(5.71)

(5.51)

(3.46)

BL4

12A2BL8K

1/29

581

166

119

160

47

89

145

140

88

415

(6.54)

(4.69)

(6.30)

(1.85)

(3.50)

(5.71)

(5.51)

(3.46)

581

166

119

160

47

89

145

140

88

415

(6.54)

(4.69)

(6.30)

(1.85)

(3.50)

(5.71)

(5.51)

(3.46)

20A2BL1K
20A2BL2K

1/5
BL3

591

166

119

160

47

89

145

140

88

425

(6.54)

(4.69)

(6.30)

(1.85)

(3.50)

(5.71)

(5.51)

(3.46)

535

192

145

140

47

115

171

140

88

343

(7.56)

(5.71)

(5.51)

(1.85)

(4.53)

(6.73)

(5.51)

(3.46)

20A2BL5K

BL4

562

192

145

140

47

115

171

140

88

370

(7.56)

(5.71)

(5.51)

(1.85)

(4.53)

(6.73)

(5.51)

(3.46)

30A2BL2K

1/5
BL4

607

192

145

160

47

115

171

140

88

415

(7.56)

(5.71)

(6.30)

(1.85)

(4.53)

(6.73)

(5.51)

(3.46)

609

226

179

160

47

149

205

140

88

383

(8.90)

(7.05)

(6.30)

(1.85)

(5.87)

(8.07)

(5.51)

(3.46)

641

226

179

160

47

149

205

140

88

415

(8.90)

(7.05)

(6.30)

(1.85)

(5.87)

(8.07)

(5.51)

(3.46)

(16.3)

55
(121.2)

1670

32
(70.5)

1960

39
(86.0)

6080

59
(130.1)

6860

59
(130.1)

8040

59
(130.1)

1670

36
(79.4)

1960

43
(94.8)

6080

63
(138.9)

(15.1)

(25.2)

356

1/9

8040

(16.3)

(24.0)

55
(121.2)

(14.6)

(23.9)

30A2BL1K

1/20

6860

(13.5)

(22.1)

35
(77.2)

(16.7)

(21.1)

1/9

2650

(16.3)

(23.3)

35
(77.2)

(16.3)

(22.9)

1/45

1960

(14.6)

(22.9)

12A2BL7K

1/20

536

53
(116.8)

(13.5)

(21.1)

12A2BL5K

1/9

8040

(15.9)

(20.0)

33
(72.8)

(15.5)

(23.2)

12A2BL1K

1/45

2940

(13.9)

(22.8)

33
(72.8)

(13.7)

(21.2)

09A2BL7K

1/20

2650

(15.9)

(21.0)

31
(68.3)

(13.9)

(22.2)

09A2BL2K

1/45

3430

(13.9)

(20.2)

06A2BL8K

1/29

514

31
(68.3)

(14.3)

(20.2)

Approx.
mass
kg (lb)

3820

58
(127.9)

4700

68
(149.9)

5.4 Σ-Series Dimensional Drawings

in mm (inches)
Motor type
yp
SGMG03A2BL7K

Flange dimensions
LA
220

LB
0
190 −0.046

(8.66)

03A2BL8K

0
7.48−0.0018

220

0
190 −0.046

LC

LE

LG

N
6

245

5

15

(9.65)

(0.20)

(0.59)

245

5

15

(8.66)

06A2BL5K

0
7.48−0.0018

(9.65)

(0.20)

220

0
190 −0.046

245

5

15

(9.65)

(0.20)

(0.59)

0
7.48−0.0018

220

0
190 −0.046

06A2BL8K

245

5

15

(8.66)

0
7.48−0.0018

(9.65)

(0.20)

0
240 −0.046

310

5

18

(12.2)

(0.20)

0
9.45−0.0018

220

0
190 −0.046

09A2BL5K

245

5

15

(8.66)

0
7.48−0.0018

(9.65)

(0.20)

0
190 −0.046

245

5

15

(9.65)

(0.20)

0
7.48−0.0018

280

0
240 −0.046

(11.0)

09A2BL8K

0
9.45−0.0018

280

0
240 −0.046

(11.0)

12A2BL1K

0
190 −0.046

5

18

(0.20)

310

5

18

(12.2)

(0.20)

245

5

15

(9.65)

(0.20)

0
190 −0.046

245

5

15

(9.65)

(0.20)

280

0
240 −0.046

0
9.45−0.0018

280

0
240 −0.046

(11.0)

12A2BL8K

0
9.45−0.0018

280

0
240 −0.046

(11.0)

20A2BL1K

0
9.45−0.0018

220

0
190 −0.046

(8.66)

20A2BL2K

0
7.48−0.0018

220

0
190 −0.046

(8.66)

20A2BL5K

0
7.48−0.0018

280

0
240 −0.046

(11.0)

30A2BL1K

0
9.45−0.0018

280

0
240 −0.046

(11.0)

30A2BL2K

0
9.45−0.0018

280

0
240 −0.046

(11.0)

0
9.45−0.0018

310

5

18

(12.2)

(0.20)

6

310

5

18

(0.20)

6

310

5

18

(0.20)

6

245

5

15

(0.20)

6

245

5

15

(0.20)

6

310

5

18

(0.20)

6

310

5

18

(0.20)

6

310

5

18

(0.20)

(0.71)

12

0
50 −0.016

0
1.97−0.0006

14

0
60 −0.019

0
2.36−0.0007

12

0
50 −0.016

0
1.97−0.0006

12

0
50 −0.016

0
1.97−0.0006

14

0
60 −0.019

0
2.36−0.0007

14

0
60 −0.019

12

0
2.36−0.0007

QK

QR

T

U

W

75

65

1

9

5.5

14

(2.95)

(2.56)

(0.039)

(0.35)

(0.22)

(0.55)

75

65

1

9

5.5

14

(2.95)

(2.56)

(0.039)

(0.35)

(0.22)

(0.55)

75

65

1

9

5.5

14

(2.95)

(2.56)

(0.039)

(0.35)

(0.22)

(0.55)

75

65

1

9

5.5

14

(2.95)

(2.56)

(0.039)

(0.35)

(0.22)

(0.55)

90

78

1

11

7

18

(3.54)

(3.07)

(0.039)

(0.43)

(0.28)

(0.71)

75

65

1

9

5.5

14

(2.95)

(2.56)

(0.039)

(0.35)

(0.22)

(0.55)

75

65

1

9

5.5

14

(2.95)

(2.56)

(0.039)

(0.35)

(0.22)

(0.55)

90

78

1

11

7

18

(3.54)

(3.07)

(0.039)

(0.43)

(0.28)

(0.71)

90

78

1

11

7

18

(3.54)

(3.07)

(0.039)

(0.43)

(0.28)

(0.71)

75

65

1

9

5.5

14

0
1.97−0.0006

(2.95)

(2.56)

(0.039)

(0.35)

(0.22)

(0.55)

12

0
50 −0.016

75

65

1

9

5.5

14

(2.95)

(2.56)

(0.039)

(0.35)

(0.22)

(0.55)

14

0
50 −0.016

0
1.97−0.0006
0
60 −0.019

(0.55)

6

0
2.36−0.0007

14

0
60 −0.019

(0.55)

6

14

0
2.36−0.0007
0
60 −0.019

(0.55)

6

0
2.36−0.0007

12

0
50 −0.016

(0.47)

6

0
1.97−0.0006

12

0
50 −0.016

(0.47)

6

0
1.97−0.0006

14

0
60 −0.019

(0.55)

(0.71)

(12.2)

0
1.97−0.0006

(0.47)

(0.71)

(12.2)

0
50 −0.016

Q

(0.47)

(0.59)

(12.2)

12

(0.55)

(0.59)

(9.65)

0
1.97−0.0006

(0.55)

(0.71)

(9.65)

0
50 −0.016

(0.47)

(0.71)

(12.2)

12

(0.47)

(0.71)

(12.2)

0
1.97−0.0006

(0.55)

(0.59)

0
7.48−0.0018

(11.0)

12A2BL7K

6

(0.59)

220

0
50 −0.016

(0.47)

(0.71)

0
7.48−0.0018

(8.66)

12A2BL5K

6

(0.71)

(8.66)

12A2BL2K

220

0
9.45−0.0018

310
(12.2)

12

(0.47)

(0.59)

(8.66)

09A2BL7K

6

(0.59)

220

S

(0.47)

(0.71)

(11.0)

09A2BL2K

6

(0.59)

280

LZ

(0.47)

(0.59)

(8.66)

06A2BL7K

Shaft end dimensions

6

0
2.36−0.0007

14

0
60 −0.019

(0.55)

6

14
(0.55)

0
2.36−0.0007
0
60 −0.019

0
2.36−0.0007

90

78

1

11

7

18

(3.54)

(3.07)

(0.039)

(0.43)

(0.28)

(0.71)

90

78

1

11

7

18

(3.54)

(3.07)

(0.039)

(0.43)

(0.28)

(0.71)

90

78

1

11

7

18

(3.54)

(3.07)

(0.039)

(0.43)

(0.28)

(0.71)

75

65

1

9

5.5

14

(2.95)

(2.56)

(0.039)

(0.35)

(0.22)

(0.55)

75

65

1

9

5.5

14

(2.95)

(2.56)

(0.039)

(0.35)

(0.22)

(0.55)

90

78

1

11

7

18

(3.54)

(3.07)

(0.039)

(0.43)

(0.28)

(0.71)

90

78

1

11

7

18

(3.54)

(3.07)

(0.039)

(0.43)

(0.28)

(0.71)

90

78

1

11

7

18

(3.54)

(3.07)

(0.039)

(0.43)

(0.28)

(0.71)

357

5

USING THE DIGITAL OPERATOR
5.4.1 Servomotor Dimensional Drawings cont.

Shaft end tap specifications
d tap ×L

in mm (inches)
Gear type

Shaft
diameter
S

Shaft
length
Q

d×L

BL2

35 (1.38)

55 (2.17)

M8 × 16

BL3

50 (1.97)

75 (2.95)

M10 × 20

BL4

60 (2.36)

90 (3.54)

M12 × 24

Detailed dimensions of IMT gear
in mm (inches)
Gear ratio

A

1/5
1/9

18 (0.71)

1/20, 1/29

39 (1.54)

1/45

(Motor)

6 (0.24)

47 (1.85)

5

in mm (inches)
Gear ratio

A

1/5

11 (0.43)

1/9

38 (1.50)

1/20, 1/29

46 (1.81)

1/45

(Motor)

52 (2.05)

in mm (inches)
Gear ratio

A

1/5

48 (1.89)
55 (2.17)

1/45

358

1/9
1/20, 1/29

(Motor)

16 (0.63)

58 (2.28)

5.4 Σ-Series Dimensional Drawings

J SGMS-jjA Servomotor
Incremental encoder (4096 P/R)

(0.0016)
(ø0.0016)

(0.0008)

MTG Holes

Detailed View of Shaft End

5

in mm (inches)
Type
SGMS10A6A
15A6A
20A6A
30A6A
40A6A
50A6A

L

LL

LM

LR

194
(7.64)
220
(8.66)
243
(9.57)
262
(10.31)
299
(11.77)
339
(13.35)

149
(5.87)
175
(6.89)
198
(7.80)
199
(7.83)
236
(9.29)
276
(10.87)

103
(4.06)
129
(5.08)
152
(5.98)
153
(6.02)
190
(7.48)
230
(9.06)

45
(1.77)
45
(1.77)
45
(1.77)
63
(2.48)
63
(2.48)
63
(2.48)

LT

KB1

KB2

KL1

KL2

46
(1.81)
46
(1.81)
46
(1.81)
46
(1.81)
46
(1.81)
46
(1.81)

76
(2.99)
102
(4.02)
125
(4.92)
122
(4.80)
159
(6.26)
199
(7.83)

128
(5.04)
154
(6.06)
177
(6.97)
178
(7.01)
215
(8.46)
255
(10.04)

96
(3.78)
96
(3.78)
96
(3.78)
114
(4.49)
114
(4.49)
114
(4.49)

87
(3.43)
87
(3.43)
87
(3.43)
87
(3.43)
87
(3.43)
87
(3.43)

359

USING THE DIGITAL OPERATOR
5.4.1 Servomotor Dimensional Drawings cont.

in mm (inches)
Type
yp
SGMSSGMS
10A6A

LA
115
(4.53)

LB
0
95 − 0.035

Flange dimensions
LC
LE
LF
LG
100
3
3
10
(3.94) (0.12) (0.12) (0.39)

LH
130
(5.12)

LJ
45
(1.77)

LZ
7
(0.28)

100
(3.94)

3
(0.12)

3
(0.12)

10
(0.39)

130
(5.12)

45
(1.77)

7
(0.28)

100
(3.94)

3
(0.12)

3
(0.12)

10
(0.39)

130
(5.12)

45
(1.77)

7
(0.28)

130
(5.12)

6
(0.24)

6
(0.24)

12
(0.47)

165
(6.50)

45
(1.77)

9
(0.35)

130
(5.12)

6
(0.24)

6
(0.24)

12
(0.47)

165
(6.50)

45
(1.77)

9
(0.35)

130
(5.12)

6
(0.24)

6
(0.24)

12
(0.47)

165
(6.50)

45
(1.77)

9
(0.35)

0

(3.74 − 0.0014)
15A6A

115
(4.53)

0

95 − 0.035
0

(3.74 − 0.0014)
20A6A

115
(4.53)

0

95 − 0.035
0

(3.74 − 0.0014)
30A6A

145
(5.71)

0

110 − 0.035
0

(4.33 − 0.0014)
40A6A

145
(5.71)

0

110 − 0.035
0

(4.33 − 0.0014)
50A6A

145
(5.71)

0

110 − 0.035
0

(4.33 − 0.0014)

5

360

5.4 Σ-Series Dimensional Drawings

in mm (inches)
Type
SGMS
SGMS-

Shaft end dimensions
S

10A6A

Approx.
mass
kg
(lb)

S1
0

24 − 0.013

Q

30
(1.18)

40
(1.57)

4.6
(10.14)

30
(1.18)

40
(1.57)

5.8
(12.78)

30
(1.18)

40
(1.57)

7.0
(15.43)

30
(1.18)

55
(2.17)

11
(24.24)

30
(1.18)

55
(2.17)

14
(30.86)

30
(1.18)

55
(2.17)

17
(37.47)

0

(0.94 − 0.0005)
15A6A

0

24 − 0.013
0

(0.94 − 0.0005)
20A6A

0

24 − 0.013
0

(0.94 − 0.0005)
30A6A

0

28 − 0.013
0

(1.10 − 0.0005)
40A6A

0

28 − 0.013
0

(1.10 − 0.0005)
50A6A

0

28 − 0.013
0

(1.10 − 0.0005)

5

Note Incremental encoder (4096 P/R) is used as a detector.

361

USING THE DIGITAL OPERATOR
5.4.1 Servomotor Dimensional Drawings cont.

• Connector Wiring on Detector Side
Receptacle: MS3102A20-29P
Plug (To be prepared by customer) (L type): MS3108B20-29S or
(Straight type) MS3106B20-29S
Cable Clamp: (To be prepared by customer) MS3057-12A
Encoder Wiring Specifications
A
B
C
D
E
F
G
H
J

Note

A channel output
/A channel output
B channel output
/B channel output
C channel output
/C channel output
0V
+5V DC
FG (Frame Ground)

K
L
M
N
P
R
S
T

1) Terminals K to T are not used. Do not connect anything.
2) Receptacle, plug and cable clamp are common regardless of motor capacity.
• Connector Wiring on Motor Side

5

Motor Wiring Specifications
A
B
C
D

Note

362

Phase U
Phase V
Phase W
Ground terminal

Receptacle, plug and cable clamp differ depending on the capacity. Refer to 6) Connectors
on Detector and Motor Sides (page 392).

5.4 Σ-Series Dimensional Drawings

Incremental encoder (4096 P/R), with brake

(0.0016)
(ø0.0016)

(0.0008)

MTG Holes

Detailed View of Shaft End

5
in mm (inches)
Type
SGMS10A6AAB
15A6AAB
20A6AAB
30A6AAB
40A6AAB
50A6AAB

L

LL

LM

LR

LT

KB1

KB2

KL1

KL2

238
(9.37)
264
(10.39)
287
(11.30)
300
(11.81)
336
(13.23)
337
(13.27)

193
(7.60)
219
(8.62)
242
(9.53)
237
(9.33)
274
(10.79)
314
(12.36)

147
(5.79)
173
(6.81)
196
(7.72)
191
(7.52)
228
(8.98)
268
(10.55)

45
(1.77)
45
(1.77)
45
(1.77)
63
(2.48)
63
(2.48)
63
(2.48)

46
(1.81)
46
(1.81)
46
(1.81)
46
(1.81)
46
(1.81)
46
(1.81)

67
(2.64)
93
(3.66)
116
(4.57)
113
(4.45)
150
(5.91)
190
(7.48)

172
(6.77)
198
(7.80)
221
(8.70)
216
(8.50)
253
(9.96)
293
(11.54)

100
(3.94)
100
(3.94)
100
(3.94)
119
(4.69)
119
(4.69)
119
(4.69)

87
(3.43)
87
(3.43)
87
(3.43)
87
(3.43)
87
(3.43)
87
(3.43)

363

USING THE DIGITAL OPERATOR
5.4.1 Servomotor Dimensional Drawings cont.

in mm (inches)
Type
yp
SGMSSGMS
10A6AAB

LA
115
(4.53)

LB
0
95 − 0.035

Flange dimensions
LC
LE
LF
LG
100
3
3
10
(3.94) (0.12) (0.12) (0.39)

LH
130
(5.12)

LJ
45
(1.77)

LZ
7
(0.28)

100
(3.94)

3
(0.12)

3
(0.12)

10
(0.39)

130
(5.12)

45
(1.77)

7
(0.28)

100
(3.94)

3
(0.12)

3
(0.12)

10
(0.39)

130
(5.12)

45
(1.77)

7
(0.28)

130
(5.12)

6
(0.24)

6
(0.24)

12
(0.47)

165
(6.50)

45
(1.77)

9
(0.35)

130
(5.12)

6
(0.24)

6
(0.24)

12
(0.47)

165
(6.50)

45
(1.77)

9
(0.35)

130
(5.12)

6
(0.24)

6
(0.24)

12
(0.47)

165
(6.50)

45
(1.77)

9
(0.35)

0

(3.74 − 0.0014)
15A6AAB

115
(4.53)

0

95 − 0.035
0

(3.74 − 0.0014)
20A6AAB

115
(4.53)

0

95 − 0.035
0

(3.74 − 0.0014)
30A6AAB

145
(5.71)

0

110 − 0.035
0

(4.33 − 0.0014)
40A6AAB

145
(5.71)

0

110 − 0.035
0

(4.33 − 0.0014)
50A6AAB

145
(5.71)

0

110 − 0.035
0

(4.33 − 0.0014)

5

364

5.4 Σ-Series Dimensional Drawings

in mm (inches)
Type
SGMS
SGMS-

Shaft end dimensions
S

10A6AAB

Approx.
mass
kg
(lb)

S1
0

24 − 0.013

Q

30
(1.18)

40
(1.57)

6.0
(13.22)

30
(1.18)

40
(1.57)

7.5
(16.53)

30
(1.18)

40
(1.57)

8.5
(18.73)

30
(1.18)

55
(2.17)

14
(30.86)

30
(1.18)

55
(2.17)

17
(37.47)

30
(1.18)

55
(2.17)

20
(44.08)

0

(0.94 − 0.0005)
15A6AAB

0

24 − 0.013
0

(0.94 − 0.0005)
20A6AAB

0

24 − 0.013
0

(0.94 − 0.0005)
30A6AAB

0

28 − 0.013
0

(1.10 − 0.0005)
40A6AAB

0

28 − 0.013
0

(1.10 − 0.0005)
50A6AAB

0

28 − 0.013
0

(1.10 − 0.0005)

5
Note

Incremental encoder (4096 P/R) is used as a detector.
• Connector Wiring on Motor Side
A
B
C
D

Phase U
Phase V
Phase W
Frame ground (FG)

E
F
G

Brake terminal
Brake terminal


365

USING THE DIGITAL OPERATOR
5.4.1 Servomotor Dimensional Drawings cont.

Absolute encoder (15bit : 8192 P/R)

(3.94)

(0.0016)
(ø0.0016)

MTG Holes

(0.0008)

Detailed View of Shaft End

5
in mm (inches)
Type
SGMS10ASA
15ASA
20ASA
30ASA
40ASA
50ASA

366

L

LL

LM

LR

LT

KB1

KB2

KL1

KL2

208
(8.19)
234
(9.21)
257
(10.12)
276
(10.87)
313
(12.32)
353
(13.90)

163
(6.42)
189
(7.44)
212
(8.35)
213
(8.39)
250
(9.84)
290
(11.42)

103
(4.06)
129
(5.08)
152
(5.98)
153
(6.02)
190
(7.48)
230
(9.06)

45
(1.77)
45
(1.77)
45
(1.77)
63
(2.48)
63
(2.48)
63
(2.48)

60
(2.36)
60
(2.36)
60
(2.36)
60
(2.36)
60
(2.36)
60
(2.36)

76
(2.99)
102
(4.02)
125
(4.92)
122
(4.80)
159
(6.26)
199
(7.83)

142
(5.59)
168
(6.61)
191
(7.52)
192
(7.56)
229
(9.02)
269
(10.59)

96
(3.78)
96
(3.78)
96
(3.78)
114
(4.49)
114
(4.49)
114
(4.49)

87
(3.43)
87
(3.43)
87
(3.43)
87
(3.43)
87
(3.43)
87
(3.43)

5.4 Σ-Series Dimensional Drawings

in mm (inches)
Type
yp
SGMSSGMS
10ASA

LA
115
(4.53)

LB
0
95 − 0.035

Flange dimensions
LC
LE
LF
LG
100
3
3
10
(3.94) (0.12) (0.12) (0.39)

LH
130
(5.12)

LJ
45
(1.77)

LZ
7
(0.28)

100
(3.94)

3
(0.12)

3
(0.12)

10
(0.39)

130
(5.12)

45
(1.77)

7
(0.28)

100
(3.94)

3
(0.12)

3
(0.12)

10
(0.39)

130
(5.12)

45
(1.77)

7
(0.28)

130
(5.12)

6
(0.24)

6
(0.24)

12
(0.47)

165
(6.50)

45
(1.77)

9
(0.35)

130
(5.12)

6
(0.24)

6
(0.24)

12
(0.47)

165
(6.50)

45
(1.77)

9
(0.35)

130
(5.12)

6
(0.24)

6
(0.24)

12
(0.47)

165
(6.50)

45
(1.77)

9
(0.35)

0

(3.74 − 0.0014)
15ASA

115
(4.53)

0

95 − 0.035
0

(3.74 − 0.0014)
20ASA

115
(4.53)

0

95 − 0.035
0

(3.74 − 0.0014)
30ASA

145
(5.71)

0

110 − 0.035
0

(4.33 − 0.0014)
40ASA

145
(5.71)

0

110 − 0.035
0

(4.33 − 0.0014)
50ASA

145
(5.71)

0

110 − 0.035
0

(4.33 − 0.0014)

5

367

USING THE DIGITAL OPERATOR
5.4.1 Servomotor Dimensional Drawings cont.

in mm (inches)
Type
SGMS
SGMS-

Shaft end dimensions
S

10ASA

Approx.
mass
kg
(lb)

S1
0

24 − 0.013

Q

30
(1.18)

40
(1.57)

5.0
(11.02)

30
(1.18)

40
(1.57)

6.2
(13.66)

30
(1.18)

40
(1.57)

7.4
(16.31)

30
(1.18)

55
(2.17)

11.5
(25.35)

30
(1.18)

55
(2.17)

14.5
(31.96)

30
(1.18)

55
(2.17)

17.5
(38.57)

0

(0.94 − 0.0005)
15ASA

0

24 − 0.013
0

(0.94 − 0.0005)
20ASA

0

24 − 0.013
0

(0.94 − 0.0005)
30ASA

0

28 − 0.013
0

(1.10 − 0.0005)
40ASA

0

28 − 0.013
0

(1.10 − 0.0005)
50ASA

0

28 − 0.013
0

(1.10 − 0.0005)

5

Note

368

Absolute encoder (15bit : 8192 P/R) is used as a detector.

5.4 Σ-Series Dimensional Drawings

• Connector Wiring on Detector Side
Receptacle: MS3102A20-29P
Plug (To be prepared by customer) (L type): MS3108B20-29S or
(Straight type) MS3106B20-29S
Cable Clamp: (To be prepared by customer) MS3057-12A
Encoder Wiring Specifications
A
B
C
D
E
F
G
H
J

Note

A channel output
/A channel output
B channel output
/B channel output
Z channel output
/Z channel output
0V
+5V DC
FG (Frame Ground)

K
L
M
N
P
R Reset
S 0V (battery)
T 3.6V (battery)

1) Terminals K to P are not used. Do not connect anything.
2) Receptacle, plug and cable clamp are common regardless of motor capacity.
• Connector Wiring on Motor Side
A
B
C
D

Note

5

Phase U
Phase V
Phase W
Ground terminal

Receptacle, plug and cable clamp differ depending on the capacity. Refer to 6) Connectors
on Detector and Motor Sides (page 392).

369

USING THE DIGITAL OPERATOR
5.4.1 Servomotor Dimensional Drawings cont.

Absolute encoder (15bit : 8192 P/R, 12 bit : 1024 P/R), with brake

(0.0016)
(ø0.0016)

MTG Holes

(0.0008)

Detailed View of Shaft End

5
in mm (inches)
Type
SGMS10ASAAB
15ASAAB
20ASAAB
30ASAAB
40ASAAB
50ASAAB

370

L

LL

LM

LR

LT

KB1

KB2

KL1

KL2

252
(9.92)
278
(10.94)
301
(11.85)
314
(12.36)
350
(13.78)
391
(15.39)

207
(8.15)
233
(9.17)
256
(10.08)
251
(9.88)
288
(11.34)
328
(12.91)

147
(5.79)
173
(6.81)
196
(7.72)
191
(7.52)
228
(8.98)
268
(10.55)

45
(1.77)
45
(1.77)
45
(1.77)
63
(2.48)
63
(2.48)
63
(2.48)

60
(2.36)
60
(2.36)
60
(2.36)
60
(2.36)
60
(2.36)
60
(2.36)

67
(2.64)
93
(3.66)
116
(4.57)
113
(4.45)
150
(5.91)
190
(7.48)

186
(7.32)
212
(8.35)
235
(9.25)
230
(9.06)
267
(10.51)
307
(12.09)

100
(3.94)
100
(3.94)
100
(3.94)
119
(4.69)
119
(4.69)
119
(4.69)

87
(3.43)
87
(3.43)
87
(3.43)
87
(3.43)
87
(3.43)
87
(3.43)

5.4 Σ-Series Dimensional Drawings

in mm (inches)
Type
yp
SGMSSGMS
10ASAAB

LA
115
(4.53)

LB
0
95 − 0.035

Flange dimensions
LC
LE
LF
LG
100
3
3
10
(3.94) (0.12) (0.12) (0.39)

LH
130
(5.12)

LJ
45
(1.77)

LZ
7
(0.28)

100
(3.94)

3
(0.12)

3
(0.12)

10
(0.39)

130
(5.12)

45
(1.77)

7
(0.28)

100
(3.94)

3
(0.12)

3
(0.12)

10
(0.39)

130
(5.12)

45
(1.77)

7
(0.28)

130
(5.12)

6
(0.24)

6
(0.24)

12
(0.47)

165
(6.50)

45
(1.77)

9
(0.35)

130
(5.12)

6
(0.24)

6
(0.24)

12
(0.47)

165
(6.50)

45
(1.77)

9
(0.35)

130
(5.12)

6
(0.24)

6
(0.24)

12
(0.47)

165
(6.50)

45
(1.77)

9
(0.35)

0

(3.74 − 0.0014)
15ASAAB

115
(4.53)

0

95 − 0.035
0

(3.74 − 0.0014)
20ASAAB

115
(4.53)

0

95 − 0.035
0

(3.74 − 0.0014)
30ASAAB

145
(5.71)

0

110 − 0.035
0

(4.33 − 0.0014)
40ASAAB

145
(5.71)

0

110 − 0.035
0

(4.33 − 0.0014)
50ASAAB

145
(5.71)

0

110 − 0.035
0

(4.33 − 0.0014)

5

371

USING THE DIGITAL OPERATOR
5.4.1 Servomotor Dimensional Drawings cont.

in mm (inches)
Type
SGMS
SGMS-

Shaft end dimensions
S

10ASAAB

Approx.
mass
kg
(lb)

S1
0

24 − 0.013

Q

30
(1.18)

40
(1.57)

6.5
(14.33)

30
(1.18)

40
(1.57)

8.0
(17.63)

30
(1.18)

40
(1.57)

9.0
(19.84)

30
(1.18)

55
(2.17)

14.5
(31.96)

30
(1.18)

55
(2.17)

17.5
(38.57)

30
(1.18)

55
(2.17)

20.5
(45.18)

0

(0.94 − 0.0005)
15ASAAB

0

24 − 0.013
0

(0.94 − 0.0005)
20ASAAB

0

24 − 0.013
0

(0.94 − 0.0005)
30ASAAB

0

28 − 0.013
0

(1.10 − 0.0005)
40ASAAB

0

28 − 0.013
0

(1.10 − 0.0005)
50ASAAB

0

28 − 0.013
0

(1.10 − 0.0005)

5

Note

Absolute encoder (15bit : 8192 P/R) is used as a detector.
• Connector Wiring on Motor Side
Motor Wiring Specifications
A
B
C
D

372

Phase U
Phase V
Phase W
Frame ground (FG)

E
F
G

Brake terminal
Brake terminal


5.4 Σ-Series Dimensional Drawings

Low backlash gear (3000 min−1), without brake
• Flange-mounted type

φLBh7

φSh6

Grease-lubrication type small size servomotors

Detailed View
of Shaft End

in mm (inches)
Motor type
SGMS-

Gear type

LL

LM

LR

LT

KB1

KB2

KL1

KL2

R

Shaft center
allowable
radial load
N

833

ratio

10A6AL1K
10A6AL2K

L

Gear

1/5
BL2

149

103

100

46

76

128

96

87

254

(5.87)

(4.06)

(3.94)

(1.81)

(2.99)

(5.04)

(3.78)

(3.43)

(10.0)

1/5

149

103

100

46

76

128

96

87

(4.06)

(3.94)

(1.81)

(2.99)

(5.04)

(3.78)

(3.43)

BL2

1/5

13
(28.7)

266

(5.87)

(10.5)

429

175

129

100

46

102

154

96

87

(6.89)

(5.08)

(3.94)

(1.81)

(4.02)

(6.06)

(3.78)

(3.43)

980

13
(28.7)

254

(16.9)

20A6AL1K

BL2

415
(16.3)

15A6AL1K

1/9

403
(15.9)

(10.0)

452

198

152

100

46

125

177

96

87

(7.80)

(5.98)

(3.94)

(1.81)

(4.92)

(6.97)

(3.78)

(3.43)

833

14
(30.9)

254

(17.8)

Approx.
mass
kg (lb)

(10.0)

833

15
(33.1)

in mm (inches)
Motor type
yp
SGMS10A6AL1K

Flange dimensions
LA
160

LB
0
130 −0.040

(6.30)

10A6AL2K

0
5.12−0.0016

160

0
130 −0.040

LC

LE

LG

Shaft end dimensions
LH

N
4

140

3

12

185

(5.51)

(0.12)

(0.47)

(7.28)

15A6AL1K

140

3

12

185

(6.30)

0
5.12−0.0016

(5.51)

(0.12)

(0.47)

0
130 −0.040

140

3

12

185

(5.51)

(0.12)

(0.47)

(7.28)

(6.30)

20A6AL1K

0
5.12−0.0016

160

0
130 −0.040

(6.30)

0
5.12−0.0016

140

3

12

185

(5.51)

(0.12)

(0.47)

(7.28)

S

12

0
35 −0.016

(0.47)

(7.28)

160

LZ

4

0
1.38−0.0006

12

0
35 −0.016

(0.47)

4

0
1.38−0.0006

12

0
35 −0.016

(0.47)

4

0
1.38−0.0006

12

0
35 −0.016

(0.47)

0
1.38−0.0006

Q

QK

QR

T

U

W

55

47

1

8

5

10

(2.17)

(1.85)

(0.039)

(0.31)

(0.20)

(0.39)

55

47

1

8

5

10

(2.17)

(1.85)

(0.039)

(0.31)

(0.20)

(0.39)

55

47

1

8

5

10

(2.17)

(1.85)

(0.039)

(0.31)

(0.20)

(0.39)

55

47

1

8

5

10

(2.17)

(1.85)

(0.039)

(0.31)

(0.20)

(0.39)

373

5

USING THE DIGITAL OPERATOR
5.4.1 Servomotor Dimensional Drawings cont.

φLBh7

φSh6

Grease-lubrication type large size servomotors

Detailed View
of Shaft End

in mm (inches)
Motor type
SGMS-

Gear type

Gear

L

LL

LM

LR

LT

KB1

KB2

KL1

KL2

R

Shaft
center
allowable
radial load
N

2650

ratio

10A6AL5K
BL3

10A6AL8K

1/29

496

149

103

140

46

76

128

96

87

347

(19.5)

10A6AL7K

1/20

(5.87)

(4.06)

(5.51)

(1.81)

(2.99)

(5.04)

(3.78)

(3.43)

(13.7)

1/45

496

149

103

140

46

76

128

96

87

347

(19.5)

(5.87)

(4.06)

(5.51)

(1.81)

(2.99)

(5.04)

(3.78)

(3.43)

15A6AL2K

149

103

140

46

76

128

96

87

357

(5.87)

(4.06)

(5.51)

(1.81)

(2.99)

(5.04)

(3.78)

(3.43)

BL3

15A6AL7K

5

1/20

518

175

129

140

46

102

154

96

87

343

(6.89)

(5.08)

(5.51)

(1.81)

(4.02)

(6.06)

(3.78)

(3.43)

522

175

129

140

46

102

154

96

87

347

(6.89)

(5.08)

(5.51)

(1.81)

(4.02)

(6.06)

(3.78)

(3.43)

15A6AL8K

BL4

522

175

129

140

46

102

154

96

87

347

(6.89)

(5.08)

(5.51)

(1.81)

(4.02)

(6.06)

(3.78)

(3.43)

20A6AL5K

1/9
BL3

573

175

129

160

46

102

154

96

87

398

(6.89)

(5.08)

(6.30)

(1.81)

(4.02)

(6.06)

(3.78)

(3.43)

541

198

152

140

46

125

177

96

87

343

(7.80)

(5.98)

(5.51)

(1.81)

(4.92)

(6.97)

(3.78)

(3.43)

20A6AL8K

1/29
BL4

545

198

152

140

46

125

177

96

87

347

(7.80)

(5.98)

(5.51)

(1.81)

(4.92)

(6.97)

(3.78)

(3.43)

586

198

152

160

46

125

177

96

87

388

(7.80)

(5.98)

(6.30)

(1.81)

(4.92)

(6.97)

(3.78)

(3.43)

30A6AL2K

1/5
BL3

596

198

152

160

46

125

177

96

87

398

(7.80)

(5.98)

(6.30)

(1.81)

(4.92)

(6.97)

(3.78)

(3.43)

540

199

153

140

46

122

178

114

87

341

(7.83)

(6.02)

(5.51)

(1.81)

(4.80)

(7.01)

(4.49)

(3.43)

199

153

140

46

122

178

114

87

368

(7.83)

(6.02)

(5.51)

(1.81)

(4.80)

(7.01)

(4.49)

(3.43)

BL4

30A6AL8K

1/29

612

199

153

160

46

122

178

114

87

413

(7.83)

(6.02)

(6.30)

(1.81)

(4.80)

(7.01)

(4.49)

(3.43)

612

199

153

160

46

122

178

114

87

413

(7.83)

(6.02)

(6.30)

(1.81)

(4.80)

(7.01)

(4.49)

(3.43)

40A6AL1K

BL3

622

199

153

160

46

122

178

114

87

423

(7.83)

(6.02)

(6.30)

(1.81)

(4.80)

(7.01)

(4.49)

(3.43)

236

190

140

46

159

215

114

87

341

(9.29)

(7.48)

(5.51)

(1.81)

(6.26)

(8.46)

(4.49)

(3.43)

40A6AL7K

BL4

1/20

649

236

190

160

46

159

215

114

87

413

(9.29)

(7.48)

(6.30)

(1.81)

(6.26)

(8.46)

(4.49)

(3.43)

649

236

190

160

46

159

215

114

87

413

(9.29)

(7.48)

(6.30)

(1.81)

(6.26)

(8.46)

(4.49)

(3.43)

374

6860

649

236

190

160

46

159

215

114

87

413

(9.29)

(7.48)

(6.30)

(1.81)

(6.26)

(8.46)

(4.49)

(3.43)

(16.3)

52
(114.6)

8040

52
(114.6)

1670

29
(63.9)

1960

36
(79.4)

6080

56
(123.5)

6860

56
(123.5)

8040

56
(123.5)

1670

32
(70.5)

4700

59
(130.1)

(16.3)

(25.6)

32
(70.5)

(16.3)

(25.6)

1/29

2650

(13.4)

(25.6)

40A6AL5K

1/9

577

32
(70.5)

(16.7)

(22.7)

40A6AL2K

1/5

1960

(16.3)

(24.5)

51
(112.4)

(16.3)

(24.1)

1/45

8040

(14.5)

(24.1)

30A6AL7K

1/20

567

31
(68.3)

(13.4)

(22.3)

30A6AL5K

1/9

2940

(15.7)

(21.3)

31
(68.3)

(15.3)

(23.5)

30A6AL1K

1/45

2650

(13.7)

(23.1)

31
(68.3)

(13.5)

(21.5)

20A6AL7K

1/20

1960

(15.7)

(21.3)

30
(66.1)

(13.7)

(22.6)

20A6AL2K

1/45

3430

(13.7)

(20.6)

30
(66.1)

(13.5)

(20.6)

1/29

2940

(14.1)

(20.4)

15A6AL5K

1/9

506

30
(66.1)

(13.7)

(19.9)

Approx.
mass
kg (lb)

6080

59
(130.1)

6860

59
(130.1)

5.4 Σ-Series Dimensional Drawings

Motor type
SGMS-

Gear type

Gear

L

LL

LM

LR

LT

KB1

KB2

KL1

KL2

R

Shaft
center
allowable
radial load
N

3820

ratio

50A6AL1K

1/9

657

276

230

160

46

199

255

114

87

381

(25.9)

50A6AL2K

1/5

(10.9)

(9.06)

(6.30)

(1.81)

(7.83)

(10.0)

(4.49)

(3.43)

(15.0)

50A6AL5K

1/20

689

276

230

160

46

199

255

114

87

(10.9)

(9.06)

(6.30)

(1.81)

(7.83)

(10.0)

(4.49)

(3.43)

(16.3)

689

276

230

160

46

199

255

114

87

(10.9)

(9.06)

(6.30)

(1.81)

(7.83)

(10.0)

(4.49)

(3.43)

4700

62
(136.8)

413

(27.1)

52
(114.6)

413

(27.1)

BL4

Approx.
mass
kg (lb)

(16.3)

6080

62
(136.8)

in mm (inches)
Motor type
yp
SGMS10A6AL5K

Frange dimensions
LA
220

LB

LC

LE

N
6

245

5

15

(8.66)

10A6AL7K

0
7.48−0.0018

(9.65)

(0.20)

(0.59)

220

0
190 −0.046

245

5

15

(9.65)

(0.20)

(0.59)

0
190 −0.046

(8.66)

10A6AL8K

0
7.48−0.0018

220

0
190 −0.046

(8.66)

15A6AL2K

0
7.48−0.0018

220

0
190 −0.046

(8.66)

15A6AL5K

0
7.48−0.0018

220

0
190 −0.046

(8.66)

15A6AL7K

0
7.48−0.0018

220

0
190 −0.046

245

5

15

(9.65)

(0.20)

245

5

15

(9.65)

(0.20)

245

5

15

(0.20)

245

5

15

(9.65)

(0.20)

0
240 −0.046

310

5

18

(12.2)

(0.20)

220

0
190 −0.046

0
7.48−0.0018

220

0
190 −0.046

(8.66)

20A6AL7K

0
7.48−0.0018

280

0
240 −0.046

(11.0)

20A6AL8K

0
9.45−0.0018

280

0
240 −0.046

(11.0)

30A6AL1K

0
9.45−0.0018

220

0
190 −0.046

(8.66)

30A6AL2K

0
7.48−0.0018

220

0
190 −0.046

(8.66)

30A6AL5K

0
7.48−0.0018

280

0
240 −0.046

(11.0)

30A6AL7K

0
9.45−0.0018

280

0
240 −0.046

245

5

15

(9.65)

(0.20)

245

5

15

(0.20)

310

5

18

(12.2)

(0.20)

6

310

5

18

(0.20)

6

245

5

15

(0.20)

6

245

5

15

(0.20)

6

310

5

18

(0.20)

6

310

5

18

(12.2)

(0.20)

6

0
240 −0.046

310

5

18

(12.2)

(0.20)

(0.71)

(11.0)

0
9.45−0.0018

0
50 −0.016

0
1.97−0.0006

12

0
50 −0.016

12

0
1.97−0.0006
0
50 −0.016

0
1.97−0.0006

12

0
50 −0.016

0
1.97−0.0006

14

0
60 −0.019

0
2.36−0.0007

12

0
50 −0.016

12

0
1.97−0.0006
0
50 −0.016

0
1.97−0.0006

14

0
60 −0.019

(0.55)

6

0
2.36−0.0007

14

0
60 −0.019

(0.55)

6

0
2.36−0.0007

12

0
50 −0.016

(0.47)

6

0
1.97−0.0006

12

0
50 −0.016

(0.47)

6

14

0
1.97−0.0006
0
60 −0.019

(0.55)

(0.71)

280

12

(0.47)

(0.71)

0
9.45−0.0018

0
1.97−0.0006

(0.47)

(0.59)

(12.2)

0
50 −0.016

(0.55)

(0.59)

(9.65)

12

(0.47)

(0.71)

(9.65)

0
1.97−0.0006

(0.47)

(0.71)

(12.2)

0
50 −0.016

(0.47)

(0.59)

(11.0)

30A6AL8K

6

(0.59)

(9.65)

12

(0.47)

(0.71)

0
9.45−0.0018

(8.66)

20A6AL5K

6

(0.59)

280

S

(0.47)

(0.59)

0
7.48−0.0018

(11.0)

20A6AL2K

6

(0.59)

(9.65)

LZ

(0.47)

(0.59)

(8.66)

15A6AL8K

Shaft end dimensions

LG

6

0
2.36−0.0007

14

0
60 −0.019

(0.55)

6

0
2.36−0.0007

14

0
60 −0.019

(0.55)

0
2.36−0.0007

Q

QK

QR

T

U

W

75

65

1

9

5.5

14

(2.95)

(2.56)

(0.039)

(0.35)

(0.22)

(0.55)

75

65

1

9

5.5

14

(2.95)

(2.56)

(0.039)

(0.35)

(0.22)

(0.55)

75

65

1

9

5.5

14

(2.95)

(2.56)

(0.039)

(0.35)

(0.22)

(0.55)

75

65

1

9

5.5

14

(2.95)

(2.56)

(0.039)

(0.35)

(0.22)

(0.55)

75

65

1

9

5.5

14

(2.95)

(2.56)

(0.039)

(0.35)

(0.22)

(0.55)

75

65

1

9

5.5

14

(2.95)

(2.56)

(0.039)

(0.35)

(0.22)

(0.55)

90

78

1

11

7

18

(3.54)

(3.07)

(0.039)

(0.43)

(0.28)

(0.71)

75

65

1

9

5.5

14

(2.95)

(2.56)

(0.039)

(0.35)

(0.22)

(0.55)

75

65

1

9

5.5

14

(2.95)

(2.56)

(0.039)

(0.35)

(0.22)

(0.55)

90

78

1

11

7

18

(3.54)

(3.07)

(0.039)

(0.43)

(0.28)

(0.71)

90

78

1

11

7

18

(3.54)

(3.07)

(0.039)

(0.43)

(0.28)

(0.71)

75

65

1

9

5.5

14

(2.95)

(2.56)

(0.039)

(0.35)

(0.22)

(0.55)

75

65

1

9

5.5

14

(2.95)

(2.56)

(0.039)

(0.35)

(0.22)

(0.55)

90

78

1

11

7

18

(3.54)

(3.07)

(0.039)

(0.43)

(0.28)

(0.71)

90

78

1

11

7

18

(3.54)

(3.07)

(0.039)

(0.43)

(0.28)

(0.71)

90

78

1

11

7

18

(3.54)

(3.07)

(0.039)

(0.43)

(0.28)

(0.71)

375

5

USING THE DIGITAL OPERATOR
5.4.1 Servomotor Dimensional Drawings cont.

Motor type
SGMS40A6AL1K

Frange dimensions
LA
220

LB
0
190 −0.046

(8.66)

40A6AL2K

0
7.48−0.0018

280

0
240 −0.046

LC

LE

LG

N
6

245

5

15

(9.65)

(0.20)

(0.59)

310

5

18

(11.0)

40A6AL5K

0
9.45−0.0018

(12.2)

(0.20)

280

0
240 −0.046

310

5

18

(12.2)

(0.20)

(0.71)

0
9.45−0.0018

280

0
240 −0.046

50A6AL1K

310

5

18

(11.0)

0
9.45−0.0018

(12.2)

(0.20)

0
240 −0.046

310

5

18

(12.2)

(0.20)

280

0
9.45−0.0018
0
240 −0.046

(11.0)

50A6AL5K

0
9.45−0.0018

280

0
240 −0.046

(11.0)

5

376

0
9.45−0.0018

310

5

18

(12.2)

(0.20)

6

310

5

18

(0.20)

(0.71)

12

0
50 −0.016

0
1.97−0.0006

14

0
60 −0.019

0
2.36−0.0007

14

0
60 −0.019

(0.55)

6

0
2.36−0.0007

14

0
60 −0.019

(0.55)

6

0
2.36−0.0007

14

0
60 −0.019

(0.55)

(0.71)

(12.2)

S

(0.55)

(0.71)

(11.0)

50A6AL2K

6

(0.71)

280

LZ

(0.47)

(0.71)

(11.0)

40A6AL7K

Shaft end dimensions

6

0
2.36−0.0007

14

0
60 −0.019

(0.55)

6

0
2.36−0.0007

14

0
60 −0.019

(0.55)

0
2.36−0.0007

Q

QK

QR

T

U

W

75

65

1

9

5.5

14

(2.95)

(2.56)

(0.039)

(0.35)

(0.22)

(0.55)

90

78

1

11

7

18

(3.54)

(3.07)

(0.039)

(0.43)

(0.28)

(0.71)

90

78

1

11

7

18

(3.54)

(3.07)

(0.039)

(0.43)

(0.28)

(0.71)

90

78

1

11

7

18

(3.54)

(3.07)

(0.039)

(0.43)

(0.28)

(0.71)

90

78

1

11

7

18

(3.54)

(3.07)

(0.039)

(0.43)

(0.28)

(0.71)

90

78

1

11

7

18

(3.54)

(3.07)

(0.039)

(0.43)

(0.28)

(0.71)

90

78

1

11

7

18

(3.54)

(3.07)

(0.039)

(0.43)

(0.28)

(0.71)

5.4 Σ-Series Dimensional Drawings

Shaft end tap specifications
d tap×L

in mm (inches)
Gear type

Shaft
diameter
S

Shaft
length
Q

d×L

BL2

35 (1.38)

55 (2.17)

M8 × 16

BL3

50 (1.97)

75 (2.95)

M10 × 20

BL4

60 (2.36)

90 (3.54)

M12 × 24

Detailed dimensions of IMT gear
in mm (inches)
Gear ratio

A

1/5

6 (0.24)

1/9

18 (0.71)

1/20, 1/29

39 (1.54)

1/45

(Motor)

47 (1.85)

in mm (inches)
Gear ratio

A

1/5

11 (0.43)

1/9

38 (1.50)

1/20, 1/29

46 (1.81)

1/45

(Motor)

52 (2.05)

in mm (inches)
Gear ratio

A

1/5
(Motor)

16 (0.63)

1/9

48 (1.89)

1/20, 1/29

55 (2.17)

1/45

58 (2.28)

377

5

USING THE DIGITAL OPERATOR
5.4.1 Servomotor Dimensional Drawings cont.

J SGMD-jjA Servomotor
Incremental encoder (4096 P/R)
Incremental encoder (4096 P/R), with brake
The dimensional drawing is the same for these types. Only approximate mass differs.

(0.0016)

(3.94)

(ø0.0016)

(0.0008)

MTG Holes

Detailed View of Shaft End

5

in mm (inches)
Type
SGMD22A6A
32A6A
40A6A

378

L

LL

LM

LR

LT

KB1

KB2

KL1

KL2

242
(9.53)
254
(10.00)
274
(10.79)

187
(7.36)
199
(7.83)
209
(8.23)

144
(5.67)
156
(6.14)
166
(6.54)

55
(2.17)
55
(2.17)
65
(2.56)

43
(1.69)
43
(1.69)
43
(1.69)

70
(2.76)
82
(3.23)
92
(3.62)

166
(6.54)
178
(7.01)
188
(7.40)

165
(6.50)
165
(6.50)
165
(6.50)

88
(3.46)
88
(3.46)
88
(3.46)

5.4 Σ-Series Dimensional Drawings

in mm (inches)
Type
yp
SGMDSGMD
22A6A

LA
235
(9.25)

LB
0
200 − 0.046

Flange dimensions
LC
LE
LF
LG
220
4
4
18
(8.66) (0.16) (0.16) (0.71)

LH
270
(10.63)

LJ
62
(2.44)

LZ
13.5
(0.53)

220
(8.66)

4
(0.16)

4
(0.16)

18
(0.71)

270
(10.63)

62
(2.44)

13.5
(0.53)

220
(8.66)

4
(0.16)

4
(0.16)

18
(0.71)

270
(10.63)

62
(2.44)

13.5
(0.53)

0

(7.87 − 0.0018)
32A6A

235
(9.25)

0

200 − 0.046
0

(7.87 − 0.0018)
40A6A

235
(9.25)

0

200 − 0.046
0

(7.87 − 0.0018)

in mm (inches)
Type
SG
SGMD-

Shaft end dimensions
S1

S
22A6A

0

28 − 0.013

Q

45
(1.77)

50
(1.97)

Approx. mass
kg (lb)
without
with
brake
brake
15.5
20.5
(34.16)
(45.18)

45
(1.77)

50
(1.97)

18.5
(40.77)

23.5
(51.79)

45
(1.77)

60
(2.36)

21
(46.28)

26
(57.30)

0

(1.10 − 0.0005)
32A6A

0

28 − 0.013
0

5

(1.10 − 0.0005)
40A6A

0
32 − 0.016
0

(1.26 − 0.0006)

Note

1) Incremental encoder (4096 P/R) is used as a detector.
2) For SGMD servomotors with brake, the product type code ends with “AB”.

379

USING THE DIGITAL OPERATOR
5.4.1 Servomotor Dimensional Drawings cont.

• Connector Wiring on Detector Side
Receptacle: MS3102A20-29P
Plug (To be prepared by customer) (L type): MS3108B20-29S or
(Straight type) MS3106B20-29S
Cable Clamp: (To be prepared by customer) MS3057-12A
Encoder Wiring Specifications
A
B
C
D
E
F
G
H
J

Note

A channel output
/A channel output
B channel output
/B channel output
C channel output
/C channel output
0V
+5V DC
FG (Frame Ground)

K
L
M
N
P
R
S
T

1) Terminals K to T are not used.
2) Receptacle, plug and cable clamp are common regardless of motor capacity.
• Connector Wiring on Motor Side

5

Receptacle: MS3102A24-10P
Plug (To be prepared by customer) (L type): MS3108B24-10S or
(Straight type) MS3106B24-10S
Cable Clamp: (To be prepared by customer) MS3057-16A
Motor Wiring Specifications
A
B
C
D

Note E,F are only used with the brake.

380

Phase U
Phase V
Phase W
Frame ground (FG)

E
F
G

Brake terminal
Brake terminal


5.4 Σ-Series Dimensional Drawings

Absolute encoder (12-bit : 1024 P/R)
Absolute encoder (12-bit : 1024 P/R), with brake
These dimensional drawing is the same for these types. Only approximate mass differs.

(0.0016)
(ø0.0016)

(0.0008)

MTG Holes

Detailed View of Shaft End

5

in mm (inches)
Type
SGMG22AWA
32AWA
40AWA

L

LL

LM

LR

LT

KB1

KB2

KL1

KL2

256
(10.08)
268
(10.55)
288
(11.34)

201
(7.91)
213
(8.39)
223
(8.78)

144
(5.67)
156
(6.14)
166
(6.54)

55
(2.17)
55
(2.17)
65
(2.56)

57
(2.24)
57
(2.24)
57
(2.24)

70
(2.76)
82
(3.23)
92
(3.62)

180
(7.09)
192
(7.56)
202
(7.95)

165
(6.50)
165
(6.50)
165
(6.50)

88
(3.46)
88
(3.46)
88
(3.46)

381

USING THE DIGITAL OPERATOR
5.4.1 Servomotor Dimensional Drawings cont.

in mm (inches)
Type
yp
SGMGSGMG
22AWA

LA
235
(9.25)

LB
0
200 − 0.046

Flange dimensions
LC
LE
LF
LG
220
4
4
18
(8.66) (0.16) (0.16) (0.71)

LH
270
(10.63)

LJ
62
(2.44)

LZ
13.5
(0.53)

220
(8.66)

4
(0.16)

4
(0.16)

18
(0.71)

270
(10.63)

62
(2.44)

13.5
(0.53)

220
(8.66)

4
(0.16)

4
(0.16)

18
(0.71)

270
(10.63)

62
(2.44)

13.5
(0.53)

0

(7.87 − 0.0018)
32AWA

235
(9.25)

0

200 − 0.046
0

(7.87 − 0.0018)
40AWA

235
(9.25)

0

200 − 0.046
0

(7.87 − 0.0018)

in mm (inches)
Type
SG G
SGMG-

Shaft end dimensions
S1

S
22AWA

0

28 − 0.013

Q

45
(1.77)

50
(1.97)

Approx. mass
kg (lb)
without
with
brake
brake
15.5
20.5
(34.16)
(45.18)

45
(1.77)

50
(1.97)

18.5
(40.77)

23.5
(51.79)

45
(1.77)

60
(2.36)

21
(46.28)

26.5
(58.41)

0

(1.10 − 0.0005)
32AWA

0

28 − 0.013
0

5

(1.10 − 0.0005)
40AWA

0

32 − 0.016
0

(1.26 − 0.0006)

Note

1) Absolute encoder (12-bit : 1024 P/R) is used as a detector.
2) For SGMD servomotors with brake, the product type code ends with “AB”.

382

5.4 Σ-Series Dimensional Drawings

• Connector Wiring on Detector side
Receptacle: MS3102A20-29P
Plug (To be prepared by customer) (L type): MS3108B20-29S or
(Straight type) MS3106B20-29S
Cable Clamp: (To be prepared by customer) MS3057-12A
Encoder Wiring Specifications
A
B
C
D
E
F
G
H
J

Note

A channel output
/A channel output
B channel output
/B channel output
Z (C) channel output
/Z (C) channel output
0V
+5V DC
FG (Frame Ground)

K
L
M
N
P
R
S
T

S channel output
/S cnannel output

reset
0V (battery)
3.6V (battery)

1) Terminals M to P are not used. Do not connect anything.
2) Receptacle, plug and cable clamp are common regardless of motor capacity.
• Connector Wiring on Motor side

5

Receptacle: MS3102A24-10P
Plug (To be prepared by customer) (L type): MS3108B24-10S or
(Straight type) MS3106B24-10S
Cable Clamp: (To be prepared by customer) MS3057-16A
A
B
C
D

Phase U
Phase V
Phase W
Frame ground (FG)

E
F
G

Brake terminal
Brake terminal


Note E,F are only used with the brake.

383

USING THE DIGITAL OPERATOR
5.4.1 Servomotor Dimensional Drawings cont.

J SGMP-15A Servomotor
SGMP Servomotor
Incremental Encoder without brake (SGMP-15A31j Servomotor)
• 1.5kW
Encoder Lead
UL2854, ø6(ø0.24)
Screw
Motor Lead
UL2464, Φ9.5(0.37)

Cross-section Y-Y
Hex.nut
17(0.67)
Sealant

Nameplate

5

4-ø10
MTG Holes

Incremental encoder
2048 P/R

(ø0.0016)

in mm (inches)
Type
SGMP-

QK

15A312

No key

15A314

22
(0.87)
22
(0.87)

15A316

Note

U

3.5
(0.14)
3.5
(0.14)

W

6
(0.24)
6
(0.24)

T

6
(0.24)
6
(0.24)

Screw
Dimensions

Output
W (HP)

1500
No
( 0 )
(2.02)
Screw
No
Screw
M6,
depth 10

Approx.
mass
kg (lb)
6.6
( 55)
(14.55)

Allowable Allowable
radial
thrust
load
load
N (lb)
N (lb)
490 (110) 147 (33)

1) The detector uses an incremental encoder 2048 P/R.
2) Type “A” indicates 200 V specification.
3) “15A314” and “15A316” have a keyed shaft. The keyway complies with JIS B 1301-1976
(precision). A straight key is supplied.
4) The quoted allowable radial load is the value at a position 35 mm (1.40 in.) from the motor mounting surface.

384

5.4 Σ-Series Dimensional Drawings

• Details of Motor and Encoder Plugs
Motor Wiring Specifications

Motor Plug
Plug : 350779-1 (Made by AMP)
Pin: 350218-6 or 350547-6
Connected to
Cap: 350780-1
Socket: 350536-6 or 350550-6

1
2
3
4

Phase U
Phase V
Phase W
FG

Red
White
Blue
Green/Yellow

Encoder Plug
Plug: 172169-1 (Made by AMP)
Pin: 170359-1 or 170363-1
Connected to
Cap :172161-1
Socket: 170361-1 or 170365-1

Incremental Encoder Wiring Specifications
1
2
3
4
5
6
7
8
9

A channel output
/A channel output
B channel output
/B channel output
C channel output
/C channel output
0V (power supply)
+5V (power supply)
FG (Frame Ground)

Blue
Blue/Black
Yellow
Yellow/Black
Green
Green/Black
Gray
Red
Orange

5

385

USING THE DIGITAL OPERATOR
5.4.1 Servomotor Dimensional Drawings cont.

SGMP Servomotor
Incremental Encoder with brake (SGMP-15A31jB, C Servomotor)
• 1.5kW
Encoder Lead
UL2854, ø6(ø0.24)

Screw
Motor Lead
UL2464, Φ9.5(Φ0.37)

Cross-section Y-Y

(183 MAX.) (7.2 MAX)
143 MAX. (5.63 MAX)

Hex.nut
17(0.67)

Sealant

Nameplate

Incremental
encoder
2048 P/R

5

4-ø10
MTG Holes

Holding Brake (deenergized operation)
Voltage:Tail code B:90 VDC C:24 VDC
Brake holding torque=motor rated torque

in mm (inches)
Type
SGMP-

QK

15A312B
15A312C
15A314B
15A314C
15A316B

No key
y

15A316C

Note

U

W

T

Screw
Dimens
ions

Output
W (HP)

No
Screw
S

1500
(2.02)
(2 02)

22
(0.87)
(0 8 )

3.5
(0.14)
(0 1 )

6
(0.24)
(0 2 )

6
(0.24)
(0 2 )

No
Screw
S

22
(0.87)
(0 87)

3.5
(0.14)
(0 14)

6
(0.24)
(0 24)

6
(0.24)
(0 24)

Approx. Allowable Allowable
mass
radial
thrust
kg (lb)
load
load
N (lb)
N (lb)
8.1
490 (110) 147 (33)
(
)
( )
(17.85)
(1 8 )

M6,
depth
10

1) The detector uses an incremental encoder 2048 P/R.
2) Type “A” indicates 200 V specification.
3) “15A314B(C)” and “15A316B(C)” have a keyed shaft. The keyway complies with JIS B
1301-1976 (precision). A straight key is supplied.
4) The quoted allowable radial load is the value at a position 35 mm (1.40 in.) from the motor mounting surface.

386

5.4 Σ-Series Dimensional Drawings

5) The electromagnetic brake is only to hold the load in position and cannot be used to stop
the motor.
• Details of Motor and Encoder Plugs (Common for 100W (0.13 HP) to 750 W (1.01 HP))
Motor Plug

Motor Wiring Specifications
Plug : 350715-1 (AMP)
Pin: No.1 to No.4 350218-6 or
350547-6
Pin: No.5 to No.6 350561-1 or
350690-1
Connected to
Cap: 350781-1
Socket: 350536-6 or 350550-6

1
2
3
4
5
6

Phase U
Phase V
Phase W
FG
Brake terminal
Brake terminal

Red
White
Blue
Green/Yellow
Black
Black

Encoder Plug
Incremental Encoder Wiring Specifications
Plug: 172169-1 (AMP)
Pin: 170359-1 or 170363-1
Connected to
Cap :172161-1
Socket: 170361-1 or 170365-1

1
2
3
4
5
6
7
8
9

A channel output
/A channel output
B channel output
/B channel output
C channel output
/C channel output
0V (power supply)
+5V (power supply)
FG (Frame Ground)

Blue
Blue/Black
Yellow
Yellow/Black
Green
Green/Black
Gray
Red
Orange

5

387

USING THE DIGITAL OPERATOR
5.4.1 Servomotor Dimensional Drawings cont.

SGMP Servomotor
Absolute Encoder with brake (SGMP-15AWjj Servomotor)
• 1.5kW
Encoder Lead
UL2854, ø8(ø0.31))

Screw
Motor Lead
UL2464, Φ9.5(Φ0.37)

Cross-section Y-Y
Hex.nut
17(0.67)

14 (0.55)
Sealant
Nameplate

4-ø10
MTG Holes

Absolute encoder
1024 P/R

5
in mm (inches)
Type
SGMP-

QK

15AW12

22
(0.87)
22
(0.87)

15AW16

Note

W

T

No key

15AW14

U

3.5
(0.14)
3.5
(0.14)

6
(0.24)
6
(0.24)

6
(0.24)
6
(0.24)

Screw
Dimens
ions

Output
W (HP)

No
Screw
No
Screw
M6
depth
10

1500
( 0 )
(2.02)

Approx. Allowable Allowable
mass
radial
thrust
kg (lb)
load
load
N (lb)
N (lb)
7.1
490 (110) 147 (33)
( 5 65)
(15.65)

1) The detector uses a 12-bit absolute encoder 1024 P/R.
2) Type “A” indicates 200 V specification.
3) “15AW14” and “15AW16” have a keyed shaft. The keyway complies with JIS B
1301-1976 (precision). A straight key is supplied.
4) The quoted allowable radial load is the value at a position 35 mm (1.40 in.) from the motor mounting surface.

388

5.4 Σ-Series Dimensional Drawings

• Details of Motor and Encoder Plugs
Motor Plug

Motor Wiring Specifications
Plug : 350779-1 (AMP)
Pin: 350218-6 or 350547-6

1
2
3
4

Connected to
Cap: 350780-1
Socket: 350536-6 to 350550-6

Phase U
Phase V
Phase W
FG

Red
White
Blue
Green/Yellow

Encoder Plug
Plug: 172171-1 (AMP)
Pin: 170359-1 or 170363-1
Connected to
Cap :172163-1
Socket: 170361-1 or 170365-1

Absolute Encoder Wiring Specifications
1
2
3
4
5
6
7
8
9
10
11

*

(12)
13
14
15

A channel output
/A channel output
B channel output
/B channel output
Z channel output
/Z channel output
0V (power supply)
+5V (power supply)
FG (Frame Ground)
S channel output
/S channel output
(Capacitor reset)
Reset
0 V (battery)
3.6 V (battery)

Blue
White/Blue
Yellow
White/Yellow
Green
White/Green
Black
Red
Green/Yellow
Purple
White/Purple
(Gray)
White/Gray
White/Orange
Orange

5

* Terminal to discharge capacitor for product
dispatch. Do not use.

389

USING THE DIGITAL OPERATOR
5.4.1 Servomotor Dimensional Drawings cont.

SGMP Servomotor
Absolute Encoder with brake (SGMP-15AWjjB,C Servomotor)
• 1.5kW
Encoder Lead
UL2854, ø8(ø0.31))

Screw
Motor Lead
UL2464, Φ9.5(0.37)

Cross-section Y-Y
(208 MAX.) (8.19 MAX)
168 MAX. (6.61 MAX)

Hex.nut
17(0.67)

14 (0.55)
Sealant

Nameplate
4-ø10
MTG Holes

Absolute
encoder
2048 P/R

5

Holding Brake (deenergized operation)
Voltage:Tail code B:90 VDC C:24 VDC
Brake holding torque=motor rated torque

in mm (inches)
Type
SGMP-

QK

15AW12B
15AW12C
15AW14B
15AW14C
15AW16B

No key
y

15AW16C

Note

U

W

T

Screw
Dimen
sions

Output

No
Screw
S

1500
(2.02)
(
)

22
(0.87)
(
)

3.5
(0.14)
(
)

6
(0.24)
(
)

6
(0.24)
(
)

No
Screw
S

22
(0.87)
(0 87)

3.5
(0.14)
(0 14)

6
(0.24)
(0 24)

6
(0.24)
(0 24)

W (HP)

Approx. Allowable Allowable
mass
radial
thrust
kg (lb)
load
load
N (lb)
N (lb)
8.6
490 (110) 147 (33)
(
)
( )
(18.95)
(
)

M6,
depth
10

1) The detector uses a 12-bit absolute encoder 1024 P/R.
2) Type “A” indicates 200 V specification.
3) “15AW14B(C)” and “15AW16B(C)” have a keyed shaft. The keyway complies with JIS B
1301-1976 (precision). A straight key is supplied.
4) The quoted allowable radial load is the value at a position 35 mm (1.40 in.) from the motor mounting surface.

390

5.4 Σ-Series Dimensional Drawings

5) The electromagnetic brake is only to hold the load in position and cannot be used to stop
the motor.
• Details of Motor and Encoder Plugs

Motor Plug

Plug : 350715-1 (AMP)
Pin: No.1 to No.4 350218-6 or
350547-6
Pin: No.5 to No.6 350561-1 or
350690-1
Connected to
Cap: 350781-1
Socket: 350536-6 or 350550-6

Motor Wiring Specifications
1 Phase U
2 Phase V

Red
White

3 Phase W
4 FG

Blue
Green/Yellow

5 Brake terminal
6 Brake terminal

Black
Black

Encoder Plug
Absolute Encoder Wiring Specifications
Plug: 172171-1 (AMP)
Pin: 170359-1 or 170363-1
Connected to
Cap :172163-1
Socket: 170361-1 or 170365-1

1
2

A channel output
/A channel output

Blue
White/Blue

3
4

B channel output
/B channel output

Yellow
White/Yellow

5
6
7
8
9

Z channel output
/Z channel output

Green
White/Green

0 V (power supply)
+5 V (power supply)
FG (Frame Ground)

Black
Red
Green/Yellow

10 S channel output
11 /S channel output
* (12) (Capacitor reset)
13 Reset
14 0V(battery)
15 3.6V(battery)

Purple
White/Purple
(Gray)

5

White/Gray
White/Orange
Orange

* Terminal to discharge capacitor for product dispatch. Do not
use.

391

USING THE DIGITAL OPERATOR
5.4.1 Servomotor Dimensional Drawings cont.

Connectors on Detector and Motor Sides
There are two types for connectors on detector and motor sides: standard connectors
and IP67-based connectors. The standard connector is not dripproof.
• Standard Connector (Not dripproof specification)
The specifications of servomotors with holding brake and those of servomotors without holding brake differ.
Standard Connectors for SGMj Servomotors without Holding Brake
Connectors on Motor Side

Motor Type
yp
SGMS-

SGMG-

5
SGMG-

10AjA
15AjA
20AjA
30AjA
40AjA
50AjA
05AjA
09AjA
13AjA
20AjA
30AjA
44AjA
55AjA
75AjA
1AAjA
1EAjA
03AjB
06AjB
09AjB
12AjB
20AjB
30AjB
44AjB

Receptacle
MS3102A18-10P

L-shaped Plug
MS3108B18-10S

Straight Plug
MS3106B18-10S

Cable Clamp
MS3057-10A

MS3102A22-22P

MS3108B22-22S

MS3106B22-22S

MS3057-12A

MS3102A18-10P

MS3108B18-10S

MS3106B18-10S

MS3057-10A

MS3102A22-22P

MS3108B22-22S

MS3106B22-22S

MS3057-12A

MS3102A32-17P

MS3108B32-17S

MS3106B32-17S

MS3057-20A

MS3102A18-10P

MS3108B18-10S

MS3106B18-10S

MS3057-10A

MS3102A22-22P

MS3108B22-22S

MS3106B22-22S

MS3057-12A

MS3102A32-17P

MS3108B32-17S

MS3106B32-17S

MS3057-20A

MS3102A24-10P

MS3108B24-10S

MS3106B24-10S

MS3057-16A

60AjB
SGMD-

22AjA
32AjA
40AjA

Connector on
motor side
already provided

392

To be prepared by customer

5.4 Σ-Series Dimensional Drawings

Connectors on Detector Side

Motor Type
yp
SGMS-

SGMG-

SGMG-

SGMD-

10AjA
15AjA
20AjA
30AjA
40AjA
50AjA
05AjA
09AjA
13AjA
20AjA
30AjA
44AjA
55AjA
75AjA
1AAjA
1EAjA
03AjB
06AjB
09AjB
12AjB
20AjB
30AjB
44AjB
60AjB
22AjA
32AjA
40AjA

Receptacle
MS3102A20-29P

L-shaped Plug
MS3108B20-29S

Straight Plug
MS3106B20-29S

Cable Clamp
MS3057-12A

MS3102A20-29P

MS3108B20-29S

MS3106B20-29S

MS3057-12A

MS3102A20-29P

MS3108B20-29S

MS3106B20-29S

MS3057-12A

MS3102A20-29P

MS3108B20-29S

MS3106B20-29S

MS3057-12A

Connector on
detector side
already provided

5

To be prepared by customer

393

USING THE DIGITAL OPERATOR
5.4.1 Servomotor Dimensional Drawings cont.

Connectors for SGMj Servomotors with Holding Brake
Connectors on Motor Side

Motor Type
yp

SGMG-

SGMG-

5
SGMD-

L-shaped Plug
MS3108B20-15S

Straight Plug
MS3106B20-15S

Cable Clamp
MS3057-12A

MS3102A24-10P

MS3108B24-10S

MS3106B24-10S

MS3057-16A

MS3102A20-15P

MS3108B20-15S

MS3106B20-15S

MS3057-12A

MS3102A24-10P

MS3108B24-10S

MS3106B24-10S

MS3057-16A

MS3102A32-17P

MS3108B32-17S

MS3106B32-17S

MS3057-20A

MS3102A10SL-3P
MS3102A10SL 3P

MS3108B10SL 3S
MS3108B10SL-3S

MS3106A10SL 3S
MS3106A10SL-3S

MS3057 4A
MS3057-4A

MS3102A20-15P

MS3108B20-15S

MS3106B20-15S

MS3057-12A

MS3102A24-10P

MS3108B24-10S

MS3106B24-10S

MS3057-16A

MS3102A32-17P

MS3108B32-17S

MS3106B32-17S

MS3057-20A

60AjB

SGMS-

Receptacle
MS3102A20-15P

MS3102A10SL-3P

MS3108B10SL-3S

MS3106A10SL-3S

MS3057-4A

22AjA
32AjA
40AjA

MS3102A24-10P

MS3108B24-10S

MS3106B24-10S

MS3057-16A

10AjA
15AjA
20AjA
30AjA
40AjA
50AjA
05AjA
09AjA
13AjA
20AjA
30AjA
44AjA
55AjA
75AjA
1AAjA
1EAjA
03AjB
06AjB
09AjB
12AjB
20AjB
30AjB
44AjB

Connector on
motor side
already provided

Note

394

To be prepared by customer

In cells containing two rows, the upper row connector type is for the motor circuit and the connector type lower row is for the brake power supply.

5.4 Σ-Series Dimensional Drawings

Connectors on Detector Side

Motor Type
yp
SGMS-

SGMG-

SGMG-

SGMD-

10AjA
15AjA
20AjA
30AjA
40AjA
50AjA
05AjA
09AjA
13AjA
20AjA
30AjA
44AjA
55AjA
75AjA
1AAjA
1EAjA
03AjB
06AjB
09AjB
12AjB
20AjB
30AjB
44AjB
60AjB
22AjA
32AjA
40AjA

Receptacle
MS3102A20-29P

L-shaped Plug
MS3108B20-29S

Straight Plug
MS3106B20-29S

Cable Clamp
MS3057-12A

MS3102A20-29P

MS3108B20-29S

MS3106B20-29S

MS3057-12A

MS3102A20-29P

MS3108B20-29S

MS3106B20-29S

MS3057-12A

MS3102A20-29P

MS3108B20-29S

MS3106B20-29S

MS3057-12A

Connector on
detector side
already provided

5

To be prepared by customer

395

USING THE DIGITAL OPERATOR
5.4.1 Servomotor Dimensional Drawings cont.

• IP67-based Connectors
IP67-based Connectors for SGMj Servomotors without Holding Brake
Motor Type

Receptacle

Plug

End Bell:
Manufactured by Japan
Aviation Electronics
Industry, Ltd.
Back Shell:
Manufactured by Daiichi
Denshi Kogyo K.K.
Angle
(L-Shaped)

M SGMSo
t
o
r

SGMG-

10AjA
15AjA
20AjA
30AjA
40AjA
50AjA
05AjA
09AjA
13AjA
20AjA
30AjA
44AjA
55AjA
75AjA
1AAjA
1EAjA
03AjB
06AjB
09AjB
12AjB
20AjB
30AjB
44AjB

Cable Clamp

Manufacturer

Straight

CE05-2A1810PD
(MS3102A1810P)

MS3106A1810S(D190)

CE-18BA-S

CE02-18BS-S

CE3057-10A-:

Daiichi Denshi
Kogyo K K
K
K.K

JL04HV-2E2222PE-B
22PE B
(MS3102A2222P)

JL04V-6A2222SE

JL04-22EBL

JL04-22EB

JL04-2022CK
(::)

Japan Aviation
p
Electronics
El t i
Industry, Ltd.

CE05-2A1810PD
(MS3102A1810P)

MS3106A1810S(D190)

CE-18BA-S

CE02-18BS-S

CE3057-10A-:

Daiichi Denshi
Kogyo K K
K
K.K

JL04HV-2E2222PE-B
22PE B
(MS3102A2222P)

JL04V-6A2222SE

JL04-22EBL

JL04-22EB

JL04-2022CK
(::)

Japan Aviation
p
Electronics
El t i
Industry, Ltd.

JL04V-2E3217PE-B
17PE B
(MS3102A3217P)

JL04V-6A3217SE

M SGMGo
t
o
r

CE05-2A1810PD
(MS3102A1810P)

MS3106A1810S(D190)

CE-18BA-S

JL04HV-2E2222PE-B
22PE B
(MS3102A2222P)

JL04V-6A2222SE

JL04V-2E3217PE B
17PE-B
(MS3102A2410P)

60AjB
SGMD-

Detector

22AjA
32AjA
40AjA

*1

Japan Aviation
p
Electronics
El t i
Industry, Ltd.

CE02-18BS-S

CE3057-10A-:

Daiichi Denshi
Kogyo K K
K
K.K

JL04-22EBL

JL04-22EB

JL04-2022CK
(::)

Japan Aviation
p
Electronics
El t i
Industry, Ltd.

JL04V-6A3217SE

*1

*1

*1

Japan Aviation
Electronics
Industry, Ltd.

JL04V-2E2410PE-B
10PE B
(MS3102A3217P)

JL04-6A2410SE

JL04-24EBL

JL04-24EB

JL04-2428CK
(::)

Japan Aviation
p
Electronics
El t i
Industry, Ltd.

97F3102E2029P
(MS3102A2029P)

MS3106A2029S(D190)

CE-20BA-S

CE02-20BS-S

CE3057-12A-:

Daiichi Denshi
Kogyo K.K

Connector on
motor side
already
provided

5

*1

*1

To be selected
if flexible
conduit is
used

Not required if flexible conduit is used

To be prepared by customer

396

5.4 Σ-Series Dimensional Drawings

*1 The SGMG-55AjA, -75AjA, -1AAjA, -1EAjA, -44AjB, and -60AjB motors do
not contain an End Bell. For these motors, use the following flexible conduit instead.
Connector

Conduit Type
yp

Angle
(L-Shaped)
RCC-3::RL-MS32F

RCC-1::RL-MS32F

Manufacturer

Straight
VF-:: (SR-::)

Nippon Flex Co., Ltd.

Select an appropriate connector and conduit type (mark ::) according to the lead wire diameter. For details, refer to page 430.
Note

1) The connectors for a detector are the same regardless of the motor type being used.
2) To ensure compliance with IP67, always use the plug, End Bell, Back Shell and cable
clamp specified above.
3) Select an appropriate cable clamp type (mark::) according to the lead wire diameter.
For details, refer to page 430.
4) ( ) in the receptacle column shows the standard (non-dripproof) type. However, both are
actually the same receptacles.

5

397

USING THE DIGITAL OPERATOR
5.4.1 Servomotor Dimensional Drawings cont.

IP67-based Connectors for SGMj Servomotors with Holding Brake
Motor Type

Receptacle

Plug

End Bell:
Manufactured by Japan
Aviation Electronics
Industry, Ltd.
Back Shell:
Manufactured by Daiichi
Denshi Kogyo K.K.
Angle
(L-Shaped)

M SGMSo
t
o
r

SGMG-

10AjA
15AjA
20AjA
30AjA
40AjA
50AjA
05AjA
09AjA
13AjA
20AjA
30AjA
44AjA
55AjA
75AjA
1AAjA

5

1EAjA
M SGMGo
t
o
r

03AjB
06AjB
09AjB
12AjB
20AjB
30AjB
44AjB

Cable Clamp

Manufacturer

Straight

JL04V-2E2015PE-B
15PE B
(MS3102A2015P)

JL04V-6A2015SE

JL04-20EBL

JL04-20EB

JL04-2022CK
(::)

Japan Aviation
p
Electronics
Industry, Ltd.

JL04-2E2410PE-B
10PE B
(MS3102A2410P)

JL04V-6A2410SE

JL04-24EBL

JL04-24EB

JL04-2428CK
(::)

Japan Aviation
p
Electronics
Industry, Ltd.

JL04V-2E2015PE-B
15PE B
(MS3102A2015P)

JL04V-6A2015SE

JL04-20EBL

JL04-20EB

JL04-2022CK
(::)

Japan Aviation
p
Electronics
Industry, Ltd.

JL04-2E2410PE-B
10PE B
(MS3102A2410P)

JL04V-6A2410SE

JL04-24EBL

JL04-24EB

JL04-2428CK
(::)

Japan Aviation
p
Electronics
Industry, Ltd.

JL04V-2E3217PE-B
(MS3102A3217P)

JL04V-6A3217SE

CE05-2A10SL3PC
(MS3102A10SL
-3P)

MS3106A10
SL-3S(D190)

*1

*1

*1

CE-10SLBA-S
CE 10SLBA S

CE05-10SLBSCE05 10SLBS
S

CE3057-4A-1
CE3057 4A 1

Japan Aviation
Electronics
Industry, Ltd.
Daiichi Denshi
Kogyo K.K

JL04V-2E2015PE-B
15PE B
(MS3102A2015P)

JL04V-6A2015SE

JL04-20EBL

JL04-20EB

JL04-2022CK
(::)

Japan Aviation
p
Electronics
Industry, Ltd.

JL04-2E2410PE-B
10PE B
(MS3102A2410P)

JL04V-6A2410SE

JL04-24EBL

JL04-24EB

JL04-2428CK
(::)

Japan Aviation
p
Electronics
Industry, Ltd.

JL04V-2E3217PE-B
(MS3102A32)
17P)

JL04V-6A3217SE
MS3106A10
SL-3S(D190)

*1

*1

CE-10SLBA-S

CE05-10SLBSS

CE3057-4A-1

*1

Japan Aviation
Electronics
Industry, Ltd.
a c
e s
Daiichi Denshi
Kogyo K K
K
K.K

60AjB

Detector

22AjA
32AjA
40AjA

JL04-2E2410PE-B
10PE B
(MS3102A2015P)

JL04V-6A2410SE

JL04-24EBL

JL04-24EB

JL04-2428CK
(::)

Japan Aviation
p
Electronics
Industry, Ltd.

97F3102E2029P
(MS3102A2029P)

MS3106A2029S(D190)

CE-20BA-S

CE02-20BS-S

CE3057-12A:

Daiichi Denshi
Kogyo K.K

Connector on
motor side
already
provided

SGMD-

CE05-2A10SL3PC
(MS3102A10SL
-3P)

To be selected
if flexible
conduit is
used

Not required if flexible conduit is used

To be prepared by customer

398

5.4 Σ-Series Dimensional Drawings

*1 The SGMG-55AjA, -75AjA, -1AAjA, 1EAjA, -44AjB, and -60AjB motors do
not contain an End Bell. For these motors, use the following flexible conduit instead.
Connector

Conduit Type
yp

Angle
(L-Shaped)
RCC-3::RL-MS32F

RCC-1::RL-MS32F

Manufacturer

Straight
VF-:: (SR-::)

Nippon Flex Co., Ltd.

Select an appropriate connector and conduit type (mark ::) according to the lead wire diameter. For details, refer to page 430.
Note

1) The connectors for a detector are the same regardless of the motor type being used.
2) To ensure compliance with IP67, always use the plug, End Bell, Back Shell and cable
clamp specified above.
3) Select an appropriate cable clamp type (mark ::) according to the lead wire diameter.
For details, refer to page 430.
4) ( ) in the receptacle column shows the standard (non-dripproof) type. However, both are
actually the same receptacles.

5

399

USING THE DIGITAL OPERATOR
5.4.2 SERVOPACK Dimensional Drawings

5.4.2 SERVOPACK Dimensional Drawings
The dimension drawings of the SGDB SERVOPACK are broadly grouped into the following categories according to the capacity and location of heat sink.
SERVOPACK with Heat Sink Mounted Inside Panel
• 0.3 to 1.5 kW
(0.4 to 2.0 HP)

(Type: SGDB-03ADj to 15ADj)

• 2.0 to 3.0 kW
(2.7 to 4.0 HP)

(Type: SGDB-20ADj to 30ADj)

• 4.4 to 5.0 kW
(5.9 to 6.7 HP)

(Type: SGDB-44ADj to 50ADj)

• 6.0 to 7.5 kW
(8.0 to 10 HP)

(Type: SGDB-60ADj to 75ADj)

• 11 to 15kW
(15 to 20HP)

(Type: SGDB-1AADj to 1EADj)

SERVOPACK with Heat Sink Mounted Outside Panel

5

• 0.3 to 1.5 kW
(0.4 to 2.0 HP)
• 2.0 to 3.0 kW
(2.7 to 4.0 HP)

(Type: SGDB-20ADj-P to 30ADj-P)

• 4.4 to 5.0 kW
(5.9 to 6.7 HP)

(Type: SGDB-44ADj-P to 50ADj-P)

• 6.0 to 7.5 kW
(8.0 to 10 HP)

(Type: SGDB-60ADj-P to 75ADj-P)

• 11 to 15kW
(15 to 20HP)

400

(Type: SGDB-03ADj-P to 15ADj-P)

(Type: SGDB-1AADj-P to 1EADj-P)

5.4 Σ-Series Dimensional Drawings

J SERVOPACK with Heat Sink Mounted Inside Panel
SGDB-03ADj to 15ADj (0.3 to 1.5 kW; 0.4 to 2.0 HP)
2-Ø5.5 MTG Holes
(Digital Operator)

Regenerative Resistor

Heat Sink

Nameplate

External Terminal (M4 Screw)

Fan

Cover

Direction of Air Flow

Ground Terminal (M4 Screw)
Inside of Cover

5

Dimensions in mm (inches)
Approx. Mass: 4 kg (8.82 lb)

• SGDB-03ADj (0.3 kW) to 1AADj (11 kW) -Type Common
Connector No.
1CN
2CN
3CN

Connector type
on SERVOPACK side
10250-52A2JL
10220-52A2JL
17JE-13090-37(D2B)

4CN

DF11-4DP-2DSA

Note
manufactured by 3M
y
manufactured by Daiichi Denshi
Kogyo K.K.
manufactured by Hirose Denki

401

USING THE DIGITAL OPERATOR
5.4.2 SERVOPACK Dimensional Drawings cont.

SGDB-20ADj to 30ADj (2.0 to 3.0 kW; 2.7 to 4.0 HP)

MTG Holes

Regenerative Resistor
(Digital Operator)

Heat Sink

Nameplate

External Terminal (M4 Screw)

Cover

Fan

Ground Terminal (M4 Screw)
Inside of Cover

5

Dimensions in mm (inches)
Approx. Mass: 5 kg (11.02 lb)

402

Direction of
Air Flow

5.4 Σ-Series Dimensional Drawings

SGDB-44ADj to 50ADj (4.4 to 5.0 kW; 5.9 to 6.7 HP)

Regenerative Resistor

2-φ6 (0.24) MTG Holes

3CN

(Digital Operator)

5CN

Heat Sink

Direction of
Air Flow

3CN

! WARNINNG
POWER
ALARM

5CN

250 (9.84)

235 (9.25)

O
P
E
R
A
T
O
R

Nameplate

1SW

1CN

2CN

Fan
(0.24)
6
30
(1.18)

150 (5.91)
210 (8.27)

35

190 (7.48)

(1.38)

30
(1.18)

External Terminal (M4 Screw)

Detailed View of Terminal Arrangement

5
RST r t PNBUVW

69

225 (8.86)

(137) (5.39)

(214) (8.43)

156 (6.14)

2CN

(2.72)

1CN

Dimensions in mm (inches)
Approx. Mass: 8 kg (17.63 lb)

5.4 (0.21)

199.2 (7.84)

5.4 (0.21)

403

USING THE DIGITAL OPERATOR
5.4.2 SERVOPACK Dimensional Drawings cont.

SGDB-60ADj to 75ADj (6.0 to 7.5 kW; 8.0 to 10 HP)

Option (Operator Module)
7.5
(0.39)

Direction of Air Flow

(42.1)
(1.66)
5CN
POWER
ALARM

1CN

132.4(5.21)
25(0.98)
(0.35) 9

12.5
(0.49)
66
(2.60)

R S T

2CN

50
(1.97)

5

(50.7)
(2.00)

Control Circuit
Terminal

Cover
(Upper)

Cover
(Lower)

Main Circuit
Terminal
Grounding
Terminal

N P P1 B U V W

164.4(6.47)

30.7
(1.21) 25
(0.98)

WARNING

2CN

1CN

19
(0.75)

!

1SW

r t

50.8
(2.00)

5CN

133.7(5.26)

CHARGE

138.8(5.46)
335(13.19)

187.9(7.40)

MAX.350(13.78MAX)

(77.5)
(3.60)

3CN
O
P
E
R
A
T
O
R



(65.6)
(2.58)

7.5
(0.30)

(192.6)(7.58)

3CN
Control Circuit
Terminal M4

Cooing Fan

Celling Cover

9×19=171(6.73)
180(7.09)
MAX.230
(MAX.9.06)

(25)
(0.98)

(28.3)
(1.11)

(1.00)
25.3
9.7
(0.38)

15.2(0.60)
82(3.23)

112.8(4.44)

(225.3)(8.87)

Grounding Terminal M8

Main Circuit
Terminal M6

Direction of Air Flow

90(3.54)

MAX.240
(MAX.9.45)

145(5.71)

15(0.59)

A

Viewed from A

404

Dimensions in mm (inches)
Approx. Mass: 15 kg (33.06 lb)

5.4 Σ-Series Dimensional Drawings

SGDB-1AADj to 1EADj (11 to 15kW; 15 to 20HP)

MTG Hole

Nameplate
(0.28)

Direction of Air Flow

(Digital Operator)

Cooling Fan

Control Circuit Terminal M4

Regenerative Resistor
Terminal M6
Main Circuit Terminal M8
Ground Terminal M8

5

A
Dimensions in mm (inches)
Approx. Mass: 23 kg (50.69 lb)

Heat Sink
Viewed from A

• SGDB-03 to 1EADjP-Type Common
Connector No.
1CN
2CN
3CN

Connector type
on SERVOPACK side
10250-52A2JL
10220-52A2JL
17JE-13090-37(D2B)

5CN

DF11-4DP-2DSA

Note
manufactured by 3M
y
manufactured by Daiichi Denshi
Kogyo K.K.
manufactured by Hirose Denki

405

USING THE DIGITAL OPERATOR
5.4.2 SERVOPACK Dimensional Drawings cont.

J SERVOPACK with Heat Sink Mounted Outside Panel (option)
A duct ventilation type is available for SERVOPACKs in which a heat sink is mounted outside the control panel.
This installation method has the following advantages:
• Discharges generated heat out of the control panel to prevent a temperature rise inside
the panel
• Makes the control panel compact and provides high reliability

5

406

5.4 Σ-Series Dimensional Drawings

SGDB-03ADj to 15ADj-P
MTG Holes
(Digital Operator)

Regenerative Resistor
Heat Sink

Nameplate

Fan
Cover

Direction of Air Flow

External Terminal
(M4 Screw)
Ground Terminal (M4 Screw)
Inside of Cover

Dimensions in mm (inches)
(10 or more)*
(0.39 or more)

(0.28)

Approx. Mass: 4 kg (8.82 lb)

5

Mounting surface

4-M5 MTG Hole

(10 or more)*
(0.39 or more)

Hollow

Mounting Surface Diagram

* The SERVOPACK must be inclined as shown in the above figure. Provide at least
10mm (0.39 in.) space at the top and bottom of the SERVOPACK.

407

USING THE DIGITAL OPERATOR
5.4.2 SERVOPACK Dimensional Drawings cont.

SGDB-20ADj, 30ADj-P
MTG Holes
(Digital Operator)

Regenerative Resistor
Heat Sink

Nameplate

Fan
Cover

External Terminal
(M4 Screw)
Inside of Cover Ground Terminal (M4 Screw)

Direction of Air Flow

Dimensions in mm (inches)
Approx. Mass: 5 kg (11.02 lb)

(10 or more)*
(0.39 or more)

5

Mounting surface

4-M5 MTG Holes

(10 or more)*
(0.39 or more)

Hollow

Mounting Surface Diagram

* The SERVOPACK must be inclined as shown in the above figure. Provide at least
10mm (0.39 in.) space at the top and bottom of the SERVOPACK.

408

5.4 Σ-Series Dimensional Drawings

SGDB-44ADj, 50ADj-P
Regenerative Resistor
MTG Holes

(Digital Operator)

Heat Sink
Direction of Air Flow

Nameplate

External Terminal (M4 Screw)

Fan
Packing
Detailed View of Terminal Arrangement

Tap

5

Detailed View of Installation

Dimensions in mm (inches)
Approx. Mass: 8 kg (17.63 lb)

409

USING THE DIGITAL OPERATOR
5.4.2 SERVOPACK Dimensional Drawings cont.

SGDB-60ADj, 75ADj-P

7.5
(0.30)

30.7(1.21)
12.5(0.49)

!

(77.5)
(3.05)
WARNING

2CN

1CN

50.8
(2.00)
R S

12.5
(0.49)
66
(2.60)

(50.7)
(2.00)

T N P P1 B U V W

7
164.4(6.47)
(65.6)
19
(2.58)
9×9=171(0.63)
(0.75)
205(8.07)
MAX.230
(MAX.9.06)

A

Cover
(Upper)
Main Circuit
Terminal

2CN

50
(1.97)

Main Circuit
Terminal M6

Cover
(Lower)

Ground
Terminal

(28.3)(1.11)
12.5(0.49)

25.3(1.00)
9.7(0.38)

(90)(3.54)
15.2(0.60)
82(3.23)
112.8(4.44)
(225.3)
(8.87)

Direction of Air Flow

Ground Terminal M8
4−M6 Tap
34(1.34)

82(3.23)

2−6φ(0.24)

90(3.54)

MAX.240
(MAX./9.54)

316(12.44)
335(13.19)

145(5.71)

5

(0.28)

(211)(8.28)

Viewed from A

(9.5)
(0.37)

(5.5)
(0.22)

(0.28) 205(8.07)
219(8.62)

(0.30)
7
(5.5)
(0.22)

7.5
(7.5)
(0.30)

7

(9.5)
(0.37)

(312.2)(12.29)

1CN

15(0.59)

25(0.98)
132.4(5.21)
9
(0.35)

r t

(0.28)

5CN
1SW

CHARGE

2.5(0.10)

POWER
ALARM

(42.1)
(1.66)

Control Circuit
Terminal

(15.9)

5CN

Cooling Fan

Ceiling Cover

(11.5)(0.45)
(7.5)(0.30)

187.9(7.40)

138.8(5.40)
335(13.19)
MAX.350(MAX.13.78)

3CN
O
P
E
R
A
T
O
R

133.7(52.6)

(192.6)(7.58)

3CN
Control Circuit
Terminal M4

7.5
(0.30)

7(0.28)

(21.9)
(0.86)

Direction of Air Flow
Option (Operator Module)

MTG Hole

Detailed View of Installation

Dimensions in mm (inches)
Approx. Mass: 15.5kg (34.16 lb)

410

5.4 Σ-Series Dimensional Drawings

SGDB-1AADj-P, -1EADj-P

Nameplate
(Digital
Operator)

MTG Hole

Direction of Air Flow
Cooling Fan

r,t
Control Circuit Terminal M4

Main Circuit Terminal M8
P1,B
Ground Terminal M8
Regenerative Resistor
Terminal M6

5

A
4-M6 Tap

Heat Sink
Viewed from A

Detailed View of Installation
Dimensions in mm (inches)
Approx. Mass: 22 kg (48.49 lb)

411

USING THE DIGITAL OPERATOR
5.4.3 Digital Operator Dimensional Drawings

5.4.3 Digital Operator Dimensional Drawings
The following two types of Digital Operator are available.
• JUSP-OP02A-1 (Hand-held Type)
• JUSP-OP03A (Mount Type)
JUSP-OP02A-1
(2.48)
(0.73)

(1.97)
(2-Φ0.18)
MTG HOLES

(5.31)

(4.92)

(0.28)

(39.37)

(0.31)

5

TYPE:17JE-23090-02
Made by
DAIICHI
DENSHI KOGYO K.K.

Dimensions in mm (inches)
Approx. Mass: 0.18 kg (0.40 lb)

412

5.4 Σ-Series Dimensional Drawings

JUSP-OP03A
(2.13)

(2.26)

(0.59)

Dimensions in mm (inches)
Approx. Mass: 0.02 kg (0.041lb)

5

413

SERVO SELECTION AND DATA SHEETS
5.5.1 Selecting Peripheral Devices

5.5

Selecting Peripheral Devices

This section shows how to select peripheral devices using flowcharts. Order lists for servomotors, SERVOPACKs, digital operators, and peripheral devices are also included.

5.5.1 Selecting Peripheral Devices
Select the peripheral devices using the flowcharts on the subsequent pages.
The items below are not included in the flowcharts. Refer to Section 5.6 Specifications and
Dimensional Drawings of Peripheral Devices.
• Variable resistors for speed setting
• Encoder signal converter units
• Cables for connecting PC and SERVOPACK

5

414

5.5 Selecting Peripheral Devices

& lt; Flowchart for peripheral device selection & gt;

Start peripheral device selection

What is motor
type?

SGM and
SGMP type

No

Motor capacity is
less than 1.5 kW?

P
(page 418)

Yes

SGMG,
SGMS, and
SGMD type
What is motor
operation
environment?

Refer to the SGDA Type User’s Manual
(TS-S800-15).
Enclosure IP67
A
(page 423)

Enclosure IP65 or lower

With or
without brake?

With brake

Without brake
Brake specification is
90 VDC or 24 VDC?

90 VDC

1)

24 VDC

5

Brake power supply
must be prepared by
customer

Select brake power
supply (for 90 VDC brake)

100 VAC input /
200 VAC input
100 VAC input
LPDE-1H01

200 VAC input
LPSE-2H01

to (a)

415

SERVO SELECTION AND DATA SHEETS
5.5.1 Selecting Peripheral Devices cont.
(a)

2)

Select encoder cable

Incremental encoder
or absolute encoder?

Absolute encoder

B
(to next page)

Incremental encoder
Connector only

Connector only or
connector with cable?

Select connector .

Connector with cable

Loose wire, straight
plug, or L-shaped plug
on the encoder side?
DE9406973

Loose wire
Select one of the following
according to cable length.

3m
(9.8ft)
5m
(16.4ft)
10m
(32.8ft)
15m
(49.2ft)
20m
(65.6ft)

5

DE9406971-1
DE9406971-2
DE9406971-3
DE9406971-4
DE9406971-5

to (b) (page 421)

416

Straight plug
Select one of the following
according to cable length.

3m
(9.8ft)
5m
(16.4ft)
10m
(32.8ft)
15m
(49.2ft)
20m
(65.6ft)

DE9407234-1
DE9407234-2
DE9407234-3
DE9407234-4
DE9407234-5

L-shaped plug
Select one of the following
according to cable length.

3m
(9.8ft)
5m
(16.4ft)
10m
(32.8ft)
15m
(49.2ft)
20m
(65.6ft)

DE9407235-1
DE9407235-2
DE9407235-3
DE9407235-4
DE9407235-5

5.5 Selecting Peripheral Devices

B

Absolute

Connector only

Connector only or
connector with
cable?

Select connector.

Connector with cable

Loose wire, straight plug, or
L-shaped plug on the encoder side?
DE9406973

Loose wire
Select one of the following
according to cable length.

3m
(9.8ft)
5m
(16.4ft)
10m
(32.8ft)
15m
(49.2ft)
20m
(65.6ft)

2)’

DE9406972-1
DE9406972-2
DE9406972-3
DE9406972-4
DE9406972-5

Straight plug
Select one of the following
according to cable length.

3m
(9.8ft)
5m
(16.4ft)
10m
(32.8ft)
15m
(49.2ft)
20m
(65.6ft)

DE9407236-1
DE9407236-2
DE9407236-3
DE9407236-4
DE9407236-5

L-shaped plug
Select one of the following
according to cable length.

3m
(9.8ft)
5m
(16.4ft)
10m
(32.8ft)
15m
(49.2ft)
20m
(65.6ft)

DE9407237-1
DE9407237-2
DE9407237-3
DE9407237-4
DE9407237-5

5

Select battery for absolute
encoder.
ER6VC3
(3.6V)

to (b) (page 421)

417

SERVO SELECTION AND DATA SHEETS
5.5.1 Selecting Peripheral Devices cont.
P

1)

Select motor cables

No brake/With
brake?
No brake

With brake

With connector and
AMP terminal/Cable
only?

With connector and
AMP terminal/Cable
only?

With connector and
amplifier terminal
Select one of the following
according to cable length.

3m
(9.8ft)
5m
(16.4ft)
10m
(32.8ft)
15m
(49.2ft)
20m
(65.6ft)

DP9320827-1
DP9320827-2
DP9320827-3
DP9320827-4
DP9320827-5

Cable only

Select one of the following
according to cable length.

3m
(9.8ft)
5m
(16.4ft)
10m
(32.8ft)
15m
(49.2ft)
20m
(65.6ft)

Select one of the following
according to cable length.

3m
(9.8ft)
5m
(16.4ft)
10m
(32.8ft)
15m
(49.2ft)
20m
(65.6ft)

DP9402221-1
DP9402221-2
DP9402221-3
DP9402221-4
DP9402221-5

Incremental

Select one of the following
according to cable length.

3m
(9.8ft)
5m
(16.4ft)
10m
(32.8ft)
15m
(49.2ft)
20m
(65.6ft)

DP9320828-1
DP9320828-2
DP9320828-3
DP9320828-4
DP9320828-5

Incremental
encoder/Absolute
encoder

5

Cable only

With connector and
amplifier terminal

DP9402222-1
DP9402222-2
DP9402222-3
DP9402222-4
DP9402222-5

Incremental
encoder/Absolute
encoder

Absolute

Incremental

Absolute

Select connector kit.

Select connector kit.

Select connector kit.

Select connector kit.

DP9420016-1

DP9420016-3

DP9420016-2

DP9420016-4

1)’

Select brake power supply.

100 VAC input /
200 VAC input
100 V input
LPDE-1H01

to (a)’

418

200 V input
LPSE-2H01

5.5 Selecting Peripheral Devices

(a)’

2)

Select encoder cable

Absolute encoder

Incremental
encoder or absolute
encoder?

A
(to next page)

Incremental
encoder

SERVOPACK
Connector
Cable
/ end without /
both ends connector
only
Connector both
ends
Select one of the following
according to cable length.

3m
(9.8ft)
5m
(16.4ft)
10m
(32.8ft)
15m
(49.2ft)
20m
(65.6ft)

DP9320089-1
DP9320089-2
DP9320089-3
DP9320089-4
DP9320089-5

SERVOPACK end
without connector
Select one of the following
according to cable length.

3m
(9.8ft)
5m
(16.4ft)
10m
(32.8ft)
15m
(49.2ft)
20m
(65.6ft)

DP9320086-1
DP9320086-2
DP9320086-3
DP9320086-4
DP9320086-5

Cable only

Select one of the following
according to cable length.

3m
(9.8ft)
5m
(16.4ft)
10m
(32.8ft)
15m
(49.2ft)
20m
(65.6ft)

DP9400064-1
DP9400064-2
DP9400064-3
DP9400064-4
DP9400064-5

5
Did you select
connector in 1) ?
Yes

No
Select connector kit.

DP9420006-1
DP9420006-2

to (b)

419

SERVO SELECTION AND DATA SHEETS
5.5.1 Selecting Peripheral Devices cont.
A

Absolute

SERVOPACK
Connector
Cable
/ end without /
both ends
only
connector
SERVOPACK end
without connector

Connector both
ends
Select one of the following
according to cable length.

3m
(9.8ft)
5m
(16.4ft)
10m
(32.8ft)
15m
(49.2ft)
20m
(65.6ft)

DP9320088-1
DP9320088-2
DP9320088-3
DP9320088-4
DP9320088-5

Select one of the following
according to cable length.

3m
(9.8ft)
5m
(16.4ft)
10m
(32.8ft)
15m
(49.2ft)
20m
(65.6ft)

DP9320085-1
DP9320085-2
DP9320085-3
DP9320085-4
DP9320085-5

Cable only

Select one of the following
according to cable length.

3m
(9.8ft)
5m
(16.4ft)
10m
(32.8ft)
15m
(49.2ft)
20m
(65.6ft)

DP8409123-1
DP8409123-2
DP8409123-3
DP8409123-4
DP8409123-5

Connector kit previously
selected at step 1)

Yes

No
Select connector kit.

5
DP9420006-3
DP9420006-4

2)’

Select battery for absolute encoder.
ER6VC3 (3.6V)

to (b)

420

5.5 Selecting Peripheral Devices

from (b)

3)

Select 1CN connector for
reference input.

Connector kit, terminal
block unit, or cable without
connector at one end

Connector kit
1CN connector kit

DP9406970

Cable with 1CN
connector and no
connector at the other
end

Connector-to-terminal
conversion unit

JUSP-TA50P

4)

Cable without
connector at one end

Terminal block unit

1m
(3.3ft)
2m
(6.6ft)
3m
(9.8ft)

DE9406969-1
DE9406969-2
DE9406969-3

Select molded-case circuit breaker
(MCCB) and noise filter.

5

What is
SERVOPACK
capacity?

0.3 to
0.5kW

0.7 to
1.5kW

2kW

3kW

4.4 to
5kW

6kW

7.5kW

11kW

15kW

Use circuit Use circuit Use circuit Use circuit Use circuit Use circuit Use circuit Use circuit
breaker for breaker for breaker for breaker for breaker for breaker for breaker for breaker for
5 A power 10 A power 12 A power 18 A power 28 A power 32 A power 41 A power 60 A power
capacity.
capacity.
capacity.
capacity.
capacity.
capacity.
capacity.
capacity.

Use circuit
breaker for
80 A power
capacity.

Noise filter
LF-310

Noise filter
FN258-100

Noise filter
LF-315

Noise filter
LF-320

Noise filter
LF-330

Noise filter
LF-340

Noise filter
LF-350

Noise filter
LF-360

Noise filter
LF-380K

to (c)

421

SERVO SELECTION AND DATA SHEETS
5.5.1 Selecting Peripheral Devices cont.
(c)

5)

Select magnetic contactor and
surge suppressor.

D Select an appropriate magnetic contactor by

Magnetic
contactor

referring to Section 5.6.1 Cable Specifications and
Peripheral Devices. For multiple servo systems,
select a magnetic contactor that meets the total
capacity.

HI-jjE

D This surge suppressor is for the above type

Surge
Suppressor

(HI-jjE).

CR50500BL

6)

Select regenerative resistor unit.

What is
SERVOPACK
capacity?

5.0 kW
or less
Not required

5

6.0 kW
JUSP-RA04

End peripheral device selection

422

7.5kW
to 15 kW
JUSP-RA05

5.5 Selecting Peripheral Devices

A

Operation environment requiring Enclosure IP67-based
The standard specification for SGMG, SGMS and
SGMD Types is Enclosure IP67.
The shaft needs an oil seal. The motor and encoder connectors must also be based on IP67.

Note For G Series 1500 min−1 type
(5.5 kW or more) and G Series
1000 min−1 type (4.4 kW or
more), add a brake connector.

Encoder
With oil seal
Flexible
conduit
is used?

No

Yes
Select plug, Back Shell
(straight or L-shaped)
and cable clamp.

Yes

Any brake?

No

Select plug only.
MS3106A20-29S (D190)
No

Flexible conduit
is used?

Flexible conduit
is used?

Yes
Select plug, Back
Shell or End Bell, and
cable clamp
according to the
motor type.

SGMG-55AjA
-75AjA
-1AAjA
-1EAjA
-44AjB
-60AjB
Only these five types
can be selected.

Select plug
according to the
motor type.

Cannot be selected

Yes

Can be selected

Connectors for brake
are also required.

5

No

Select plug
according to the
motor type.

Can be selected
Separately purchase
plugs for brake.

Select plug, Back
Shell or End Bell, and
cable clamp
according to the
motor type.

Cannot be selected
Items for brake
can be selected.

to (b)

Note 1. Power cable and flexible conduit must be prepared by the customer.
2.
3.

The customer must purchase an appropriate encoder cable according to the encoder type
(incremental or absolute encoder) and an encoder connector kit (for the SERVOPACK end), and assemble them.
After selecting a brake power supply unit and a battery for the absolute encoder, proceed to (b) on page 421.

423

SERVO SELECTION AND DATA SHEETS
5.5.2 Order List

5.5.2 Order List
Order lists are given below for the servomotors, SERVOPACKs, digital operators, and
peripheral devices which comprise the AC Servo Σ-Series. These order lists are a convenient aid to selecting peripheral devices.
J SGMj Servomotor
Servomotor Type

Qty

SGMj-jjjjjjjj
SGMj-jjjjjjjj
SGMj-jjjjjjjj
SGMj-jjjjjjjj
SGMj-jjjjjjjj
SGMj-jjjjjjjj
SGMj-jjjjjjjj
SGMj-jjjjjjjj
SGMj-jjjjjjjj
SGMj-jjjjjjjj
SGMj-jjjjjjjj
SGMj-jjjjjjjj

5

J SGDB SERVOPACK (excluding cables and connectors)
SERVOPACK Type

Qty

SGDB-jjjjj
SGDB-jjjjj
SGDB-jjjjj
SGDB-jjjjj
SGDB-jjjjj
SGDB-jjjjj

J Digital Operator

(Purchase Separately)
Digital Operator Type

JUSP-OP02A-1
JUSP-OP03A

424

Qty

5.5 Selecting Peripheral Devices

J Peripheral Devices
For SGM, SGMS, SGMD servomotors (See page 434 for SGMP-15A servomotor)
• Connector
K11

Main Circuit Connectors on Motor Side (without Brake)
(Purchase Separately)
Connectors on Motor Side

Motor Type
yp
Plug
SGMS-

SGMG-

SGMG-

SGMD-

10AjA
15AjA
20AjA
30AjA
40AjA
50AjA
05AjA
09AjA
13AjA
20AjA
30AjA
44AjA
55AjA
75AjA
1AAjA
1EAjA
03AjB
06AjB
09AjB
12AjB
20AjB
30AjB
44AjB
60AjB
22AjA
32AjA
40AjA

Cable Clamp
p

Qty
y
Receptacle*
p

L-shaped
MS3108B18-10S

Straight
MS3106B18-10S MS3057-10A

MS3102A18-10P

MS3108B22-22S

MS3106B22-22S MS3057-12A

MS3102A22-22P

MS3108B18-10S

MS3106B18-10S MS3057-10A

MS3102A18-10P

MS3108B22-22S

MS3106B22-22S MS3057-12A

MS3102A22-22P

MS3108B32-17S

MS3106B32-17S MS3057-20A

MS3102A32-17P

MS3108B18-10S

MS3106B18-10S MS3057-10A

MS3102A18-10P

MS3108B22-22S

MS3106B22-22S MS3057-12A

MS3102A22-22P

MS3108B32-17S

MS3106B32-17S MS3057-20A

MS3102A32-17P

MS3108B24-10S

MS3106B24-10S MS3057-16A

MS3102A24-10P

5

To be prepared by customer

* Connector on motor side already provided

425

SERVO SELECTION AND DATA SHEETS
5.5.2 Order List cont.

K12

Main Circuit Connectors on Motor Side (with Brake)
(Purchase Separately)
Connectors on Motor Side (with Brake)

Motor Type
yp

Plug
SGMS-

SGMG-

SGMG-

5

SGMD-

10AjA
15AjA
20AjA
30AjA
40AjA
50AjA
05AjA
09AjA
13AjA
20AjA
30AjA
44AjA
55AjA
75AjA
1AAjA
1EAjA
03AjB
06AjB
09AjB
12AjB
20AjB
30AjB
44AjB
60AjB
22AjA
32AjA
40AjA

Cable Clamp
p

Receptacle*
p

L-shaped
MS3108B20-15S

Straight
MS3106B20-15S

MS3057-12A

MS3102A20-15P

MS3108B24-10S

MS3106B24-10S

MS3057-16A

MS3102A24-10P

MS3108B20-15S

MS3106B20-15S

MS3057-12A

MS3102A20-15P

MS3108B24-10S

MS3106B24-10S

MS3057-16A

MS3102A24-10P

MS3108B32-17S
MS3106B32-17S
MS3057-20A
MS3108B10SL-3S MS3106A10SL-3S MS3057-4A
MS3108B10SL 3S MS3106A10SL 3S MS30
A

MS3102A32-17P
MS3102A10SL-3P
MS3102A10SL 3P

MS3108B20-15S

MS3106B20-15S

MS3057-12A

MS3102A20-15P

MS3108B24-10S

MS3106B24-10S

MS3057-16A

MS3102A24-10P

MS3108B32-17S
MS3106B32-17S
MS3057-20A
MS3108B10SL-3S MS3106A10SL-3S MS3057-4A
MS3108B10SL 3S MS3106A10SL 3S MS30
A

MS3102A32-17P
MS3102A10SL-3P
MS3102A10SL 3P

MS3108B24-10S

MS3102A24-10P

MS3106B24-10S

MS3057-16A

To be prepared by customer

* Connector on motor side already provided

426

Qty
y

5.5 Selecting Peripheral Devices

K13

Encoder Connectors on Motor Side
(Purchase Separately)
Connectors on Encoder Side

Cable Clamp
p
Plug
L-shaped
Straight
MS3108B20-29S MS3106B20-29S MS3057-12A

Qty
y
Receptacle*
p
MS3102A20-29P

To be prepared by customer

* Connector on motor side already provided
K14

Encoder Connectors on SERVOPACK Side (for 2CN)
(Purchase Separately)

Connector kit
on SERVOPACK
Side
DE9406973

Connector kit
Connector
Type
10120-3000VE*

1

Case
Type
10320-52A0-008*

Qty
y

1

* Manufactured by 3M

5

427

SERVO SELECTION AND DATA SHEETS
5.5.2 Order List cont.

K15

Motor Type

Receptacle

Enclosure IP67 Main Circuit Connectors on Motor Side (without Brake)
(Purchase Separately)
Plug

End Bell: Manufactured
by Japan Aviation
Electronics Industry, Ltd.
Back Shell:
Manufactured by Daiichi
Denshi Kogyo K.K.
Angle
(L-shaped)

SGMS-

SGMG-

5

SGMG-

10AjA
15AjA
20AjA
30AjA
40AjA
50AjA
05AjA
09AjA
13AjA
20AjA
30AjA
44AjA
55AjA
75AjA
1AAjA
1EAjA
03AjB
06AjB
09AjB
12AjB
20AjB
30AjB
44AjB

Cable Clamp

Manufacturer

Straight

CE05-2A1810PD

MS3106A1810S (D190)

CE-18BA-S

CE02-18BSS

CE3057-10A-:

Daiichi
Denshi Kog o
De shi Kogyo
K.K.

JL04HV-2E2222PE-B
22PE B

JL04V-6A2222SE

JL04-22EBL

JL04-22EB

JL04-2022CK
(::)

Japan
p
Aviation
A iatio
Electronics
Industry, Ltd.

CE05-2A1810PD

MS3106A1810S (D190)

CE-18BA-S

CE02-18BSS

CE3057-10A-:

Daiichi
Denshi Kog o
De shi Kogyo
K.K.

JL04HV-2E2222PE-B
22PE B

JL04V-6A2222SE

JL04-22EBL

JL04-22EB

JL04-2022CK
(::)

Japan
p
Aviation
A iatio
Electronics
Industry, Ltd.

JL04V-2E3217PE-B
17PE B

JL04V-6A3217SE

CE05-2A1810PD

MS3106A1810S (D190)

CE-18BA-S

JL04HV-2E2222PE-B
22PE B

JL04V-6A2222SE

JL04-22EBL

JL04V-2E3217PE B
17PE-B

JL04V-6A3217SE

JL04V-2E2410PE-B
10PE B

JL04-6A2410SE









Japan
p
Aviation
A iatio
Electronics
Industry, Ltd.

CE02-18BSS

CE3057-10A-:

Daiichi
Denshi Kog o
De shi Kogyo
K.K.

JL04-22EB

JL04-2022CK
(::)

Japan
p
Aviation
A iatio
Electronics
Industry, Ltd.





60AjB
SGMD-

22AjA
32AjA
40AjA

Connector
on motor
side already
provided

To be
selected if
flexible
conduit is
used

JL04-24EBL

JL04-24EB

JL04-2428CK
(::)

Not required if flexible conduit is used

To be prepared by customer

428

Qty

Japan
Aviation
Electronics
Industry, Ltd.
Japan
p
Aviation
A iatio
Electronics
Industry, Ltd.

: Select an appropriate
type according to the lead
wire diameter. For details,
see K17 on page 430.

5.5 Selecting Peripheral Devices

K16

Motor Type

SGMS-

SGMG-

10AjA
15AjA
20AjA
30AjA
40AjA
50AjA
05AjA
09AjA
13AjA
20AjA
30AjA
44AjA
55AjA
75AjA

Receptacle

Enclosure IP67 Main Circuit Connectors on Motor Side (with Brake)
(Purchase Separately)
Plug

End Bell: Manufactured
by Japan Aviation
Electronics Industry, Ltd.
Back Shell:
Manufactured by Daiichi
Denshi Kogyo K.K.
Angle
Straight
(L-shaped)

Cable Clamp

JL04V-2E2015PE-B
15PE B

JL04V-6A2015SE

JL04-20EBL

JL04-20EB

JL04-2022CK
(::)

JL04V-2E2410PE-B
10PE B

JL04V-6A2410SE

JL04-24EBL

JL04-24EB

JL04-2428CK
(::)

JL04V-2E2015PE-B
15PE B

JL04V-6A2015SE

JL04-20EBL

JL04-20EB

JL04-2022CK
(::)

JL04V-2E2410PE-B
10PE B

JL04V-6A2410SE

JL04-24EBL

JL04-24EB

JL04-2428CK
(::)

JL04V-2E3217PE-B

JL04V-6A3217SE

-

-

-

CE05 2A10SL
CE05-2A10SL-

MS3106A10S
L-3S(190)*1
L S(
)*

CE 10SLBA
CE-10SLBAS:

CE05 10SLBA
CE05-10SLBAS:

CE3057 4A 1:
CE3057-4A-1:

JL04V-2E2015PE-B
15PE B

JL04V-6A2015SE

JL04-20EBL

JL04-20EB

JL04-2022CK
(::)

JL04V-2E2410PE-B
10PE B

JL04V-6A2410SE

JL04-24EBL

JL04-24EB

JL04-2428CK
(::)

JL04V-2E3217PE-B

JL04V-6A3217SE

-

-

-

CE05 2A10SL
CE05-2A10SL3PC
PC

MS3106A10S
L-3S(190)*1
L S(
)*

CE 10SLBA
CE-10SLBAS:

CE05 10SLBA
CE05-10SLBAS:

CE3057 4A 1:
CE3057-4A-1:

JL04V-2E2410PE-B
10PE B

JL04V-6A2410SE

JL04-24EBL

JL04-24EB

JL04-2428CK
(::)

Connector
on motor
side already
provided

To be
selected if
flexible
conduit is
used

PC
1AAjA 3PC

1EAjA
SGMG-

03AjB
06AjB
09AjB
12AjB
20AjB
30AjB
44AjB
60AjB

SGMD-

22AjA
32AjA
40AjA

Not required if flexible conduit is used

Manufacturer

Qty

Japan
p
Aviation
A i ti
Electronics
Industry, Ltd.
Japan
p
Aviation
A i ti
Electronics
Industry, Ltd.
Japan
p
Aviation
A i ti
Electronics
Industry, Ltd.
Japan
p
Aviation
A i ti
Electronics
Industry, Ltd.
Japan
Aviation
Electronics
Industry, Ltd.
Industry Ltd
Daiichi
Denshi
Kogyo K.K.
Japan
p
Aviation
A i ti
Electronics
Industry, Ltd.
Japan
p
Aviation
A i ti
Electronics
Industry, Ltd.
Japan
Aviation
Electronics
Industry, Ltd.
Industry Ltd
Daiichi
Denshi
Kogyo K.K.
Japan
p
Aviation
A i ti
Electronics
Industry, Ltd.

5

*1 Connectors for brake
power supply
: Select an appropriate
type according to the lead
wire diameter.

To be prepared by customer

Note For the holding brake, both L-shaped connectors and straight connectors can be used.

429

SERVO SELECTION AND DATA SHEETS
5.5.2 Order List cont.

K17

IP67-based Encoder Connectors on Motor Side
(Purchase Separately)

Receptacle

End Bell: Manufactured
by Japan Aviation
Electronics Industry, Ltd.
Back Shell:
Manufactured by Daiichi
Denshi Kogyo K.K.

Plug

Angle
(L-shaped)
CE-20BA-S

97F3102E20 MS3106A20
-29P
-29S(D190)

Connector
on motor
side already
provided

Cable
Clamp

Qty

Straight
CE02-20BSS

CE3057-12A Daiichi
-1*
Denshi
Kogyo K.K.

Not required if flexible conduit is used

To be
selected if
flexible
conduit is
used

Manufacturer

* Select an appropriate type
according to the lead wire
diameter. See the table
below.

To be prepared by customer

Note Encoder connectors on SERVOPACK side (2CN) are the same as for K14 .
• Cable clamp types classified according to lead wire diameter

5

Cable Clamp Type

Lead Wire Diameter Range

CE3057-10A-1

Ø10.5µØ14.1

CE3057-10A-2

Ø8.5µØ11.0

CE3057-10A-3

Ø6.5µØ8.7

CE3057-12A-1

Ø12.5µØ16.0

CE3057-12A-2

Ø9.5µØ13.0

CE3057-12A-3

Ø6.8µØ10.0

JL04-2022CK (09)

Ø6.5µØ9.5

JL04-2022CK (12)

Ø9.5µØ13.0

JL04-2022CK (14)

Ø12.9µØ16.0

JL04-2428CK (11)

Ø9.0µØ12.0

JL04-2428CK (14)

Ø12.0µØ15.0

JL04-2428CK (17)

Ø15.0µØ18.0

JL04-2428CK (20)

Ø18.0µØ20.0

• When flexible conduit (straight) is used:
Connector Type (Straight)

Conduit Type

Lead Wire Diameter Range

RCC-106RL-MS32F

Max. Ø20

RCC-108RL-MS32F

VF-08 (SR-08)

Max. Ø26

RCC-110RL-MS32F

VF-10 (SR-10)

Max. Ø35

RCC-112RL-MS32F

VF-12 (SR-12)

Max. Ø40

RCC-116RL-MS32F

430

VF-06 (SR-06)

VF-16 (SR-16)

Max. Ø51

5.5 Selecting Peripheral Devices

• Brake Power Supply (for Motor with Brake)
(Purchase Separately)
Brake Power Supply Type

Qty

LPSE-2H01 (for 200 V AC input)
LPDE-1H01 (for 100 V AC input)

• Cable
E11

Cables for Incremental Encoder

(Cable with Loose Wire End on Encoder Side)

(Purchase Separately)

Customer to attach connector on encoder side. Requires K13 connector.
Cable Type

Qty

DE9406971-1

3m (9.8 ft)

DE9406971-2

5m (16.4 ft)

DE9406971-3

10m (32.8 ft)

DE9406971-4

15m (49.2 ft)

DE9406971-5

20m (65.6 ft)

E12

5

Cables for Incremental Encoder

(Cable with Straight Plug)

(Purchase Separately)
Cable Type

Qty

DE9407234-1

3m (9.8 ft)

DE9407234-2

5m (16.4 ft)

DE9407234-3

10m (32.8 ft)

DE9407234-4

15m (49.2 ft)

DE9407234-5

20m (65.6 ft)

431

SERVO SELECTION AND DATA SHEETS
5.5.2 Order List cont.

E13

Cables for Incremental Encoder

(Cable with L-shaped Plug)

(Purchase Separately)

Cable Type

Qty

DE9407235-1

3m (9.8 ft)

DE9407235-2

5m (16.4 ft)

DE9407235-3

10m (32.8 ft)

DE9407235-4

15m (49.2 ft)

DE9407235-5

20m (65.6 ft)

E14

Cables for Absolute Encoder

(Cable with Loose Wire End on Encoder Side)

(Purchase Separately)

Customer to attach connector on encoder side. Requires K13 connector.
Cable Type

5

Qty

DE9406972-1

3m (9.8 ft)

DE9406972-2

5m (16.4 ft)

DE9406972-3

10m (32.8 ft)

DE9406972-4

15m (49.2 ft)

DE9406972-5

20m (65.6 ft)

E15

Cables for Absolute Encoder

(Cable with Straight Plug)

(Purchase Separately)
Cable Type

Qty

DE9407236-1
DE9407236-2

5m (16.4 ft)

DE9407236-3

10m (32.8 ft)

DE9407236-4

15m (49.2 ft)

DE9407236-5

432

3m (9.8 ft)

20m (65.6 ft)

5.5 Selecting Peripheral Devices

E16

Cables for Absolute Encoder

(Cable with L-shaped Plug)

(Purchase Separately)

Cable Type

Qty

DE9407237-1

3m (9.8 ft)

DE9407237-2

5m (16.4 ft)

DE9407237-3

10m (32.8 ft)

DE9407237-4

15m (49.2 ft)

DE9407237-5

20m (65.6 ft)

E17
,
tomer.
K17

Enclosure IP67 encoder cables are not available.
K14

, and cables without connector must be purchased and assembled by the cus-

• Battery for Absolute Encoder

5
(Purchase Separately)

Battery Type

Qty

ER6VC3 (3.6V)

• 1CN for I/O signal

C1

1CN Connector
(Purchase Separately)

Connector Type

Qty

DE9406970

1CN
Connector 1CN only x 1

433

SERVO SELECTION AND DATA SHEETS
5.5.2 Order List cont.

C2

Connector-to-terminal Conversion Unit
(Purchase Separately)
Converter Unit Type

Qty

JUSP-TA50P

1CN

Connector 1CN and Cable (0.5 m)

C3

Cable with Connector 1CN and One End Loose Wires
(Purchase Separately)
Cable Type

DE9406969-1

1m (3.3 ft)

DE9406969-2

2m (6.6 ft)

DE9406969-3

Qty

3m (9.8 ft)

5
1CN

For SGMP-15A servomotors
• Cable
M1

Cables for servomotor without Brake

(with connector and amplifier terminals)

(Purchase Separately)

Cable Type

Qty

DP9320827-1
DP9320827-2

5 m (16.4 ft)

DP9320827-3

10 m (32.8 ft)

DP9320827-4

15 m (49.2 ft)

DP9320827-5

434

3 m (9.8 ft)

20 m (65.6 ft)

5.5 Selecting Peripheral Devices

M2

Cables for Servomotor without Brake

(Cable Only)

(Purchase Separately)

Customer to attach connector and amplifier terminals. Requires
Cable Type

K1

connector.
Qty

DP9402221-1

3 m (9.8 ft)

DP9402221-2

5 m (16.4 ft)

DP9402221-3

10 m (32.8 ft)

DP9402221-4

15 m (49.2 ft)

DP9402221-5

20 m (65.6 ft)

M3

Cables for Servomotor with Brake

(with connector and amplifier terminals)

(Purchase Separately)

Cable Type

Qty

DP9320828-1
DP9320828-2

5 m (16.4 ft)

DP9320828-3

10 m (32.8 ft)

DP9320828-4

15 m (49.2 ft)

DP9320828-5

5

3 m (9.8 ft)

20 m (65.6 ft)

435

SERVO SELECTION AND DATA SHEETS
5.5.2 Order List cont.

M4

Cables for Servomotor with Brake

(Cable Only)

(Purchase Separately)

Customer to attach connector and amplifier terminals. Requires K1
Cable Type

Qty

DP9402222-1

5 m (16.4 ft)

DP9402222-3

10 m (32.8 ft)

DP9402222-4

15 m (49.2 ft)

DP9402222-5

436

3 m (9.8 ft)

DP9402222-2

5

connector.

20 m (65.6 ft)

5.5 Selecting Peripheral Devices

• Connector
K1

Connector (for SGMP-15A)
(Purchase Separately)
Connector Kit Type

Qty

DP9420016-1 (Incremental encoder, no brake)
DP9420016-2 (Incremental encoder, with brake)
DP9420016-3 (Absolute encoder, no brake)
DP9420016-4 (Absolute encoder, with brake)

The following three connectors are supplied as a set.
• Main circuit connector on motor side: Connector for motor with or without brake x 1
• Encoder connector on motor side: Connector for incremental or absolute encoder x 1
• Encoder connector on SERVOPACK side: Connector 2CN x 1
Connectors for SGMG, SGMS and SGMD Types are provided separately. For types and other information, refer to 5.6.3 Connector.
Main Circuit Connector on
Motor Side

With Brake

Encoder Connector for Motor End of Cable

For Incremental Encoder

Encoder Connector for SERVOPACK End of Cable

• Brake Power Supply (for motor with brake)
(Purchase Separately)
Brake Power Supply Type

Qty

DP8401002-1 (for 200 V)
DP8401002-2 (for 100 V)

437

5

SERVO SELECTION AND DATA SHEETS
5.5.2 Order List cont.

• Cables for Incremental Encoder
E1

Cables for Incremental Encoder

(Connector Both Ends)

(Purchase Separately)
Cable Type

Qty

DP9320089-1

3m (9.8 ft)

DP9320089-2

5m (16.4 ft)

DP9320089-3

10m (32.8 ft)

DP9320089-4

15m (49.2 ft)

DP9320089-5

20m (65.6 ft)

E2

Cables for Incremental Encoder

(SERVOPACK end without connectors)

(Purchase Separately)

Customer to attach connector to SERVOPACK end of cable. Requires
Cable Type
3m (9.8 ft)

DP9320086-2

5m (16.4 ft)

DP9320086-3

10m (32.8 ft)

DP9320086-4

15m (49.2 ft)

DP9320086-5

20m (65.6 ft)

E3

Cables for Incremental Encoder

(Cable Only)

(Purchase Separately)

Customer to attach connector to both ends of cable. Requires K1
Cable Type

connector.
Qty

B9400064-1

3m (9.8 ft)

B9400064-2

5m (16.4 ft)

B9400064-3

10m (32.8 ft)

B9400064-4

15m (49.2 ft)

B9400064-5

438

connector.

Qty

DP9320086-1

5

K1

20m (65.6 ft)

5.5 Selecting Peripheral Devices

E4

Cables for Absolute Encoder

(Connector Both Ends)

(Purchase Separately)
Cable Type

Qty

DP9320088-1

3m (9.8 ft)

DP9320088-2

5m (16.4 ft)

DP9320088-3

10m (32.8 ft)

DP9320088-4

15m (49.2 ft)

DP9320088-5

20m (65.6 ft)

E5

Cables for Absolute Encoder

(SERVOPACK end without connector)

(Purchase Separately)

Customer to attach connector to SERVOPACK end of cable. Requires K1 connector.
Cable Type

5

Qty

DP9320085-1

3m (9.8 ft)

DP9320085-2

5m (16.4 ft)

DP9320085-3

10m (32.8 ft)

DP9320085-4

15m (49.2 ft)

DP9320085-5

20m (65.6 ft)

439

SERVO SELECTION AND DATA SHEETS
5.5.2 Order List cont.

E6

Cables for Absolute Encoder

(Cable Only)

(Purchase Separately)

Customer to attach connector to both ends of cable. Requires K1
Cable Type

connector.
Qty

DP8409123-1

3m (9.8 ft)

DP8409123-2

5m (16.4 ft)

DP8409123-3

10m (32.8 ft)

DP8409123-4

15m (49.2 ft)

DP8409123-5

20m (65.6 ft)

J Other Peripheral Devices
• Noise Filter
(Purchase Separately)
Noise Filter Type

Qty

LF-310 (10A)
LF-315 (15A)

5

LF-320 (20A)
LF-330 (30A)
LF-340 (40A)
LF-350 (50A)
LF-360 (60A)
LF-380K (80A)

• Magnetic Contactor
(Purchase Separately)
Magnetic Contactor Type

Qty

HI-15E5 (30A)
HI-18E (35A)
HI-25E (50A)
HI-30E (65A)
HI-35E (75A)

• Surge Suppressor
(Purchase Separately)
Surge Suppressor Type
CR50500BL

440

Qty

5.5 Selecting Peripheral Devices

• Regenerative Resistor Unit
(Purchase Separately)
Regenerative Resistor Unit Type

Qty

JUSP-RA04
JUSP-RA05

• Variable Resistor for Speed Setting
(Purchase Separately)
Variable Resistor Type

Qty

25HP-10B

• Cables for Connecting PC and SERVOPACK
(Purchase Separately)
Cable Type
DE9405258

Qty

2m (6.6 ft)

5

• Encoder Signal Converter Unit
(Purchase Separately)
Unit Type

Qty

LRX-01/A1
LRX-01/A2
LRX-01/A3
LRX-01/A4

441

SERVO SELECTION AND DATA SHEETS
5.6.1 Cable Specifications and Peripheral Devices

5.6

Specifications and Dimensional Drawings of Peripheral
Devices

This section shows the specifications and dimensional drawings of the peripheral devices
required for the Σ-Series servo system. The sequence of peripheral devices is given by the
Flowchart for Peripheral Device Selection in Section 5.5.1 Selecting Peripheral Devices.

5.6.1 Cable Specifications and Peripheral Devices
The cable sizes and peripheral devices for SGDB SERVOPACKs are listed in the following tables.
The cable specifications were selected under conditions of three cables per bundle at an
ambient temperature of 40_, with the rated current flowing.
J Cable Size
External
Terminal Name

5

Cable Size (mm2)

SGDB Type
Terminal
Symbol

03AD

05AD

07AD

10AD

15AD

On-line Main Circuit R, S, T
Terminal Power Input
Terminal

HIV 1.25 or more

HIV 2.0 or more

Motor
Connection
Terminal

HIV 1.25 or more

20AD

HIV 2.0 or HIV 3.5 or more
more

U, V, W

Control
r, t
Power Input
Terminal
Off-line Control I/O
Terminal Signal
Connector

1CN

PG Signal
Connector
Ground
Terminal

HIV 1.25 or more
Core of twisted pair or twisted pair shield wires: 0.12 mm2 or more
Outside dimensions of tinned annealed copper twisted wires:
(
),
(
)
max. Ø16 (for 1CN), max. Ø11 (for 2CN)

2CN

442

HIV 3.5 or more

HIV 2.0 or more

5.6 Specifications and Dimensional Drawings of Peripheral Devices

External
Terminal Name

Cable Size (mm2)

SGDB Type
Terminal
Symbol

30AD

44AD

50AD

60AD

75AD
HIV 14
or more

On-line Main Circuit R, S, T
Terminal Power Input
Terminal

HIV 3.5
or more

HIV 5.5 or more

HIV 8 or
more

Motor
Connection
Terminal

HIV 5.5
or more

HIV 8 or more

HIV 14 or more

U, V, W

Control
r, t
Power Input
Terminal

1AAD

1EAD

HIV 22 or more

HIV 22 or more

HIV 1.25 or more

Off-line Control I/O
Terminal Signal
Connector
PG Signal
Connector
Ground
Terminal

Core of twisted pair or twisted pair shield wires: 0.12 mm2 or more
Outside dimensions of tinned annealed copper twisted wires:
),
(
)
max. Ø16 ( 1CN), max. Ø11 (for 2CN)
(for

1CN

2CN

Note

HIV 2.0 or more

1) Cable size selection conditions: Ambient temperature 40_C, 3 wires per bundle, and
rated current flowing
2) For the main circuit, use cables with a dielectric strength of 600 V or more.
3) If the cables are laid in a duct (rigid PVC tube or metal pipe), allow for the reduced current
rating applicable to the cables.
4) If the ambient temperature (inside the control panel) is high, cables sheathed with ordinary vinyl will be easily subject to heat deterioration and become unusable in a short period of time. To prevent this, always use heat resistant cables.
The types of cable are shown in the table below. Use it in combination with the tables.

Cable Type

Conductor Allowable Temperature
p
_C
C

Symbol
PVC

---

IV

600 V vinyl cable

60

HIV

Note

Name
Normal vinyl cable
Temperature-resistant vinyl cable

75

1) Use cable with 600 V min. rating for main circuits.
2) Consider allowable current reduction ratio if cables are bundled in PVC or metal ducts.
3) Use temperature-resistant cable under high ambient or panel temperature where normal vinyl cables rapidly deteriorate.

443

5

SERVO SELECTION AND DATA SHEETS
5.6.1 Cable Specifications and Peripheral Devices cont.

J Peripheral Devices
SERVOPACK
type
SGDB-

5

03ADM
05AD
05ADP
05ADG
07ADM
10AD
10ADP
10ADG
10ADM
10ADS
15ADM
15ADG
15ADP
15ADS
20ADG
20ADM
20ADS
30ADD
30ADG
30ADM
30ADS
44ADD
44ADG
44ADM
44ADS
50ADD
50ADS
60ADG
60ADM
75ADG
1AADG
1EADG

Motor type

SGMG-03AjB
SGM-04A
SGMP-04A
SGMG-05AjA
SGMG-06AjB
SGM-08A
SGMP-08A
SGMG-09AjA
SGMG-09AjB
SGMG-10AjA
SGMG-12AjB
SGMG-13AjA
SGMP-15A
SGMS-15AjA
SGMG-20AjA
SGMG-20AjB
SGMS-20AjA
SGMD-22AjA
SGMG-30AjA
SGMG-30AjB
SGMG-30AjA
SGMD-32AjA
SGMG-44AjA
SGMG-44AjB
SGMS-40AjA
SGMD-40AjA
SGMS-50AjA
SGMG-55AjA
SGMG-60AjB
SGMG-75AjA
SGMG-1AAjA
SGMG-1EAjA

Motor
Selection
(Cn-2A)
171
106
126
142
172
107
127
143
173
163
174
144
128
164
145
175
165
155
146
176
166
156
147
177
167
157
168
148
178
149
140
150

MCCB or fuse
capacity*1

5A

Main power
Inrush
current
(peak value)
28A

8A

Recommended
line filter*2
LF310(10A)
(
)

Power
ON/OFF
switch
HI-15E5(30A)
(
)

LF315(15A)
(
)

10A

12A

56A

18A

24A

LF320(20A)
(
)

LF330(30A)
(
)

58A

LF340(40A)
(
)

28A
32A
41A
60A
80A

HI-18E(35A)
(
)

HI-25E(50A)
(
)
93A

LF350(50A)
(
)

116A

LF360(60A)
LF380K(80A)
FN258-100

HI-30E(65A)
HI-35E(75A)
HI-50E(100A)

*1 Braking characteristics (at 25_C): 200% for 2 s min., 700% for 0.01 s min.
*2 Yaskawa recommends noise filters manufactured by Tokin Corp and by Shaffner(FN258-100). Yaskawa Controls Co., Ltd. can supply these noise filters.
NOTE
• Do not wire power lines and signal lines within the same duct, or bundle them together. Wire
so that signals line are always kept apart from power lines by at least 30cm.
• Use twisted pair or multi-core twisted pair shielded wires for signal lines and the encoder
(PG) feedback line. The wiring length for reference input lines must be within 3m, and for the
PG feedback line within 20m.

444

5.6 Specifications and Dimensional Drawings of Peripheral Devices

The appropriate cables for SERVOPACK connectors 1CN and 2CN are shown in the
table below.
Control I/O Signal
Co ec o
Connector

PG Signal Connector

1CN

Cable

2CN

Applicable Cable
Finished Cable
Dimensions
Cable

Applicable Cable

Finished Cable
Dimensions

Note

Use twisted-pair cable or twisted-pair
shielded cable.
AWG24,26,28,30
Ø16.0 mm (Ø 0.63 in.) MAX.
Use Yaskawa cable.
Use twisted-pair shielded cable if
Yaskawa cable is not used.
Applicable cable types: AWG24, 26, 28,
30. However, use AWG22 for encoder
power supply and FG line. Use AWG26
for other signals. These connections
permit wiring distances up to 20 m
(65.6 ft).
Ø11.6 mm (Ø0.46 in.) MAX.

Cable selection conditions: three cables per bundle at 40 _C ambient temperature, with the
rated current flowing.

5

445

SERVO SELECTION AND DATA SHEETS
5.6.2 Motor Cables

5.6.2 Motor Cables
Select an appropriate motor cable that meets the customer’s service conditions by referring to the cable specifications described in Section 5.6.1 Cable Specifications and Peripheral Devices.
For the SGMP servomotor (1.5 kW), order the following cables.
J Cables for Motor without Brake (with connector and AMP terminals)
Type
DP9320827-1
DP9320827-2
DP9320827-3
DP9320827-4
DP9320827-5

L in mm (feet)
3000

+ 100
0

(10

5000

+ 100
0

(16.7

+ 0.33
0 )

10000

+ 500
+ 1.67
(33.3 0 )
0

15000

+ 500
+ 1.67
(50 0 )
0

20000

+ 500
+ 1.67
(66.7 0 )
0

(1.38)

5

+ 0.33
0 )

(1.97)

Heat
Heat
Shrink Tube M4 Crimped Terminals
Shrink Tube
Cable: DP9402221 (AWG16¢4C)
Cap: 350780-1 (4-pin)
Socket: 350536-6 (shell)

446

5.6 Specifications and Dimensional Drawings of Peripheral Devices

J Cables for Motor with Brake (with connector and AMP terminals)
Type
DP9320828-1
DP9320828-2
DP9320828-3
DP9320828-4
DP9320828-5

L in mm (feet)
3000

+ 100
0

(10

+ 0.33
0 )

5000

+ 100
0

(16.7

+ 0.33
0 )

10000

+ 500
+ 1.67
(33.3 0 )
0

15000

+ 500
+ 1.67
(50 0 )
0

20000

+ 500
+ 1.67
(66.7 0 )
0

(1.97)
(1.38)

Heat
Heat
Shrink Tube
Shrink Tube M4 Crimped Terminals
Cap: 350781-1 (6-pin)
Cable: DP9402222 (AWG16¢4C AWG20¢2C)
Socket: 350536-6 (shell)

5

5.6.3 Connector
J For the SGMG, SGMS, SGMD Types (See page 461 for the SGM and SGMP Types.)
Connectors are divided into the three types shown Encoder Connector Encoder Connector at
at Motor End
SERVOPACK End
in the figure: one encoder connector at both the of Cable
of Cable
motor and SERVOPACK ends of the cable and a
motor connector at the motor end of the cable.
These connectors are common to both encoder
types (incremental and absolute encoders).
The connector type to be used differs according to
the following items:

Main Circuit (Power Line) Connector
at Motor End of Cable

• Straight plug or L-shaped plug
• Motor with or without brake
• Standard specifications or IP67 specifications
When ordering connectors, also check the motor
type and capacity as they affect the connector
type to be used.

To connect the motor at the SERVOPACK end of the cable, use the crimp
terminals (to be prepared by the customer).

447

SERVO SELECTION AND DATA SHEETS
5.6.3 Connector cont.

Always order the connectors under the following conditions:
• Connectors for all cables (required regardless of whether the motor has brake or not)
• Connectors for encoder cables with a connector only on the SERVOPACK end of the
cable or for encoder cables without connector (required regardless of the encoder type
(incremental or absolute))
• Connectors for encoders (on the motor and SERVOPACK ends of the cable) when IP
67 specifications are used
Encoder Cables Connectors
Encoder cable connectors are divided into four types according to the following items:
• Standard specifications or IP 67 specifications
• Straight plug or L-shaped plug
Straight Type
Standard
Environment
E i

5

IP67-based
o e
Environment

Flexible Conduit
Used
Flexible Conduit
Not Used
N U d

Plug
Cable Clamp
Plug Only
Plug Only
Back Shell
Cable Clamp

MS3106B20-29S

L-shaped (Angle)
Type
MS3108B20-29S

MS3057-12A-:
MS3106A20-29S
--(D190)
MS3106A20-29S(D190)
CE02-20BS-S
CE-20BA-S

Manufacturer
Daiichi Denshi
Kogyo K.K.
K
KK

CE3057-12A-:

• Examples of Connector Combination
The following examples show how to combine connectors manufactured by Daiichi Denshi
Kogyo K.K.
• Standard Environment

Straight Plug MS3106A

Straight Plug MS3106B

L-shaped Plug MS3108B

448

Non-waterproof Cable Clamp MS3057

5.6 Specifications and Dimensional Drawings of Peripheral Devices

• IP67-based Environment

Flexible Conduit

Waterproof Plug MS (D190)

Waterproof Straight Back
Shell CE02-XXBS-S
Waterproof Cable Clamp CE3057

Waterproof Angle Back Shell CE-XXBA-S

Servomotor Cables Connectors
The motor cable connectors to be used depend on the presence or absence of brake,
motor type and capacity, and specifications (standard or IP67).
To connect the motor cable on the SERVOPACK side, use the crimp terminals (to be prepared by the customer).

5

449

SERVO SELECTION AND DATA SHEETS
5.6.3 Connector cont.

• Standard Environment
• When using Standard Motor (without Brake)
Connectors on Motor Side

Motor Type
yp
SGMS-

SGMG-

SGMG-

5

SGMD-

10AjA
15AjA
20AjA
30AjA
40AjA
50AjA
05AjA
09AjA
13AjA
20AjA
30AjA
44AjA
55AjA
75AjA
1AAjA
1EAjA
03AjB
06AjB
09AjB
12AjB
20AjB
30AjB
44AjB
60AjB
22AjA
32AjA
40AjA

Receptacle
MS3102A18-10P

L-shaped Plug
MS3108B18-10S

Straight Plug
MS3106B18-10S

Cable Clamp
MS3057-10A

MS3102A22-22P

MS3108B22-22S

MS3106B22-22S

MS3057-12A

MS3102A18-10P

MS3108B18-10S

MS3106B18-10S

MS3057-10A

MS3102A22-22P

MS3108B22-22S

MS3106B22-22S

MS3057-12A

MS3102A32-17P

MS3108B32-17S

MS3106B32-17S

MS3057-20A

MS3102A18-10P

MS3108B18-10S

MS3106B18-10S

MS3057-10A

MS3102A22-22P

MS3108B22-22S

MS3106B22-22S

MS3057-12A

MS3102A32-17P

MS3108B32-17S

MS3106B32-17S

MS3057-20A

MS3102A24-10P

MS3108B24-10S

MS3106B24-10S

MS3057-16A

Connector on motor
side already provided

450

To be prepared by customer

5.6 Specifications and Dimensional Drawings of Peripheral Devices

MS3106B Straight Plug Shell

Dimensions are mm (inches)
Shell
Size

Joint Screw
A

Length of
Joint Portion
J¦0.12
(¦0.0047)

Overall
Length
L or less

Outside
Diameter of
Joint Nut

Cable Clamp
Set Screw

ØQ

Effective
Screw
Length
W or more

+0
−0.38
(−0.0150)

Maximum
Width
Y or less

18

11/8-18UNEF

18.26 (0.72)

52.37 (2.06)

34.13 (1.34)

1-20UNEF

9.53 (0.38)

42 (1.65)

20

11/4-18UNEF

18.26 (0.72)

55.57 (2.19)

37.28 (1.47)

13/16-18UNEF

9.53 (0.38)

47 (1.85)

22

13/8-18UNEF

18.26 (0.72)

55.57 (2.19)

40.48 (1.59)

13/16-18UNEF

9.53 (0.38)

50 (1.97)

24

11/2-18UNEF

18.26 (0.72)

58.72 (2.31)

43.63 (1.72)

17/16-18UNEF

9.53 (0.38)

53 (2.09)

32

2-18UNS

18.26 (0.72)

61.92 (2.44)

56.33 (2.28)

13/4-18UNS

11.13 (0.44)

66 (2.60)

MS3108B L-Plug Shell

5

Dimensions are mm (inches)
Shell Joint Screw
Size
A

Length of
Joint
Portion
J¦0.12
(¦0.0047)

Overall
Length
L or less

Outside
Diameter of
Joint Nut

R0.5
(0.02)

U0.5
(0.02)

ØQ

+0
−0.38
(−0.0150)

Cable
Clamp Set
Screw
V

Effective
Screw
Length
W or more

10SL
18

11/8-18UNEF

18.26 (0.72)

68.27 (2.69)

34.13 (1.34)

20.5 (0.81)

30.2 (1.19)

1-20UNEF

9.53 (0.38)

20

11/4-18UNEF

18.26 (0.72)

76.98 (3.03)

37.28 (1.45)

22.5 (0.89)

33.3 (1.31)

13/16-18UNEF

9.53 (0.38)

22

13/8-18UNEF

18.26 (0.72)

76.98 (3.03)

40.48 (1.59)

24.1 (0.95)

33.3 (1.31)

13/16-18UNEF

9.53 (0.38)

24

11/2-18UNEF

18.26 (0.72)

86.51 (3.41)

43.63 (1.72)

25.6 (1.01)

36.5 (1.44)

17/16-18UNEF

9.53 (0.38)

32

2-18UNS

18.26 (0.72)

95.25 (3.75)

56.33 (2.22)

32.8 (1.29)

44.4 (1.75)

13/4-18UNS

11.13 (0.44)

451

SERVO SELECTION AND DATA SHEETS
5.6.3 Connector cont.

MS3106A Straight Plug Shell

Dimensions are mm (inches)
Shell
Size

10SL

Joint Screw
A

5/8-24UNEF

Length of
Joint Portion
J¦0.12
(¦0.0047)
13.49 (0.53)

Overall
Length
L¦1.5
(¦0.00591)
34.9 (1.37)

Outside
Diameter of
Joint Nut

ΦN0.5
(0.0197)

22.22 (0.87)

19.12 (0.75)

ØQ

+0
−0.38
(−0.0150)

Cable Clamp
Set Screw
V
5/8-24UNEF

Effective
Screw
Length
W or more
9.53(0.38)

MS3057-XXA Cable Clamp (with Rubber Bushing)

(Inside Diameter of Bushing)
(0.06)
(Inside Diameter of Cable Clamp)

5
(Movable Range)

Dimensions are mm (inches)
Part
Number

Shell
Size
of
Conn
ector

MS3057-4A

10SL,
12S
18

MS3057-10A
MS3057-12A
MS3057-16A

MS3057-20A

452

Overall
Outside
Length
Diameter
A¦0.7
ØB¦0.7
(¦0.0276) (¦0.0276)

Cable
Clamp
C

ØD

ØE

F

G0.7
(¦0.03)

Set Screw
V

Attached
Bushing

20.6
(0.81)
23.8
(0.94)
20, 22 23.8
(0.94)
24, 28 26.2
(1.03)

20.6
(0.81)
30.1
(1.19)
35.0
(1.38)
42.1
(1.66)

10.3
(0.41)
10.3
(0.41)
10.3
(0.41)
10.3
(0.41)

7.9
(0.31)
15.9
(0.63)
19.0
(0.75)
23.8
(0.94)

5.6
(0.22)
14.3
(0.56)
15.9
(0.63)
15.9
(0.63)
19.1
(0.75)

1.6
(0.06)
3.2
(0.13)
4.0
(0.16)
4.8
(0.19)

22.2
(0.87)
31.7
(1.25)
37.3
(1.49)
42.9
(1.69)

5/8-24UNEF

AN3420-4

1-20UNEF

AN3420-10

13/16-18UNEF

AN3420-12

17/16-18UNEF

AN3420-12
AN3420-16

32

51.6
(2.03)

11.9
(0.47)

31.7
(1.25)

19.1
(0.75)
23.8
(0.94)

6.3
(0.25)

51.6
(2.03)

13/4-18UNS

AN3420-16
AN3420-20

27.8
(1.09)

5.6 Specifications and Dimensional Drawings of Peripheral Devices

• When using Motor with Brake

Connectors on Motor Side

Motor Type
yp
SGMS-

SGMG-

SGMG-

SGMD-

10AjA
15AjA
20AjA
30AjA
40AjA
50AjA
05AjA
09AjA
13AjA
20AjA
30AjA
44AjA
55AjA
75AjA
1AAjA
1EAjA
03AjB
06AjB
09AjB
12AjB
20AjB
30AjB
44AjB
60AjB
22AjA
32AjA
40AjA

Receptacle
MS3102A20-15P

L-shaped Plug
MS3108B20-15S

Straight Plug
MS3106B20-15S

Cable Clamp
MS3057-12A

MS3102A24-10P

MS3108B24-10S

MS3106B24-10S

MS3057-16A

MS3102A20-15P

MS3108B20-15S

MS3106B20-15S

MS3057-12A

MS3102A24-10P

MS3108B24-10S

MS3106B24-10S

MS3057-16A

MS3102A32-17P
MS3102A10SL-3P
MS
A SL P

MS3108B32-17S
MS3108B10SL-3S
MS
B SL S

MS3106B32-17S
MS3106A10SL-3S
MS
A SL S

MS3057-20A
MS3057-4A
MS
A

MS3102A20-15P

MS3108B20-15S

MS3106B20-15S

MS3057-12A

MS3102A24-10P

MS3108B24-10S

MS3106B24-10S

MS3057-16A

MS3102A32-17P
MS3102A10SL-3P
MS
A SL P

MS3108B32-17S
MS3108B10SL-3S
MS
B SL S

MS3106B32-17S
MS3106A10SL-3S
MS
A SL S

MS3057-20A
MS3057-4A
MS
A

MS3102A24-10P

MS3108B24-10S

MS3106B24-10S

MS3057-16A

Connector on motor
side already provided

Note

5

To be prepared by customer

In the cells containing two rows, the upper row connector type is for the motor and the lower
row connector type is for the brake.

453

SERVO SELECTION AND DATA SHEETS
5.6.3 Connector cont.

• IP67-based Environment
• When Using IP67-based Motor (without Brake)
Motor Type

M SGMSo
t
o
r
s
SGMG-

SGMG-

5

SGMD-

Receptacle

Plug

Cable Clamp

Manufacturer

Angle
(L-shaped)
CE-18BA-S

CE02-18BS-S

CE3057-10A-:

Daiichi Denshi
Kogyo K.K

JL04HV-2E2 JL04V-6A222-22PE-B
22SE

JL04-22EBL

JL04-22EB

JL04-2022CK
(::)

Japan Aviation
Electronics
Industry, Ltd.

CE05-2A1810PD

CE-18BA-S

CE02-18BS-S

CE3057-10A-:

Daiichi Denshi
Kogyo K.K

JL04-22EBL

JL04-22EB

JL04-2022CK
(::)

Japan Aviation
Electronics
Industry, Ltd.

10AjA
15AjA
20AjA
30AjA
40AjA
50AjA
05AjA
09AjA
13AjA
20AjA
30AjA
44AjA
55AjA
75AjA
1AAjA
1EAjA

CE05-2A1810PD

JL04V-2E32
-17PE-B

JL04V-6A3217SE

03AjB
06AjB
09AjB
12AjB
20AjB
30AjB
44AjB
60AjB

CE05-2A1810PD

MS3106A1810S(D190)

JL04V-2E32
-17PE-B

JL04V-6A3217SE

22AjA
32AjA
40AjA

JL04V-2E24
-10PE-B

JL04-6A2410SE

MS3106A1810S(D190)

MS3106A1810S(D190)

JL04HV-2E2 JL04V-6A222-22PE-B
22SE

JL04HV-2E2 JL04V-6A222-22PE-B
22SE

Connector
on motor
side already
provided

*1

End Bell: Manufactured by
Japan Aviation Electronics
Industry, Ltd.
Back Shell: Manufactured by
Daiichi Denshi Kogyo K.K.

*1

Straight

*1

*1

Japan Aviation
Electronics
Industry, Ltd.

CE-18BA-S

CE02-18BS-S

CE3057-10A-:

Daiichi Denshi
Kogyo K.K

JL04-22EBL

JL04-22EB

JL04-2022CK
(::)

Japan Aviation
Electronics
Industry, Ltd.

*1

JL04-24EBL

*1

JL04-24EB

*1

JL04-2428CK
(::)

Japan Aviation
Electronics
Industry, Ltd.
Japan Aviation
Electronics
Industry, Ltd.

To be prepared by customer

The SGMG-55AjA, -75AjA, -1AAjA, -1EAjA, -44AjB, and -60AjB motors do not contain
End Bell (manufactured by Japan Aviation Electronics Industry, Ltd.). For these motors, use flexible conduit instead.

Note

1) To ensure compliance with IP67, always use correct combinations of receptacles and
plugs.
2) End Bell is a product of Japan Aviation Electronics Industry, Ltd. Back Shell is a product
of Daiichi Denshi Kogyo K.K.
3) Select an appropriate cable clamp type (mark ::) according to the lead wire diameter.
4) When flexible conduit is used, select plug only.

454

5.6 Specifications and Dimensional Drawings of Peripheral Devices

• When Using IP67-based Motor (with Brake)
Motor Type

M SGMSo
t
o
r
s
SGMG-

SGMG-

SGMD-

Receptacle

Plug

End Bell: Manufactured by
Japan Aviation Electronics
Industry, Ltd.
Back Shell: Manufactured by
Daiichi Denshi Kogyo K.K.

Cable Clamp

Manufacturer

Angle
(L-shaped)
JL04-20EBL

Straight
JL04-20EB

JL04-2022CK
(::)

Japan Aviation
Electronics
Industry, Ltd.

10AjA
15AjA
20AjA
30AjA
40AjA
50AjA
05AjA
09AjA
13AjA
20AjA
30AjA
44AjA
55AjA
75AjA
1AAjA
1EAjA

JL04V-2E2015PE-B

JL04V-6A2015SE

JL04V-2E2410PE-B

JL04V-6A2410SE

JL04-24EBL

JL04-24EB

JL04-2428CK
(::)

Japan Aviation
Electronics
Industry, Ltd.

JL04-2E20-1
5PE-B

JL04V-6A2015SE

JL04-20EBL

JL04-20EB

JL04-2022CK
(::)

Japan Aviation
Electronics
Industry, Ltd.

JL04V-2E2410PE-B

JL04V-6A2410SE

JL04-24EBL

JL04-24EB

JL04-2428CK
(::)

Japan Aviation
Electronics
Industry, Ltd.

JL04V-2E3217PE-B
CE05-2A10S
L-3PC

*2

*2

*2

CE-10SLBA-S
*1

CE-10SLBS-S
*1

CE3057-4A-1*
1

03AjB
06AjB
09AjB
12AjB
20AjB
30AjB
44AjB
60AjB

JL04V-2E2015PE-B

JL04V-6A3217SE
MS3106A10
SL-3S(D190)
*1
JL04V-6A2015SE

JL04-20EB

JL04-20EB

JL04-2022CK
(::)

Japan Aviation
Electronics
Industry, Ltd.
Daiichi Denshi
Kogyo K.K.
Japan Aviation
Electronics
Industry, Ltd.

JL04V-2E2410PE-B

JL04V-6A2410SE

JL04-24EBL

JL04-24EB

JL04-2428CK
(::)

Japan Aviation
Electronics
Industry, Ltd.

JL04V-2E3217PE-B
CE05-2A10S
L-3PC

*2

*2

*2

CE-10SLBA-S
*1

CE05-10SLBS
-S*1

CE3057-4A-1*
1

22AjA
32AjA
40AjA

JL04V-2E2410PE-B

JL04V-6A3217SE
MS3106A10
SL-3S(D190)
*1
JL04V-6A2410SE

JL04-24EBL

JL04-24EB

JL04-2428CK
(::)

Japan Aviation
Electronics
Industry, Ltd.
Daiichi Denshi
Kogyo K.K.
Japan Aviation
Electronics
Industry, Ltd.

Connector
on motor
side already
provided

To be prepared by customer

*1

Holding brakes are applicable to both L-shaped and straight types (manufactured by Daiichi
Denshi Kogyo K.K.).
End Bell is a product of Japan Aviation Electronics Industry, Ltd. Back Shell is a product of Daiichi Denshi Kogyo K.K.

*2

The SGMG-55AjA, -75AjA, -1AAjA, -1EAjA, -44AjB, and -60AjB motors do not contain
End Bell (manufactured by Japan Aviation Electronics Industry, Ltd.). For these motors, use flexible conduit instead.

Note

1) To ensure compliance with IP67, always use correct combinations of receptacles and
plugs.
2) When flexible conduit is used, select plug only.

455

5

SERVO SELECTION AND DATA SHEETS
5.6.3 Connector cont.

MS(D190) Series: Plug for Conduit
MS3106A20-29S (D190)
Gasket

H or less

Dimensions are mm (inches)
Shell
Size

A

B

+0
−0.38
(−0.0150)

E¦0.3
(¦0.0118)

D

(¦0.0197)

C¦0.5

G

+0.05
(+0.0020)
−0.25
(−0.0098)

J¦0.12
(¦0.0047)

10SL

5/8-24UNEF-2B

22.22 (0.87)

23.3 (0.92)

9/16-24UNEF-2A

7.5 (0.30)

12.5 (0.49)

13.49 (0.53)

20

11/4-18UNEF-2B

37.28 (1.47)

34.11 (1.34)

11/18-18UNEF-2A

12.16 (0.48)

26.8 (1.06)

18.26 (0.72)

Made by Daiichi Denshi Kogyo K.K.
CE02-XXBS-S
Straight Back Shell (for MS(D190))

5

Screw

Screw
V
O-Ring

7.85 (0.31)
or more
(Effective
Screw
Length)

(Portion Clamped by Wrench)

Dimensions are mm (inches)
Shell
Size
18

Part
Number
CE02-18BS-S

L

A

31 (1.22)

20

CE02-20BS-S

35 (1.38)

30.5
(1.20)
35 (1.38)

B

C

D

10.5
(0.41)
10.9
(0.41)

16.3
(0.64)
17.8
(0.70)

26.7
(1.05)
31.6
(1.24)

V

W

1-20UNEF-2B

1-20UNEF-2A

11/8-18UNEF-2B

13/16-18UNEF-2A

Made by Daiichi Denshi Kogyo K.K.

456

5.6 Specifications and Dimensional Drawings of Peripheral Devices

CE-XXBA-S (XXX)
Angle Back Shell (for MS(D190))
L1 or less
L2 or less

W or more

Screw A
O−Ring

V Screw

Dimensions are mm (inches)
Part
Number

Shell
Size

Joint Screw
A

CE-10SLBAS
CE-18BA-S

10SL
18

9/16-24UNEF-2
B
1-20UNEF-2B

CE-20BA-S

20

11/18UNEF-2B

Overall
Length
L1

Overall
Length
of
Angle
Body
L2

Outside
Diameter
of
Coupling
C

R

V

(S)

Cable
Clamp
Set
Screw
V

Effective
Screw
Length
W

30.6
(1.20)
44.6
(1.76)
50.5
(1.99)

22.5
(0.89)
34
(1.34)
39.6
(1.56)

21.7
(0.85)
32.4
(1.28)
36 (1.42)

7.9
(0.31)
13.2
(0.52)
15
(0.59)

21
(0.83)
30.2
(1.19)
33.3
(1.31)

(28.9)
(1.14)
(43.4)
(1.71)
(48.3)
(1.90)

5/8-24U
NEF-2A
1-20UN
EF-2A
13/16-UN
EF-2A

7.5 (0.30)
7.5 (0.30)
7.5 (0.30)

Made by Daiichi Denshi Kogyo K.K.

CE3057-XXA (for MS(D190))
Waterproof Cable Clamp (with Rubber Bushing)

(0.028)

(0.028)

(0.028)

Screw V

(Diameter of Cable Clamp)
H (Movable Range on One Side)

(Inside
Diameter of
Bushing)

Dimensions are mm (inches)

457

5

SERVO SELECTION AND DATA SHEETS
5.6.3 Connector cont.

Part
Shell
Number Size

Overall
Length
A

Outside
Diameter
B

Effective
Screw
Length
C

CE3057
-4A-1

10SL

20.6
(0.81)

20.6
(0.81)

CE3057
-10A-1

18

23.8
(0.94)

30.1
(1.19)

(D)

E

F

G

H

Set
Screw
V

Attached
Bushing

Cable
Size
(for
reference)

10.3
(0.41)

(41.3) 7.9
5.6
22.2
1.6
5/8-24U
(1.63) (0.31) (0.22) (0.87) (0.06) NEF-2B

CE34204-1

10.3
(0.41)

(41.3) 15.9
31.7
3.2
1-20UN
14.1
(1.63) (0.63) (0.56) (1.25) (0.13) EF-2B

CE342010-1

Ø3.6
(0.14)
µØ5.6
(0.22)
Ø10.5
(0.41)
µØ14.1
(0.56)
Ø8.5
(0.25)
µØ11
(0.43)
Ø6.5
(0.22)
µ Ø8.7
(0.38)
Ø12.5
(0.49)
µØ16
(0.63)
Ø9.5
(0.37)
µ Ø13
(0.51)
Ø6.8
(0.27)
µ Ø10
(0.39)
Ø15
(0.59)
µØ19.1
(0.75)
Ø13
(0.51)
µØ15.5
(0.61)

CE3057
-10A-2

11.6
(0.46)

CE342010-2

CE3057
-10A-3

8.7
(0.34)

CE342010-3

CE3057
-12A-1

20
22

23.8
(0.94)

35 (1.38)

10.3
(0.41)

(41.3) 19
37.3
4
13/16-18U
16
(1.63) (0.75) (0.63) (1.47) (0.16) NEF-2B

CE342012-1

CE3057
-12A-2

5

13
(0.51)

CE342012-2

CE3057
-12A-3

10
(0.38)

CE342012-3

CE3057
-16A-1
CE3057
-16A-2

24
28

26.2
(1.03)

42.1
(1.66)

10.3
(0.41)

(41.3) 23.8
42.9
4.8
17/16-18U
19.1
(1.63) (0.94) (0.75) (1.69) (0.19) NEF-2B
15.5
(0.61)

CE342016-1
CE342016-2

Made by Daiichi Denshi Kogyo K.K.

458

5.6 Specifications and Dimensional Drawings of Peripheral Devices

Plug: JL04-6A

Positioning Key

Screw V

Conduit

Screw A

(Conduit Mounting Dimensions)

Dimensions are mm (inches)
Shell
Size

No. of
Cores

Parts Name

Joint Screw

22

4

JL04-6A22-22S

13/8-18UNEF-2B

24

7

JL04-6A24-10S

11/2-18UNEF-2B

L¦0.4
(0.0157)

M¦0.8
(0.0315)

N¦0.2
(0.0079)

Q¦0.8
(0.0315)

31.5
(1.24)
35
(1.38)

7.6
(0.30)
5.9
(0.23)

29.6
(1.17)
32.8
(1.29)

40.5
(1.59)
43.7
(1.72)

Screw V

W
(max)

11/4-18UNEF-2A

8
(0.31)
10
(0.39)

13/8-18UNEF-2A

Made by Japan Aviation Electronics Industry, Ltd.

5
Plug: JL04V-6A
Screw V

Dimensions are mm (inches)
Shell
Size
20
32

Screw V

ΦA

ΦB

L

E (max)

G

11/8-18UNEF-2A 37.3¦0.8
(1.47¦0.0315)

27¦0.2
(1.06¦0.0079)

31.5¦0.4
(1.24¦0.0157)

8 (0.32)

---

17/8-16UN-2A

45.4¦0.2
(1.79¦0.0079)

35.8¦0.4
(1.41¦0.0157)

10 (0.39)

---

56.3¦0.8
(22.2¦0.0315)

Made by Japan Aviation Electronics Industry, Ltd.

459

SERVO SELECTION AND DATA SHEETS
5.6.3 Connector cont.

End Bell (Straight): JL04-jjEB

Screw V

Plug

End Bell

Dimensions are mm (inches)

Shell
Size
20

Screw V
13/16-18UNEF-2A

37.3¦0.8
(1.47¦0.0315)

30.05¦0.2
(1.18¦0.0079)

67.9¦0.8
(2.67¦0.0315)

8 (032)

22

13/16-18UNEF-2A

40.5¦0.8
(1.59)(0.0315)

30.05¦0.2
(1.18)(0.0079)

67.63¦0.8
(2.66¦0.0315)

8 (0.32)

24

17/16-18UNEF-2A

43.7¦0.8
(1.72¦0.0315)

36.4¦0.2
(1.43¦0.0079)

71¦0.8
(2.80¦0.0315)

8 (0.32)

ØA

L

ØB

E

Made by Japan Aviation Electronics Industry, Ltd.

5
End Bell (L-shaped): JL04-jjEBL
Plug

End Bell

Screw V

Dimensions are mm (inches)

Shell
Screw V
Size
20
13/16-18UNEF-2A

ØA

B

C

D

E

37.3¦0.8
(1.47¦0.0315)

60.5¦0.8
(2.38¦0.0315)

74.2¦0.8
(2.92¦0.0315)

32¦0.8
(1.26¦0.0315)

10¦0.5
(0.39¦0.0197)

22

13/16-18UNEF-2A

40.5¦0.8
(1.59¦0.0315)

60.23¦0.8
(2.37¦0.0315)

73.93¦0.8
(2.91¦0.0315)

32¦0.8
(1.26¦0.0315)

10¦0.5
(0.39¦0.0197)

24

17/16-18UNEF-2A

43.7¦0.8
(1.72¦0.0315)

65¦0.8
(2.56¦0.0315)

82¦0.8
(3.23¦0.0315)

38¦0.8
(1.50¦0.0315)

10¦0.5
(0.39¦0.0197)

460

5.6 Specifications and Dimensional Drawings of Peripheral Devices

B (On the Rim)

Cable Clamp: JL04-jCK(::)

Screw W

F (Clamped Range)

Dimensions are mm (inches)
Parts Name/Size

A¦0.8
(¦0.0315)

JL04-2022CK(14) 37.3
(1.47)
JL04-2428CK(17) 42.9
(42.9)

B¦0.8
(¦0.0315)

C¦0.8
(¦0.0315)

D¦0.8
(¦0.0315)

ØE¦0.8
(¦0.0315)

34.9
(1.37)
42.1
(1.66)

24.3
(0.96)
26.2
(1.03)

53.8
(2.11)
56.2
(2.21)

15.9
(0.63)
18
(0.71)

F

Screw W

4 (0.16)

13/16-18UNEF-2B

4.8
(0.19)

17/16-18UNEF-2B

Cable Size
Ø12.9 (0.51)
~Ø15.9 (0.63)
Ø15 (0.59)~
Ø18 (0.71)

J For the SGM and SGMP Types
Connector kit comprises three connectors as shown in the diagram below: one encoder
connector at both the motor and SERVOPACK ends of the cable and a motor connector
for the motor end of the cable.
Encoder Connector for Motor End of Cable

Encoder Connector for SERVOPACK End of Cable

Main Circuit (Power Line) Connector on Motor Side

Four types of connector kit are available according to the following criteria:
• Incremental encoder or absolute encoder
• Motor with or without a brake

461

5

SERVO SELECTION AND DATA SHEETS
5.6.3 Connector cont.

A connector kit is required in the following cases:
• If motor cable only is purchased (whether or not motor has a brake).
• If the encoder cable with a motor connector only and SERVOPACK end without connector, or encoder cable only is purchased (for either incremental or absolute encoder).
Encoder Cable Connectors
Select one of the following two types of encoder cable connector.
• For Incremental Encoder
(0.55)

16
(0.16)

4.14

(0.63)

14.0(0.55)

(0.93)

(0.16)

Cap: 172161-1
Socket: 170365-1

• For Absolute Encoder

5

(0.93)

16(0.63)

4.2(0.17)

14.0(0.55)

(0.88)

(0.17)

Cap: 172163-1
Socket: 170361-1 or 170365-1

Servomotor Cable Connectors
Select one of the following two types of motor cable connector.
• Motor Without Brake
(0.39)

(0.16)

4.14

11.8(0.46)

9.8(0.39)

(0.93)

(0.16)

Cap: 172159-1
Socket: 170362-1 or 170366-1

462

5.6 Specifications and Dimensional Drawings of Peripheral Devices

• Motor With Brake
(0.55)

11.8(0.46)

9.8(0.39)

4.2(0.17)

(0.93)

(0.17)

Cap: 172160-1
Socket: 170362-1 or 170366-1

J For SGMP-15A Type Only

(1.09)

• Motor Without Brake

(0.30)
15.7 (0.62)

Cap: 350780-1

(1.08)

Socket: 350536-6 or 350550-6

5

(0.55)

• Motor With Brake

20.3 (0.80)
(1.08)
(1.12)

Cap: 350781-1
Socket: 350536-6 or 350550-6

463

SERVO SELECTION AND DATA SHEETS
5.6.3 Connector cont.

J Common to the SGMG, SGMS, SGMD, SGM and SGMP Types
Only one type of encoder connector is available for the SERVOPACK end of the cable.
• Connector

2.3(0.09)

(0.10)

(0.76)

Pin #1
(0.30)

(0.36)

(0.50)

(0.11)

(0.26)

5.1(0.20)

(0.05)

5

(0.05)

Pin # 11

Units: mm (inches)
Connector Type
10120-3000VE

A
11.43 (0.45)

B

C

17.6 (0.69)

22.0 (0.87)

Manufactured by 3M.

464

5.6 Specifications and Dimensional Drawings of Peripheral Devices

(0.94)

(0.22)

39.0 (1.54)

• Case

(0.5)

For 10320-52A0

Diagram of Assembled Connector (for reference)

Units: mm (inches)
Connector Kit Type

Connector

DE9406973

Case

10120-3000VE

A

C

D

E

F

22.0
(0.87)

10320-52A0-008

B
33.3
(1.31)

14.0
(0.55)

12.0
(0.47)

10.0
(0.39)

27.4
(1.08)

Manufactured by 3M.

5

Connector Combinations
• For SGM and SGMP Types
The following table shows connector combinations applicable to the SGM and SGMP
types. Combine the connectors selected in page 462 to 464.
Connector
Kit T
Type

Application

Connector Kit Part List

Encoder/Motor Cable
/

Encoder End
Encoder
Type

DP9420006-1

Incremental

Motor
Brake
With/
Without
Without

Cap
Type

Incremental

SERVOPACK End

Socket
Q
ty

*1 1
172161
-1

DP9420006-2

For Motor Cable

For Encoder Cable

Type

Connector
Qt
y

*1 *3
10

170365
-1

With

Type

Q
ty

*2 1
101203000VE

Case
Type

Cap
Q
ty

*2 1
1032052A0008

Type

Socket
Q
ty

*1 1
172159
-1
*1 1
172160
-1

DP9420006-3

Absolute

Without

*1 1
172163
-1

DP9420006-4

Absolute

With

*3
16

*1 1
172159
-1
*1 1
172160
-1

Type
*1
170366
-1

Qt
y
*3
5
*3
7
*3
5
*3
7

465

SERVO SELECTION AND DATA SHEETS
5.6.4 Brake Power Supply

*1 Manufactured by AMP.
*2 Manufactured by 3M.
*3 Including one spare.
• For SGMP-15A Type
Connector
Kit T
Type

Application

Connector Kit Part List

Encoder/Motor Cable
/

Encoder End
Encoder
Type

DP9420016-1

Incremental

Motor
Brake
With/
Without
Without

Cap
Type

Incremental

SERVOPACK End

Socket
Q
ty

Type

*1 1
172161
-1

DP9420016-2

For Motor Cable

For Encoder Cable
Connector
Qt
y

*1 *3
170365
-1

10

With

Type

Q
ty

*2 1
101203000VE

Case
Type

Cap
Q
ty

Type

*2 1
1032052A0008

Socket
Q
ty

*1 1
350780
-1
*1 1
350781
-1

DP9420016-3

Absolute

Without

*1 1
172163
-1

DP9420016-4

Absolute

*3
16

*1 1
350780
-1

With

*1 1
350781
-1

5

*1 Manufactured by AMP.
*2 Manufactured by 3M.
*3 Including one spare.

5.6.4 Brake Power Supply
Brake power supplies are available for 200 V and 100 V input.
200 VAC Input: LPSE-2H01
100 VAC Input: LPDE-1H01

Use for servomotor with brake.

466

Type
*1
350550
-6

Qt
y
*3
5
*3
7
*3
5
*3
7

5.6 Specifications and Dimensional Drawings of Peripheral Devices

• Dimensional Drawings
(1.97)
(1.18)

Manufactured by Yaskawa Controls Co., Ltd.

(0.98)
(0.79)

2-Ø3(2-Ø0.12) MTG HOLES
(SPOT FACING Ø5.5
(Ø0.22), 4 (0.16) LONG)
Name
Plate

Lead Wires

(0.43)

Dimensions in mm (inches)
• Lead Wire Length: 500 mm each (19.69 in.)
• Max. Ambient Temperature: 60_C
• Lead Wires: Color Code
AC Input
100V
Blue/White

NOTE

5

Brake

200V
Yellow/White

Red/Black

The internal circuits are shown below. While it is possible to switch either the AC or DC side of
the brake power supply, it is normally safer to switch the AC side. If the DC side is to be
switched, install a surge suppressor near the brake coil to prevent the surge voltages due to
switching the DC side damaging the brake coil. Brake operation time delay occurs during
brake power supply ON/OFF operation. Set output timing of servo OFF operation (motor output stop), referring to “3.4.4 Using Holding Brake.” Especially, if the AC side of the brake power supply is to be switched, brake operation time is extended.
• Internal Circuit for 200 VAC Input (LPSE-2H01)

Yellow
AC Side
White

Red

Diode

Surge
Suppressor

DC (Brake) Side

Black

467

SERVO SELECTION AND DATA SHEETS
5.6.4 Brake Power Supply cont.

• Internal Circuit for 100 VAC Input (LPDE-1H01)

Diode Bridge
Blue
AC Side
Surge Suppressor

5

468

White

Red
DC (Brake) Side

Black

Surge
Suppressor

5.6 Specifications and Dimensional Drawings of Peripheral Devices

5.6.5 Encoder Cables
The dimensions and appearance of the encoder cables are shown below. Specify the cable
type when ordering.
J For the SGMG, SGMS and SGMD Types (See page 475 for the SGM and SGMP Types.)
Cables for Incremental Encoder (with Straight Plug)

UL Shield Wire, Composite KQVV-SW
B9400064
(AWG22 x 3C, AWG26 x 4P)
Shell: 10320-52A0-008 (Manufactured by 3M.)
Plug: 10120-3000VE

MS3108B20-29S (manufactured by Daiichi Denshi Kogyo K.K.)
MS3057-12A Cable Clamp

Type

L in mm (feet)

DE9407234-1

3000

DE9407234-3

(10

5000

DE9407234-2

+ 100
0

+ 0.33
0 )

+ 100
0

(16.7

+ 0.33
0 )
+ 1.67
0 )

10000

+ 500
0

(50

20000

DE9407234-5

(33.3

15000

DE9407234-4

+ 500
0

+ 500
0

(66.7

+ 1.67
0 )

5

+ 1.67
0 )

Cables for Incremental Encoder (with L-shaped Plug)

UL Shield Wire, Composite KQVV-SW
B9400064
MS3108B20-29S (manufactured by Daiichi Denshi Kogyo K.K.)
(AWG22 x 3C, AWG26 x 4P)
MS3057-12A Cable Clamp
Shell: 10320-52A0-008 (Manufactured by 3M.)
Plug: 10120−3000VE

Type
DE9407235-1
DE9407235-2
DE9407235-3
DE9407235-4
DE9407235-5

L in mm (feet)
3000

+ 100
0

(10

+ 0.33
0 )

5000

+ 100
0

(16.7

+ 0.33
0 )
+ 1.67
0 )

10000

+ 500
0

(33.3

15000

+ 500
0

(50

20000

+ 500
0

(66.7

+ 1.67
0 )
+ 1.67
0 )

469

SERVO SELECTION AND DATA SHEETS
5.6.5 Encoder Cables cont.

Cables for Incremental Encoder (without Connector on Encoder End)
(3.94

UL Shield Wire, Composite KQVV-SW
B9400064
(AWG22 x 3C, AWG26 x 4P)

+ 0.39
–0 )

Encoder End
Wire Markers

SERVOPACK End
Shell: 10320-52A0-008 (Manufactured by 3M.)
Plug: 10120-3000VE

Type

L in mm (feet)

DE9406971-1

3000

DE9406971-3

+ 0.33
0 )

+ 100
0

(16.7

+ 0.33
0 )
+ 1.67
0 )

10000

Connector
Straight Plug: MS3106B20-29S
Cable Clamp: MS3057-12A

(33.3

+ 500
0

(50

20000

DE9406971-5

+ 500
0

15000

DE9406971-4

5

(10

5000

DE9406971-2

+ 100
0

+ 500
0

(66.7

*

+ 1.67
0 )
+ 1.67
0 )

Case: 10320-52A0-008 (Manufactured by 3M.)
Connector: 10120-3000VE (Manufactured by 3M.)

Encoder End

SERVOPACK End

P: twisted-pair shielded cables.

*Purchase cases and connectors separately. Refer to Section 5.6.3 Connector for
details.

470

5.6 Specifications and Dimensional Drawings of Peripheral Devices

Cables for Absolute Encoder (with Straight Plug)

UL Shield Wire, Composite KQVV-SW
DP8409123
(AWG22 x 3C, AWG26 x 6P)
MS3106B20-29S (manufactured by Daiichi Denshi Kogyo K.K.)
MS3057-12A Cable Clamp

Shell: 10320-52A0-008 (Manufactured by 3M.)
Plug: 10120-3000VE

Type
DE9407236-1

L in mm (feet)
3000

DE9407236-3

(10

5000

DE9407236-2

+ 100
0

+ 0.33
0 )

+ 100
0

(16.7

+ 0.33
0 )
+ 1.67
0 )

10000

+ 500
0

(50

20000

DE9407236-5

(33.3

15000

DE9407236-4

+ 500
0

+ 500
0

(66.7

+ 1.67
0 )
+ 1.67
0 )

5

Cables for Absolute Encoder (with L-shaped Plug)

UL Shield Wire, Composite KQVV-SW
DP8409123
(AWG22 x 3C, AWG26 x 6P)
Shell: 10320-52A0-008 (Manufactured by 3M.)
Plug: 10120-3000VE

MS3108B20-29S (manufactured by Daiichi Denshi Kogyo K.K.)
MS3057-12A Cable Clamp

Type
DE9407237-1
DE9407237-2
DE9407237-3
DE9407237-4
DE9407237-5

L in mm (feet)
3000

+ 100
0

(10

+ 0.33
0 )

5000

+ 100
0

(16.7

+ 0.33
0 )
+ 1.67
0 )

10000

+ 500
0

(33.3

15000

+ 500
0

(50

20000

+ 500
0

(66.7

+ 1.67
0 )
+ 1.67
0 )

471

SERVO SELECTION AND DATA SHEETS
5.6.5 Encoder Cables cont.

Cables for Absolute Encoder (without Connector on Encoder End)
(3.94

+ 0.39
–0 )

UL Shield Wire, Composite KQVV-SW
DP8409123
Wire Markers
(AWG22 x 3C, AWG26 x 6P)
Shell: 10320-52A0-008 (Manufactured by 3M.)
Plug: 10120-3000VE

Type

L in mm (feet)

DE9406972-1

3000

DE9406972-3

+ 100
0

(16.7

+ 0.33
0 )
+ 1.67
0 )

+ 500
0

(33.3

15000

+ 500
0

(50

20000

DE9406972-5

5

+ 0.33
0 )

10000

DE9406972-4

Connector
Straight Plug: MS3106B20-29S
Cable Clamp: MS3057-12A

(10

5000

DE9406972-2

+ 100
0

+ 500
0

(66.7

*

+ 1.67
0 )
+ 1.67
0 )

Case: 10320-52A0-008 (Manufactured by 3M.)
Connector: 10120-3000VE (Manufactured by 3M.)
0.12mm2

Encoder End

SERVOPACK End
(2CN)

P: twisted-pair shielded cables.

*Purchase cases and connectors separately. Refer to Section 5.6.3 Connector for
details.

472

5.6 Specifications and Dimensional Drawings of Peripheral Devices

Cables for Incremental Encoder (without Connector on Both Ends)
Cable AWG22 x 3C, AWG26 x 4P

Type

L in mm (feet)

B9400064-1

3000

B9400064-3

(10

5000

B9400064-2

+ 100
0

+ 0.33
0 )

+ 100
0

(16.7

+ 0.33
0 )
+ 1.67
0 )

10000

Connector
Straight Plug: MS3106B20-29S
Cable Clamp: MS3057-12A

+ 500
0

(50

20000

B9400064-5

(33.3

15000

B9400064-4

+ 500
0

+ 500
0

(66.7

*

+ 1.67
0 )
+ 1.67
0 )

Case: 10320-52A0-008 (Manufactured by 3M.)
Connector: 10120-3000VE (Manufactured by 3M.)

*

0.12mm2

Encoder End

5

SERVOPACK End
(2CN)

P: twisted-pair shielded cables.

*

Purchase caps, sockets, cases, and connectors separately. Refer to Section 5.6.3 Connector for details.
a) Cables for Absolute Encoder (Cable Only)
Cable AWG22 x 3C, AWG26 x 6P

473

SERVO SELECTION AND DATA SHEETS
5.6.5 Encoder Cables cont.

Type

L in mm (feet)

DP8409123-1

3000

DP8409123-3

(10

5000

DP8409123-2

+ 100
0

+ 0.33
0 )

+ 100
0

(16.7

+ 0.33
0 )
+ 1.67
0 )

10000

+ 500
0

(50

20000

DP8409123-5

(33.3

15000

DP8409123-4

+ 500
0

+ 500
0

(66.7

+ 1.67
0 )

*

Connector
Straight Plug: MS3106B20-29S
Cable Clamp: MS3057-12A

+ 1.67
0 )

Case: 10320-52A0-008 (Manufactured by 3M.)
Connector: 10120-3000VE (Manufactured by 3M.)

*

0.12mm2

Encoder End

SERVOPACK End
(2CN)

T
S

5

P: twisted-pair shielded cables.

*

474

Purchase caps, sockets, cases, and connectors separately. Refer to Section 5.6.3 Connector for details.

5.6 Specifications and Dimensional Drawings of PeripheralDevices

J For the SGM and SGMP Types
Cables for Incremental Encoder (Connector Both Ends)
SERVOPACK End of Cable

Connector for Encoder End of Cable
Cap: 172161-1 (9-pin)

Case: 10320-52A0-008

Cable B9400064

Socket: 170361-1 or 170365-1

Connector: 10120-3000VE

Heat
Shrink Tube

(1.38)

Type

L in mm (feet)

DP9320089-1

3000

DP9320089-3

(10

5000

DP9320089-2

+ 100
0

+ 0.33
0 )

+ 100
0

(16.7

+ 0.33
0 )
+ 1.67
0 )

10000

+ 500
0

(50

20000

DP9320089-5

(33.3

15000

DP9320089-4

+ 500
0

+ 500
0

(66.7

+ 1.67
0 )
+ 1.67
0 )

5
Cables for Absolute Encoder (Connector Both Ends)
SERVOPACK End of Cable
Connector for Encoder End of Cable
Cap: 172163-1 (15-pin)
Socket: 170361-1 or 170365-1

Case: 10320-52A0-008

Cable DP8409123

Connector: 10120-3000VE

Heat
Shrink Tube

(1.38)

Type
DP9320088-1
DP9320088-2
DP9320088-3
DP9320088-4
DP9320088-5

L in mm (feet)
3000

+ 100
0

(10

+ 0.33
0 )

5000

+ 100
0

(16.7

+ 0.33
0 )
+ 1.67
0 )

10000

+ 500
0

(33.3

15000

+ 500
0

(50

20000

+ 500
0

(66.7

+ 1.67
0 )
+ 1.67
0 )

475

SERVO SELECTION AND DATA SHEETS
5.6.5 Encoder Cables cont.

Cables for Incremental Encoder (SERVOPACK End without Connector)
Cable B9400064
(AWG22 x 3C, AWG26 x 4P)
Cap: 172161-1 (9-pin)
Socket: 170361-1
(connected)

Wire Markers
Wires

Heat
Shrink Tube

Heat
Shrink Tube

SERVOPACK End
Encoder End
(0.79)

(1.38)
(2.36)

Type

L in mm (feet)

DP9320086-1

3000

DP9320086-3

(10

5000

DP9320086-2

+ 100
0

+ 0.33
0 )

+ 100
0

(16.7

+ 0.33
0 )
+ 1.67
0 )

10000

5

+ 500
0

(50

20000

DP9320086-5

(33.3

15000

DP9320086-4

+ 500
0

+ 500
0

(66.7

+ 1.67
0 )
+ 1.67
0 )

Case: 10320-52A0-008 (Manufactured by 3M.)
Connector: 10120-3000VE (Manufactured by 3M.)

*

Cap: 172161-1
Socket: 170361-1

Encoder End

Blue
White/Blue
Yellow
White/Yellow
Green
White/Green
Red
Black

SERVOPACK End

0.32
Green/Yellow

P: twisted-pair shielded cables.

*Purchase cases and connectors separately. Refer to Section 5.6.3 Connector for
details.

476

5.6 Specifications and Dimensional Drawings of Peripheral Devices

Cables for Absolute Encoder (SERVOPACK End without Connector)
Cap: 172163-1 (15-pin)
Socket: 170361-1 (connected)

Wire Markers

Cable DP8409123
(AWG22 x 3C, AWG26 x 6P)
Heat
Heat
Shrink Tube
Shrink Tube

Wires

SERVOPACK End

Encoder End

(1.38)
(0.79)
(2.36)

Type

L in mm (feet)

DP9320085-1

3000

DP9320085-3

(10

5000

DP9320085-2

+ 100
0

+ 0.33
0 )

+ 100
0

(16.7

+ 0.33
0 )
+ 1.67
0 )

10000

+ 500
0

(50

20000

DP9320085-5

(33.3

15000

DP9320085-4

+ 500
0

+ 500
0

(66.7

+ 1.67
0 )
+ 1.67
0 )

Case: 10320-52A0-008 (Manufactured by 3M.)

*

Connector: 10120-3000VE (Manufactured by 3M.)
Cap: 172163-1
Socket: 170365-1

Encoder End

Blue
White/Blue
Yellow
White/Yellow
Green
White/Green
Purple
White/Purple
Red
Black

SERVOPACK End

0.32mm2
White/Grey
Orange
White/Orange
Green/Yellow
0.32mm2

P: twisted-pair shielded cables.

*Purchase cases and connectors separately. Refer to Section 5.6.3 Connector for details.

477

5

SERVO SELECTION AND DATA SHEETS
5.6.5 Encoder Cables cont.

Cables for Incremental Encoder (Cable Only)
Cable AWG22 x 3C, AWG26 x 4P

Type

L in mm (feet)

B9400064-1

3000

B9400064-3

+ 100
0

(16.7

+ 0.33
0 )
+ 1.67
0 )

8
7

Blue
White/Blue
Yellow
White/Yellow
Green
White/Green
Red
Black

*

(33.3

+ 500
0

(50

20000

Cap: 172161-1 (Manufactured by AMP.)
Socket: 170361-1 or 170365-1
(Manufactured by AMP.)

+ 500
0

15000

B9400064-5

Encoder End

+ 0.33
0 )

10000

B9400064-4

5

(10

5000

B9400064-2

+ 100
0

+ 500
0

(66.7

+ 1.67
0 )
+ 1.67
0 )

Case: 10320-52A0-008 (Manufactured by 3M.)

*

Connector: 10120-3000VE (Manufactured by 3M.)

Connector

SERVOPACK End

0.32mm2
Green/Yellow

P: twisted-pair shielded cables.

*

478

Purchase caps, sockets, cases, and connectors separately. Refer to Section 5.6.3 Connector for details.

5.6 Specifications and Dimensional Drawings of Peripheral Devices

Cables for Absolute Encoder (Cable Only)
Cable AWG22 x 3C, AWG26 x 6P

Type

L in mm (feet)

DP8409123-1

3000

DP8409123-3

+ 0.33
0 )

+ 100
0

(16.7

+ 0.33
0 )
+ 1.67
0 )

10000

(33.3

+ 500
0

(50

20000

DP8409123-5

+ 500
0

15000

DP8409123-4

Cap: 172163-1

(10

5000

DP8409123-2

+ 100
0

+ 500
0

(66.7

*

+ 1.67
0 )
+ 1.67
0 )

*

Case: 10320-52A0-008 (Manufactured by 3M.)

Socket: 170361-1 or 170365-1

Connector: 10120-3000VE (Manufactured by 3M.)

Blue
White/Blue
Yellow
White/Yellow
Green
White/Green
Purple
White/Purple
Red
Black

5

0.32mm2
White/Grey
Orange
White/Orange
Green/Yellow
0.32mm2

P: twisted-pair shielded cables.

*

Purchase plug, cable clamp, cases, and connectors separately. Refer to Section 5.6.3
Connector for details.

J Appropriate Cables
Details of the encoder cables are summarized in the table below.
These cables are not supplied as accessories with a SERVOPACK or servomotor.
Purchase in standard specified lengths as required.

479

SERVO SELECTION AND DATA SHEETS
5.6.6 Battery for Absolute Encoder

Cable
Specification
Basic
Specifications

Incremental Encoder (Yaskawa
Drg. #B9400064)
Compound KQVV-SW
AWG22 x 3C, AWG26 x 4P

Absolute Encoder (Yaskawa Drg.
#DP8409123)
Compound KQVV-SW
AWG22 x 3C, AWG26 x 6P

Finished
Dimension
Internal Structure
and Lead Colors

Ø7.5 mm (Ø0.30)

Ø8.0 mm (Ø0.31)

A1
A2
A3
F1

A1
A2
A3
B1

F2
F3
F4

Red
Black
Green/Yellow
Blue - White/Blue
(Twisted pair)
Yellow - White/Yellow
(Twisted Pair)
Green - White/Green
(Twisted Pair)
Orange - White/Orange
(Twisted Pair)

B2
B3
B4
B5
B6

Yaskawa
standard
specifications

5

Red
Black
Green/Yellow
Blue - White/Blue
(Twisted pair)
Yellow - White/Yellow
(Twisted Pair)
Green - White/Green
(Twisted Pair)
Orange - White/Orange
(Twisted Pair)
Purple - White/Purple
(Twisted Pair)
Grey - White/Grey
(Twisted Pair)

Standard lengths:
3 m (9.8) , 5 m (16.4) , 10 m (32.8), 15 m (49.2), 20 m (65.6) *

*When appropriate cable is used, the allowable wiring distance between SERVOPACK and
servomotor (PG) is 20 m (65.6) max.
Note

See items 469 to 472 and 473 to 477 in this section for details about cables with connectors.

5.6.6 Battery for Absolute Encoder
Purchase the following battery if using an absolute encoder. (Manufactured by Toshiba
Battery Co., Ltd.)

• Lithium Battery: ER 6 V C3
• Nominal Voltage: 3.6 V
• Standard Capacity: 2000 mAh

480

5.6 Specifications and Dimensional Drawings of Peripheral Devices

5.6.7 1CN Connector
This connector is required to connect the host controller to 1CN on the SERVOPACK.
• Connector

(0.76)

(0.50)

(0.11)

(0.26)

2.3(0.09)

5.1(0.20)

2.54(0.10)
1.27(0.05)

(0.30)

(0.36)

Pin #1

5

(0.05)

Pin # 26

Units: mm (inches)
Connector Type
10150-3000VE

A

B

C

30.48 (1.20)

36.7 (1.44)

41.1 (1.62)

Manufactured by 3M.

481

SERVO SELECTION AND DATA SHEETS
5.6.7 1CN Connector cont.

(0.94)
(0.22)

39.0 (1.54)

• Case

(0.5)

For 10350-52A0

Diagram of Assembled Connector (for reference)

Units: mm (inches)
Connector
Type
10150-3000
VE

5

Case
Type
10350-5
2A0-008

A

B

C

D

E

F

41.1
(1.62)

52.4
(2.06)

18.0
(0.71)

17.0
(0.67)

14.0
(0.55)

46.5
(1.83)

Manufactured by 3M.
The 1CN connector type is shown below.
Connector
Type
T
DE9406970

Application
pp

* Manufactured by 3M.

482

Connector Part List

Connector
Type
Qty
I/O connector 10150-3000V 1
for 1CN
E*

Case
Type
10350-52A0008*

Qty
1

5.6 Specifications and Dimensional Drawings of Peripheral Devices

5.6.8 Connector Terminal Block Converter Unit
A connector terminal block converter unit comprises a 1CN connector and 0.5 m (1.64 ft)
cable.
The terminal block terminal numbers match the SERVOPACK 1CN connector pin numbers.
• Connector Terminal Block Converter Unit Type:
JUSP-TA50P

50-Pin Connector Plug:
MR-50RMD2
+50

Cable Length: 500 -0 mm
(19.69 +1.97 in. )
-0

50-Pin Terminal Block,
M3.5 screws
1
19
33

18
32
50

1

49

2

50

5

483

SERVO SELECTION AND DATA SHEETS
5.6.8 Connector Terminal Block Converter Unit cont.

The relationships between terminal block pin numbers and signal names are shown in
the table below.
SGDB SERVOPACK
Signal
Name

1CN
Pin No.

Terminal block unit
Connector
No.

/PULS

/SIGN
/CLR

/PCO

5

/PAO
/PBO

/PSO
Connector Case

Cable: Supplied with terminal block
: Twisted pair

484

Terminal
No.

5.6 Specifications and Dimensional Drawings of Peripheral Devices

5.6.9 Cable With 1CN Connector and One End Without Connector
Use a cable with no connector at the host controller end. The loose wires are marked with
labels with terminal numbers indicated.
SGDB SERVOPACK (3M50P connector)
Sleeve F2(Black)
Connector at SERVOPACK End (50 P)
10150-6000EL(Manufactured by 3M.)
Shell
10350-52A0-008

Cable (Black)
SSRFPVV-SB 28 x 25P
UL20276 VW-1SC
Terminal number labels
Φ2.8 (Φ1.11)

Terminal number
labels Φ2.8 (Φ1.11)

Details of Lead

5
Case

Shield
Connector Unit

Type
DE9406969-1
DE9406969-2
DE9406969-3

P

Twisted Pair

L in mm (feet)
+ 30

1000 0

+ 50

2000 0

+ 50

3000 0

3.33
6.67
10

+ 0.1
0

+ 0.17
0

+ 0.17
0

485

SERVO SELECTION AND DATA SHEETS
5.6.11 Noise Filter

5.6.10 Circuit Breaker
The customer should purchase a circuit breaker (MCCB) of appropriate capacity.
• Recommended Product
Ground fault detector for motor protection manufactured by
Mitsubishi Electric Co. Ltd.
Type: MN50-CF

Use to protect the power lines.

5.6.11 Noise Filter
Select the noise filter from the following three types according to the SERVOPACK capacity.

Install to eliminate external noise from the power lines.

5
• Dimensional Diagrams
• LF-300 (Three-phase 200 VAC Class)

(Ø0.18) (LF-310 to 330)
(Ø0.26) (LF-340 to 360)

IN
Rating
Plate

486

M6 (LF-320
to 360)

5.6 Specifications and Dimensional Drawings of Peripheral Devices

in mm (inches)
Parts
Name
LF-310

A

B

C

D

E

F

G

H

I

J

180
(7.09)

170
(6.69)

60 (2.36)

25 (0.98)

120
(4.72)

135
(5.31)

150
(5.91)

35 (1.38)

65 (2.56)

4.5(0.18)
¢7

LF-315

180
(7.09)

170
(6.69)

60 (2.36)

25 (0.98)

120
(4.72)

135
(5.31)

150
(5.91)

35 (1.38)

65 (2.56)

4.5(0.18)
¢7

LF-320

180
(7.09)

170
(6.69)

60 (2.36)

29 (1.14)

120
(4.72)

135
(5.31)

150
(5.91)

35 (1.38)

65 (2.56)

4.5(0.18)
¢7

LF-330

180
(7.09)

170
(6.69)

60 (2.36)

29 (1.14)

120
(4.72)

135
(5.31)

150
(5.91)

35 (1.38)

65 (2.56)

4.5(0.18)
¢7

LF-340

180
(7.09)

160
(6.30)

50 (1.97)

30 (1.18)

200
(7.87)

220
(8.66)

240
(9.45)

40 (1.57)

80 (3.15)

6.5(0.26)
¢9

LF-350

180
(7.09)

160
(6.30)

50 (1.97)

30 (1.18)

200
(7.87)

220
(8.66)

240
(9.45)

40 (1.57)

80 (3.15)

6.5(0.26)
¢9

LF-360

200
(7.87)

180
(7.09)

60 (2.36)

30 (1.18)

300
(11.81)

320
(12.60)

340
(13.39)

40 (1.57)

100
(3.93)

6.5(0.26)
¢9

• LF-K (Three-phase 200 VAC Class)

5
in mm (inches)
Parts Name
LF-380K

Terminal Block
TE-K22 M6

A

B

670
(26.38)

400
(15.75)

C

D

560
(22.05)

E

380
(14.96)

500
(19.69)

F
170
(6.69)

G
9¢Ø6.5
(0.26)

H
Ø6.5
(0.26)

• FN258-100 (Three-phase 200 VAC Class)
C

B

F

D

H

M10

G

E
A

in mm (inches)
Parts Name

A

FN-258-100

379¦1.5
(14.92¦0.06)

B
220
(8.66)

C
90¦8
(3.54¦0.31)

D
3501.2
(13.78¦0.05)

E
364
(14.33)

F

G

H

65 (2.56)

6.5 (0.26)

1.5 (0.06)

487

SERVO SELECTION AND DATA SHEETS
5.6.12 Magnetic Contactor

5.6.12 Magnetic Contactor
A magnetic connector turns ON and OFF the servo. Be sure to attach a surge suppressor
to the excitation coil of the magnetic contactor.
Select a magnetic contactor based on the current capacity of the SERVOPACK. For multiple servo systems, select a contactor based on total current capacity.
Following table shows external dimensions and terminal symbols for the magnetic contactor.

44 (1.73)
10.1 (0.40)
8.2
(0.32)

61 (2.40)

Coil terminal
M3.5

34.5 (1.36)

Auxiliary NO contact

4.5 (0.18)

5 (0.20)

34 (1.34)

10.4 10.4 10.4
(0.41) (0.41) (0.41)

15.5
(0.61)
48 (1.89)

35 (1.38)

78.5 (3.09)

74.5 (2.93)

41 (1.61)

4 (0.16)

8.2
(0.32)

Terminal Symbols

76 (2.99)

13 (0.51)

HI-11J
HI-14J

Mounting Hole
Dimensions [mm (in)]

External Dimensions [mm (in)]

52 (2.05)

Model

Auxiliary NC contact

9 (0.35)

Auxiliary contact terminal M3.5
2×M4 mounting
holes

Main contact terminal M3.5

HI-15J
HI-18J

45.5 (1.79)

Coil terminal
M3.5

91 (3.58)
65 (2.56)
39 (1.54)
4.5 (0.18)

5.2 (0.20)

35 (1.38)

9.6
(0.38)

Auxiliary contact
terminal M3.5
8.2
(0.32)

70 (2.76)

9 (0.35)
54 (2.13)
76 (2.99)

75 (2.95)

Auxiliary NO contact/
Auxiliary NC contact

35 (1.38)

50 (1.97)
85 (3.35)

51 (2.01)

29 (1.14)

9.6 (0.38)

15.3 (0.60)
8.2
(0.32)

2×M4 mounting
holes

11.3 11.3 10.8
(0.44) (0.44) (0.43) Main contact terminal M4

Coil terminal
M3.5

91 (3.58)
65 (2.56)
39 (1.54)
4.5 (0.18)

5.2 (0.20)

35 (1.38)

9.6
(0.38)

Auxiliary contact

8.2 terminal M3.5
(0.32)

11.3 11.3 10.8
(0.44) (0.44) (0.43) Main contact terminal M4

9 (0.35)
54 (2.13)
76 (2.99)

Approx. mass: 0.38 kg (0.838 lb)

488

Auxiliary NO contact/
Auxiliary NC contact
70 (2.76)

35 (1.38)

50 (1.97)
85 (3.35)

29 (1.14)

9.6 (0.38)

15.3 (0.60)
8.2
(0.32)

75 (2.95)

45.5 (1.79)

5 (0.20)

Approx. mass: 0.38 kg (0.838 lb)

HI-20J

51 (2.01)

5

5 (0.20)

Approx. mass: 0.25 kg (0.551 lb)

2×M4 mounting
holes

5.6 Specifications and Dimensional Drawings of Peripheral Devices

50 (1.97)

Auxiliary contact
terminal M3.5

70 (2.76)

35 (1.38)

8.2 (0.32)

14.8 14.8 13.1
(0.58) (0.58) (0.52)

4 (0.16)

4.5 (0.18)

92 (3.62)

29 (1.14)

12.2
(0.48)

111 (4.37)
79 (3.11)
45 (1.77)

Auxiliary NO contact/
Auxiliary NC contact
50 (1.97)

8.2
(0.32)

Coil terminal
M3.5

Terminal Symbols

10.5 (0.41)

58 (2.28)
23.4 (0.92)

58.4 (2.30)

HI-25J
HI-35J

Mounting Hole
Dimensions [mm (in)]

External Dimensions [mm (in)]

75 (2.95)

Model

9 (0.35)
72 (2.83)
94 (3.70)

2×M4 mounting
holes

Main contact terminal M5

Approx. mass: 0.68 kg (1.499 lb)
121 (4.76)

10.3 (0.41)

75 (2.95)

86.5 (3.41)

30 (1.18)

Coil terminal
M3.5

8.2 (0.32)

5 (0.20)

49.5 (1.95)

6 (2.56)

2×M4 mounting
holes
6 (0.24)

HI-50J
HI-65J

7 (0.28)

Auxiliary NO contact/
Auxiliary NC contact

20

20

(0.79) (0.79)

3

8.2
(0.32)
Auxiliary contact
15.5
(0.61) terminal M3.5

Main contact terminal
HI-50J : M5
HI-65J : M6 Approx.

100 (3.94)

95 (3.74)

75 (2.95)

111 (4.37)
114 (4.49)
(0.12)

6 (0.24)
8 (0.31)

14 (0.55)

*

50 (1.97)

29 (1.14)

75 (2.95)

7 (0.28)
5 (0.20)

75.5 (2.97)

5

98 (3.86)

2×M4 mounting
holes

mass: 1.1 kg (2.425 lb)

The magnetic contactor is manufactured by Yaskawa Controls.

489

SERVO SELECTION AND DATA SHEETS
5.6.14 Regenerative Resistor Unit

5.6.13 Surge Suppressor
Attach a surge suppressor to the magnetic contactor to prevent power supply noise and
protect contacts.
• Recommended Product
Spark Killer manufactured by Okaya Electric Industries Co., Ltd.
Type: CR50500BA (250 VAC)
Capacitance: 0.5 μF  20%
Resistance: 50 Ω (1/2 W) 30%

5.6.14 Regenerative Resistor Unit
For SERVOPACKs (SGDB-60 or higher) for use with motors with 5.5 kW or more,
externally attach a regenerative resistor to the SERVOPACK. This resistor is used for
dissipating regenerative energy.
Use one of the following regenerative resistor units according to the SERVOPACK type:
SGDB SERVOPACK Type
60ADj
75ADG
1AADG
1EADG

5

Regenerative Resistor Unit Type
JUSP-RA04
JUSP-RA05

• Dimensional Drawings
(4-Ø0.24)
Mounting Hole

Protective Cover

Ground Terminal
(M4 Screw)
External Terminal
(M5 Screw)

(1.18)

220W, 25Ω Cement Resistor
(4 or 8 Resistors Connected in
Parallel)

490

5.6 Specifications and Dimensional Drawings of Peripheral Devices

J Terminal Numbers

Units: mm (inches)
Type

W

H

D

M1

M2

JUSP-RA04

220 (8.66)

350 (13.78)

92 (3.62)

180 (7.09)

335 (13.19)

Approx.
mass
4kg

JUSP-RA05

300 (11.81)

350 (13.78)

95 (3.74)

250 (9.84)

335 (13.19)

7kg

5.6.15 Variable Resistor for Speed Setting
This variable resistor is used to give speed references by applying the speed reference
voltage from an external power supply across 1CN pins #5 and #6.

5

J Dimensional Drawings
Panel

Ø25¦1
(Ø0.98¦
0.04)

(0.45¦0.04)

Panel Drilling Diagram

(0.83)

25 HP Helicolumn

Ø31¦1
(Ø1.22¦
0.04)
(0.57¦0.04)
(1.48¦0.04)

Ø7.5(Φ0.30)HOLE
Ø2.5
(Ø0.10)
HOLE
(0.39)

MD Multidial
(0.18) (0.94¦0.04)

Dimensions in mm (inches)

J Connection to External Power Supply

1.8k Ω (1/2 W) min.
Type
25HP-10B,
2 kΩ

SGDB
SERVOPACK
1-5
1-6

Type 25HP-10B
Multi-wrap variable resistor with
MD10-30B4 dial, manufactured by Sakae
Tsushin Kogyo K.K.

491

SERVO SELECTION AND DATA SHEETS
5.6.16 Encoder Signal Converter Unit

5.6.16 Encoder Signal Converter Unit
Unit to convert the encoder signal output from the line driver to an open collector output or
voltage pulse output.

Line Receiver Unit

J Terminal Numbers

Input Phase A
Input Phase /A
Input Phase B
Input Phase /B
Input Phase Z
Input Phase /Z

Output Phase A
Output Phase B
Output Phase Z

5
J Dimensional Drawings

(1.14)

(1.97)

(0.31)

(0.20) (0.16)

(1.39)

81 max (3.19)

Holes 2 x
4.5 mm dia.
(Ø0.18)

(0.16)

(1.39)

(3.15)

(5.08)
(3.94)

11-M3.5 x 7
Cross slot screws

118 max.
(4.65)

(1.57¦0.0079)
51 max.
(2.01)

33.5 max.
(1.32)

Units: mm (inches)

492

5.6 Specifications and Dimensional Drawings of Peripheral Devices

J Specifications
The encoder signal converter unit specifications are as follows:
Type
Spec.

Receiver Unit
LRX-01/A1

LRX-01/A2

LRX-01/A3

LRX-01/A4

Power Supply

12 VDC 10%, 100 mA

Input Signals

Balanced line driver input (RS-422)

Output Signals

Voltage pulse
Open collector
Voltage pulse
Open collector
output
output
output
output
Voltage differential ≧ 0.3 V, internal termination resistance 100 Ω

Input Signal
Level
Output Signal
Level

Operating
Ambient
Temperature
Range
IC Used

H: 10 V min.
(1 mA)
L: 0.5 V max.
(30 mA)

L: 0.5 V max.
(30 mA)
Withstand
voltage: 50 V

5 VDC  5%, 100 mA

H: 3 V min.
(1 mA)
L: 0.5 V max.
(30 mA)

L: 0.5 V max.
(30 mA)
Withstand
voltage: 50 V

0 to +60°C

AM26LS32C Receiver IC, or equivalent

5

493

SERVO SELECTION AND DATA SHEETS
5.6.17 Cables for Connecting PC and SERVOPACK

5.6.17 Cables for Connecting PC and SERVOPACK
Special cables for connecting a PC to a SERVOPACK. Using these cables allows monitoring and setting of parameters with a PC.
PC software is available for these communications. Ask your Yaskawa representative for
details. Operate the software as described in the manual supplied.
J Connection Diagram
SERVOPACK
DDK 17LE-13090-27 (D2BC)

Rear of PC

Connection Cable DE9405258
(2 m) (6.56 ft) or less
D-Sub 25-pin (Male) or
17JE-23250-02 (DBA) (Made by DDK)

D-Sub 9-pin (Male) or
17JE-23090-02 (DBB) (Made by DDK)

J Dimensional Drawings for Type DE9405258 (for NEC PC)
D-Sub connector 25-pin (Male) 17JE-23250-02 (D8A)

5

(6.56¦0.164)

M2.6 screw

Two M3 screws x
10 length, 0.5 pitch
Cable (Black) UL2921
Pin Connector
0.16 x 7 shielded
17JE-23090-02 (D1)
cable with 9 lines

Note: Fold the cable shielding back at each end of the cable and secure it with clamps.

J Communications Specifications
• Baud Rate:

9600 bps

• Number of Bits Start:
Data:
Stop:
Parity:
• Synchronization

Start-Stop

• XON/XOFF Control

494

1 bit
7 bits
1 bit
1 bit (even)

None

5.6 Specifications and Dimensional Drawings of Peripheral Devices

• Shift Control:

None

• Communications Method:

Semi-duplex

J Connecting-circuit Specifications
Using the RS232C Port
SERVOPACK End (3CN)

RS-232C Port (Personal Computer End)

/TXD
/RXD

/RXD
/TXD

Shield
Case
Note: Maximum cable length is 2 m (6.56 ft).

Using the RS422A Port
Connection is also possible to the RS-422A port. In this case, the connection circuit is as
follows:
• Transmission Distance: 30 m (98.4 ft) max.
• Transmission System: RS-422A
SERVOPACK End (3CN)

RS-422A Port (Personal Computer End)

/TXD
/RXD
/RXD

5

/RXD
/TXD
Shield
Case

Terminal Arrangement at SERVOPACK End
Pin
#
1

Signal Name

Signal Circuit Name

Signal Direction

TXD

Transmit data (not inverted)

P←S

2

/TXD

Transmit data (inverted)

P←S

3

RXD

Receive data (not inverted)

P→S

4

/RXD

Receive data (inverted)

P→S

5

OPH

6
7
8

/RXD
RT
5VPP

Shorting pins 6 and 7 inserts 220 Ω termination resistance
gp
between RXD and /RXD.
b
d /RXD

9

GND

Signal ground 0 V

#

#

P: Personal computer
S: SERVOPACK
#: Terminal not used, leave open.

495

SERVO SELECTION AND DATA SHEETS
5.6.17 Cables for Connecting PC and SERVOPACK cont.

J Cable for Connecting SERVOPACK and IBM PC (IBM Compatible PC)
Use Yaskawa DE9408565 type cable.
• Dimensional Drawings: Type DE9408565
D−sub Connector
17JE−13090−02(D8A)
(Made by DDK)

2−M2.6 Screw
Pitch 0.45

Cable (Black)
2−M3 Screw
UL2921
9−strand twisted Pitch 0.5
(0.16 ×7)
shielded cable

Pin Connector
17JE−23090−02(D1)
(Made by DDK)

Note: Fold back the cable shielding at each end of the cable and secure it with clamp.

• Connection
Personal Computer End
(D−sub 9−pin)

SERVOPACK End
(D−sub 9−pin)

Clamp with Hood

5

/
/

496

Clamp with Hood
/
/

5.6 Specifications and Dimensional Drawings of Peripheral Devices

J Cable for connecting SERVOPACK and NEC PC−98 half−pitch connector
Use Yaskawa DE9408564 type cable.
• Dimensional Drawings: Type DE9408564
Plug: 10114-6000EL
Shell:10314−3210−000 (Made by 3M)

Cable (Black)
UL2921
9−strand twisted
(0.16 ×7)
shielded cable

2−M3 Screw
Pitch 0.5

Pin Connector
17JE−23090−02(D1)
(Made by DDK)

Note: Fold back the cable shielding at each end of the cable and secure it with clamp.

• Connection
Personal Computer End
Clamp with Hood
/RXD
/TXD

SERVOPACK End
(D-sub 9-pin)
Clamp with Hood

5

/RXD
/TXD

497

INSPECTION, MAINTENANCE,
AND TROUBLESHOOTING

6

This chapter describes the basic inspections and maintenance to be carried
out by the customer.
In addition, troubleshooting procedures are described for problems which
cause an alarm display and for problems which result in no alarm display.

6.1 Inspection and Maintenance . . . . . . . . . . . . . . .
6.1.1 Servomotor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.1.2 SERVOPACK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.1.3 Replacing Battery for Absolute Encoder . . . . . . . . . . . . . . . .

6.2 Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . .
6.2.1 Troubleshooting Problems with Alarm Display . . . . . . . . . . .
6.2.2 Troubleshooting Problems With No Alarm Display . . . . . . . .
6.2.3 Internal Connection Diagram and
Instrument Connection Examples . . . . . . . . . . . . . . . . . . . . . .

500
500
501
502

503
503
529

6

531

499

INSPECTION, MAINTENANCE, AND TROUBLESHOOTING
6.1.1 Servomotor

6.1

Inspection and Maintenance

This section describes the basic inspections and maintenance for Σ-Series servo drives.

6.1.1 Servomotor
For inspection and maintenance of servomotors, follow the simple, daily inspection procedures in the table below.
The AC servomotors are brushless. Simple, daily inspection is sufficient. The inspection and
maintenance frequencies in the table are only guidelines. Increase or decrease the frequency to suit the operating conditions and environment.
Item

Frequency

Procedure

Vibration and
noise
Appearance

Touch and listen.

According to
degree of
contamination
At least once a
year

Replace oil seal

At least once
every 5,000
hours

Disconnect SERVOPACK
and test insulation resistance
at 500 V. Must exceed 10
MΩ. (See note below)
Remove servomotor from
machine and replace oil seal.

Overhaul

At least once
Contact your Yaskawa
every 20,000
representative.
hours or 5 years

Comments

Clean with cloth or
compressed air.

Insulation
resistance
measurement

6

Daily

Levels higher than normal?

Contact your Yaskawa
representative if the
insulation resistance is
below 10 MΩ.
Applies only to motors with
oil seal.
The customer should not
disassemble and clean the
servomotor.

Note Measure across the servomotor FG and the phase-U, phase-V, or phase-W power lead.
During inspection and maintenance, do not disassemble the servomotor.
If disassembly of the servomotor is required, contact your Yaskawa representative.

500

6.1 Inspection and Maintenance

6.1.2 SERVOPACK
For inspection and maintenance of the SERVOPACK, follow the inspection procedures in the
table below at least once every year.
The SERVOPACK contains highly reliable parts and daily inspection is not required. Carry
out the inspections and maintenance in the table below once every year.
Item

Frequency

Procedure

Remedy

Clean unit interior and
circuit boards
Loose screws

At least
once a year
At least
once a year
At least
once a year

Check for dust, dirt, and oil on
the surfaces.
Check for loose terminal block
and connector screws.
Check for discoloration, damage
or discontinuities due to heating.

Clean with
compressed air.
Tighten any loose
screws.
Contact your Yaskawa
representative.

Defective parts in unit
or on circuit boards.

Part Replacement Schedule
The following parts are subject to mechanical wear or deterioration over time. To avoid failure,
replace these parts at the frequency indicated.
Part
Cooling fan

Replace with new part.

Smoothing Capacitor

7 to 8 years

Test. Replace with new part if necessary.

Relays



Test. Replace if necessary.

Fuse

10 years

Replace with new part.

Aluminum Electrolytic
Capacitor on Circuit Board

Note

Standard
Replacement Period
4 to 5 years

Replacement Method

5 years

Test. Replace with new circuit board if
necessary.

6

Operating Conditions:
• Ambient Temperature: annual average 30°C
• Load Factor: 80% max.
• Operation Rate: 20 hours/day max.
If the SERVOPACK has been already overhauled at YASKAWA, its parameters are set back
to the standard settings on shipment. Always check the parameters before operating the motor.

501

INSPECTION, MAINTENANCE, AND TROUBLESHOOTING
6.1.3 Replacing Battery for Absolute Encoder

6.1.3 Replacing Battery for Absolute Encoder
Battery replacement is only required for servo systems using an absolute encoder.
Install the battery type recommended below (purchased by the customer) in the host controller to allow the absolute encoder to store position data when the power is turned OFF.
Recommended Battery:
• Lithium Battery
ER 6 V C3, manufactured by Toshiba Battery Co.,
Ltd. 3.6 V, 2000 mAh
Estimated Life: Approximately 10 years
Host Controller

SGMj servomotor
12 bit absolute encoder

SGDB SERVOPACK

Battery

/PAO

/PA

/PBO

/PB

/PCO

/PC

/PSO

/PS

Shielded wire

6

Note

PS, PSO signals are used only for 12 bit absolute encoder.
The battery voltage is not internally monitored in the SERVOPACK. Therefore, detect low battery voltage at the host controller.
Minimum required battery voltage is 2.8 V.
Replace the battery according to the following procedure if the battery voltage drops to the
minimum required battery voltage. The battery maintains absolute position data stored in the
encoder.
Battery Replacement Procedure:
1) Turn ON the SERVOPACK and wait at least 3 minutes. The absolute encoder capacitors
are charged.
2) Replace the battery in the host controller. The SERVOPACK power supply can be ON or
OFF during battery replacement.

Note

502

After completing step 1 above, the absolute encoder will function normally for up to 2 days
with no battery.

6.2 Troubleshooting

6.2

Troubleshooting

This section describes causes and remedies for problems which cause an alarm display and
for problems which result in no alarm display.

6.2.1 Troubleshooting Problems with Alarm Display
Refer to the tables below to identify the cause of a problem which causes an alarm display
and take the remedy described.
Note that A.99 does not indicate an alarm.
Contact your Yaskawa representative if the problem cannot be solved by the described procedures.

6

503

INSPECTION, MAINTENANCE, AND TROUBLESHOOTING
6.2.1 Troubleshooting Problems with Alarm Display cont.

J A.00
Display and Outputs
Alarm Output

Digital Operator
g
p
Display d
Di l and
Alarm Name
A.00
Absolute data
error

Alarm Output
p

Alarm Code Output
ALO2
ALO3
OFF
OFF

ALO1
OFF

OFF

OFF: Output transistor is OFF
ON: Output transistor is ON
Status When Alarm Occurred
At power ON

Cn-01 Bit 1 = 0

Cn-01 Bit 1 = 1

At SEN signal input

A,

B, C, D, E, F

F

A,

B, C, D, E, F

Cause
A
B

6

C

Remedy

Absolute encoder power not supplied from
SERVOPACK.
Incorrect absolute encoder wiring (PA, PB,
RESET, SEN signal etc.)
Absolute encoder malfunctioned

Use the SERVOPACK power supply for
the absolute encoder.
Check and correct the absolute encoder
wiring.
• If Cn-01 Bit 1 = 0, turn SEN signal OFF and
back ON.
• If Cn-01 Bit 1 = 1, turn SERVOPACK power
OFF and back ON.
Set Cn-01 Bit E to 0.

D

Incorrect parameter setting.
Incremental encoder used with Cn-01 Bit E
set to 1.

E

Absolute encoder defective

Replace servomotor.

F

Circuit board (1PWB) defective

Replace SERVOPACK.

Note

Alarm A.00 is reset when the power is turned OFF and back ON. It is not reset by the normal
alarm reset.

NOTE

Resetting SEN Signal
When resetting the SEN signal (i.e., turning it OFF and then back ON) for any reason, keep
the SEN signal at the high level for more than 1.3 s before turning it OFF.

SEN signal

OFF

ON = High Level OFF ON
1.3 s min.
15 ms min.

504

6.2 Troubleshooting

J A.02
Display and Outputs
Alarm Output

Digital Operator
g
p
Display d
Di l and
Alarm Name
A.02
Parameters
breakdown

ALO1
OFF

Alarm Code Output
ALO2
ALO3
OFF
OFF

Alarm Output
p
OFF

OFF: Output transistor is OFF
ON: Output transistor is ON
Status When Alarm Occurred
At power ON

A, B

Cause
A
B

Remedy

Power turned OFF during parameter write.
Alarm occurred next power ON.
Circuit board (1PWB) defective

Replace SERVOPACK.
Replace SERVOPACK.

J A.04

6

Display and Outputs
Digital Operator
g
p
Display d
Di l and
Alarm Name

Alarm Output
ALO1

A.04
OFF
Parameter setting
error

Alarm Code Output
ALO2
ALO3
OFF
OFF

Alarm Output
p
OFF

OFF: Output transistor is OFF
ON: Output transistor is ON
Status When Alarm Occurred
At power ON

A, B

Cause
A
B

Remedy

An out-of-range parameter was previously
set or loaded.
Circuit board (1PWB) defective

Reset all parameters in range. Otherwise,
re-load correct parameters.
Replace SERVOPACK.

505

INSPECTION, MAINTENANCE, AND TROUBLESHOOTING
6.2.1 Troubleshooting Problems with Alarm Display cont.

J A.10
Display and Outputs
Alarm Output

Digital Operator
g
p
Display d
Di l and
Alarm Name
A.10
Overcurrent

Alarm Code Output
ALO2
ALO3
OFF
OFF

ALO1
ON

Alarm Output
p
OFF

OFF: Output transistor is OFF
ON: Output transistor is ON
Status When Alarm Occurred
During servomotor
operation

A, B, D

At power ON

C
Cause

A

When servo ON (/S-ON)
signal turned ON

Remedy
Check and correct wiring.

B

Wiring grounded between SERVOPACK
and servomotor.
Servomotor U, V, or W phase grounded.

C

• Circuit board (1PWB) defective

Replace SERVOPACK.

Replace servomotor.

• Power transistor defective
D

6

506

Current feedback circuit, power transistor,
DB circuit, or circuit board defective.

Replace SERVOPACK.

C,

D

6.2 Troubleshooting

J A.30
Display and Outputs
Alarm Output

Digital Operator
g
p
Display d
Di l and
Alarm Name
A.30
Regenerative
error detection

ALO1
ON

Alarm Code Output
ALO2
ALO3
ON
OFF

Alarm Output
p
OFF

OFF: Output transistor is OFF
ON: Output transistor is ON
Status When Alarm Occurred
During servomotor
operation

A, B

Occurred approximately 1 second after the
main circuit power ON.

Occurred when the control power turned ON

A, B, C

Cause

D

Remedy

A

Regenerative transistor is abnormal.

Replace SERVOPACK.

B

Disconnection of the regenerative resistor
unit.
Regenerative resistor unit disconnected
(for more than 6.0 kW).
SERVOPACK defective.

Replace SERVOPACK or regenerative
resistor unit.
Check wiring of the regenerative resistor
unit.
Replace SERVOPACK.

C
D

507

6

INSPECTION, MAINTENANCE, AND TROUBLESHOOTING
6.2.1 Troubleshooting Problems with Alarm Display cont.

J A.31
Display and Outputs
Alarm Output

Digital Operator
g
p
Display d
Di l and
Alarm Name
A.31
Position error
pulse overflow

ALO1
ON

Alarm Code Output
ALO2
ALO3
ON
OFF

Alarm Output
p
OFF

OFF: Output transistor is OFF
ON: Output transistor is ON
Status When Alarm Occurred
During servomotor
operation

At power ON

Overflow during
high-speed operation

B, F

Normal operation
but overflow when
large reference input.

6

A

No feedback pulse
returned after reference pulse input.

C, D, E

Cause
A
B

F

C

Servomotor wiring incorrect.
Encoder wiring incorrect (disconnection,
shortcircuit, power supply, etc.)
SERVOPACK adjustment incorrect

D

Servomotor overloaded

E

Position reference pulse frequency too
high

Remedy
Check and correct wiring. (Check A-, B-,
g (
, ,
C-phase pulses correct at 2CN.)
C h
l
2CN )
Increase speed loop gain (Cn-04) and/or
position loop gain (Cn-1A).
Reduce load torque and inertia. Otherwise,
replace with larger capacity servomotor.
• Decrease reference pulse frequency.
• Use smoothing function.
• Change electronic gear ratio.

F

508

Circuit board (1PWB) defective.

Replace SERVOPACK.

6.2 Troubleshooting

J A.40
Display and Outputs
Alarm Output

Digital Operator
g
p
Display d
Di l and
Alarm Name
A.40
Main circuit
voltage error
detection.

Alarm Code Output
ALO2
OFF
ON

ALO1
OFF

Alarm Output
p
ALO3
OFF

OFF: Output transistor is OFF
ON: Output transistor is ON
Status When Alarm Occurred
At power ON

A, B, C, D

Occurred approximately
0.6 second after the main
circuit power turned ON.

B
C
D

E

A, D

Cause
A

Occurred when the control
power turned ON.

The power supply voltage is not within the
range of specifications.
Load exceeds capacity of the regenerative
unit.
Regenerative transistor is abnormal.

Remedy
Check power supply.
Check specifications of load inertia and
overhanging load.
Replace SERVOPACK.
p

6

• Rectifying diode defective.
• Fuse blown.

E

• Inrush current-limited resistor disconnected.
SERVOPACK defective.

509

INSPECTION, MAINTENANCE, AND TROUBLESHOOTING
6.2.1 Troubleshooting Problems with Alarm Display cont.

J A.51
Display and Outputs
Alarm Output

Digital Operator
g
p
Display d
Di l and
Alarm Name
A.51
Overspeed

ALO1
ON

Alarm Code Output
ALO2
OFF
ON

Alarm Output
p
ALO3
OFF

OFF: Output transistor is OFF
ON: Output transistor is ON
Status When Alarm Occurred
When servo ON (/S-ON)
signal turned ON

During high-speed
servomotor rotation
after reference input

A, B, C, D, E

Cause

Incremental encoder power not supplied
from SERVOPACK.
Noise in encoder wiring.

Remedy

• Servomotor wiring incorrect.

B
C
D
E

510

E

A, B, C, D, E

A

6

At power ON

Check and correct wiring. (Check A-, B-,
• Encoder wiring incorrect (disconnection, C-phase pulses correct at 2CN.)
shortcircuit, power supply, etc.)

Incorrect parameter (number of encoder
pulses) setting.
Circuit board (1PWB) defective

Use the SERVOPACK power supply for
the encoder.
Separate encoder wiring from main wiring
circuits.
Set parameter Cn-11 to the correct number
of pulses.
Replace SERVOPACK.

6.2 Troubleshooting

J A.71, A.72
Display and Outputs
Alarm Output

Digital Operator
g
p
Display d
Di l and
Alarm Name
A.71
Overload
(High load)
A.72
Overload
(Low load)

ALO1
ON

Alarm Code Output
ALO2
ON
ON

Alarm Output
p
ALO3
OFF

OFF: Output transistor is OFF
ON: Output transistor is ON
Status When Alarm Occurred
When servo ON (/S-ON)
signal turned ON

A, B, D

At power ON

E

When speed reference
input

No servomotor
rotation

B, C, D

During normal
operation

C, D
Cause

A

6
Remedy

B

Servomotor wiring incorrect or
disconnected
Encoder wiring incorrect or disconnected

Check wiring and connectors at
servomotor.
Check wiring and connectors at encoder.

C

Load greatly exceeds rated torque

D

Incremental encoder power not supplied
from SERVOPACK.
Circuit board (1PWB) defective

Reduce load torque and inertia. Otherwise,
replace with larger capacity servomotor.
Use the SERVOPACK power supply for
the encoder.
Replace SERVOPACK.

E

511

INSPECTION, MAINTENANCE, AND TROUBLESHOOTING
6.2.1 Troubleshooting Problems with Alarm Display cont.

J A.80
Display and Outputs
Alarm Output

Digital Operator
g
p
Display d
Di l and
Alarm Name
A.80
Absolute encoder
error (only when
absolute encoder
is used)

ALO1
OFF

Alarm Output
p

Alarm Code Output
ALO2
ALO3
OFF
OFF

OFF

OFF: Output transistor is OFF
ON: Output transistor is ON
Status When Alarm Occurred
At power ON

Cn-01 Bit 1 = 0

Cn-01 Bit 1 = 1

During servomotor
operation

A, B, D, E, F

C
A, B, C
Cause

A

6

B

C
D

Remedy

Incorrect absolute encoder wiring (PA, PB,
RESET, SEN signal etc.)
Absolute encoder malfunctioned

Check and correct the absolute encoder
wiring.
• At Cn-01 Bit 1 = 0, turn SEN signal OFF
then back ON.

Circuit board (1PWB) defective
Error occurred in absolute encoder.

Another encoder alarm displayed when
SEN signal or power supply turned back
ON.
E

SERVOPACK miscounted pulses
(positional displacement) or malfunctioned
due to noise.

• At Cn-01 Bit 1 = 1, turn SERVOPACK power OFF then back ON.
Replace SERVOPACK.
D At Cn-01 Bit 1 = 0, turn SEN signal OFF
then back ON (if servomotor is running,
first turn servo OFF).
D At Cn-01 Bit 1 = 1, turn SERVOPACK
power OFF then back ON.
• Separate encoder wiring from main wiring
circuits.
• At Cn-01 Bit 1 = 0, turn SEN signal OFF
then back ON (if servomotor is running,
first turn servo OFF).
• At Cn-01 Bit 1 = 1, turn SERVOPACK power OFF then back ON.

F

Error occurred in incremental encoder.

• Turn SERVOPACK power OFF then back
ON.
• Replace servomotor.

512

6.2 Troubleshooting

J A.81
Display and Outputs
Alarm Output

Digital Operator
g
p
Display d
Di l and
Alarm Name
A.81
Absolute encoder
back-up error
(only when 12 bit
absolute encoder
is used)

Alarm Code Output
ALO2
ALO3
OFF
OFF

ALO1
OFF

Alarm Output
p
OFF

OFF: Output transistor is OFF
ON: Output transistor is ON
Status When Alarm Occurred
At power ON

When SEN signal turned
ON Cn-01 Bit 1 = 0

Cn-01 Bit 1 = 0

B

Cn-01 Bit 1 = 1

A, C
Cause

A

A, C

The following power supplied to the
absolute encoder all failed:

6

Remedy
Follow absolute encoder set-up
procedures.

• +5 V supply
• Battery (ER6V C3)
B

• Internal capacitor
Circuit board (1PWB) defective

Replace SERVOPACK.

C

Absolute encoder malfunctioned

Replace servomotor.

513

INSPECTION, MAINTENANCE, AND TROUBLESHOOTING
6.2.1 Troubleshooting Problems with Alarm Display cont.

J A.82
Display and Outputs
Alarm Output

Digital Operator
g
p
Display d
Di l and
Alarm Name
A.82
Absolute encoder
sum-check error
(only when 12 bit
absolute encoder
is used)

ALO1
OFF

Alarm Code Output
ALO2
ALO3
OFF
OFF

Alarm Output
p
OFF

OFF: Output transistor is OFF
ON: Output transistor is ON
Status When Alarm Occurred
At power ON

When SEN signal turned
ON, Cn-01 Bit 1 = 0

Cn-01 Bit 1 = 0

Cn-01 Bit 1 = 1

6

B

B

Note

514

During operation
(see note)

A

A, B

Cause
A

A

Remedy

Abnormality during absolute encoder
memory check

• Follow absolute encoder set-up procedures.

Circuit board (1PWB) defective

• Replace servomotor if error occurs frequently.
Replace SERVOPACK.

An absolute encoder error (A.80) is given initially if a sum-check error (A.82) is generated
during operation.
The sum-check error (A.82) occurs after turning the SEN signal (or SERVOPACK power supply) OFF and back ON.
However, the sum-check error (A.82) does occur during operation if the host controller is receiving the S-phase signal (serial data).

6.2 Troubleshooting

J A.83
Display and Outputs
Alarm Output

Digital Operator
g
p
Display d
Di l and
Alarm Name
A.83
Absolute encoder
sum-check error
(only when 12 bit
absolute encoder
is used)

Alarm Code Output
ALO2
ALO3
OFF
OFF

ALO1
OFF

Alarm Output
p
OFF

OFF: Output transistor is OFF
ON: Output transistor is ON
Status When Alarm Occurred
At power ON

When SEN signal turned
ON, Cn-01 Bit 1 = 0

Cn-01 Bit 1 = 0

C

Cn-01 Bit 1 = 1

During operation
(see note)

A, B

A, B
Cause

A

A, B

• Battery not connected

6

Remedy
Check and correct battery connection.

• Battery connection defective
B
C

Note

Battery voltage below specified value.
Specified value: 2.8 V.
Circuit board (1PWB) defective

Install new battery and turn SEN signal (or
SERVOPACK) ON.
Replace SERVOPACK.

No alarm occurs at the SERVOPACK when a battery error (A.83) is generated. The battery
error (A.83) occurs the next time the SEN signal (or SERVOPACK) turns ON.
However, the battery error (A.83) can be read during operation if the host controller is receiving the S-phase signal (serial data).

515

INSPECTION, MAINTENANCE, AND TROUBLESHOOTING
6.2.1 Troubleshooting Problems with Alarm Display cont.

J A.84
Display and Outputs
Alarm Output

Digital Operator
g
p
Display d
Di l and
Alarm Name
A.84
Absolute encoder
data error (only
when absolute
encoder is used)

ALO1
OFF

Alarm Code Output
ALO2
ALO3
OFF
OFF

Alarm Output
p
OFF

OFF: Output transistor is OFF
ON: Output transistor is ON
Status When Alarm Occurred
At power ON

When SEN signal turned
ON, Cn-01 Bit 1 = 0

Cn-01 Bit 1 = 0

Cn-01 Bit 1 = 1

B

6

During operation
(see note)

B

A

Cause
A

B

Absolute encoder malfunctioned

Remedy
• At Cn-01 Bit 1 = 0, turn SEN signal OFF
then back ON.
• At Cn-01 Bit 1 = 1, turn SERVOPACK power OFF then back ON.
• Replace servomotor if error occurs frequently.

B

Note

516

Circuit board (1PWB) defective

Replace SERVOPACK.

No alarm occurs at the SERVOPACK when a data error (A.84) is generated. The data error
(A.84) occurs the next time the SEN signal (or SERVOPACK) turns ON.
However, the data error (A.84) can be read during operation if the host controller is receiving
the S-phase signal (serial data).

6.2 Troubleshooting

J A.85
Display and Outputs
Alarm Output

Digital Operator
g
p
Display d
Di l and
Alarm Name
A.85
Absolute encoder
overspeed (only
when absolute
encoder is used)

ALO1
OFF

Alarm Code Output
ALO2
ALO3
OFF
OFF

Alarm Output
p
OFF

OFF: Output transistor is OFF
ON: Output transistor is ON
Status When Alarm Occurred
At power ON

When SEN signal turned
ON, Cn-01 Bit 1 = 0

Cn-01 Bit 1 = 0

Cn-01 Bit 1 = 1

B
A

Cause
A

A

Absolute encoder turned ON at a speed
exceeding 400 min−1.

Remedy
• For speed control (at Cn-01 Bit 1 = 1) and
for position control, turn SERVOPACK
power OFF then back ON.
• Replace servomotor if error occurs frequently.

B

Circuit board (1PWB) defective

Replace SERVOPACK.

517

6

INSPECTION, MAINTENANCE, AND TROUBLESHOOTING
6.2.1 Troubleshooting Problems with Alarm Display cont.

J A.A1
Display and Outputs
Alarm Output

Digital Operator
g
p
Display d
Di l and
Alarm Name
A.A1
Heat sink
overheated

ALO1
ON

Alarm Code Output
ALO2
ON
ON

Alarm Output
p
ALO3
OFF

OFF: Output transistor is OFF
ON: Output transistor is ON
Status When Alarm Occurred
During servomotor
operation

A, B, C, D

Occurred when the control power turned ON.

Cause

E

Remedy

A

The air flow around the heat sink is bad.

C

Fan stopped.

Follow installing method and provide
sufficient surrounding space as specified.
Replace SERVOPACK.

D

SERVOPACK is running under overload.

Reduce load.

E

518

Alter conditions so that the ambient
temperature goes below 55°C

B

6

The ambient temperature of the
SERVOPACK exceeds 55°C

SERVOPACK defective.

Replace SERVOPACK.

6.2 Troubleshooting

J A.b1
Display and Outputs
Alarm Output

Digital Operator
g
p
Display d
Di l and
Alarm Name
A.b1
Reference input
read error

ALO1
OFF

Alarm Code Output
ALO2
ALO3
OFF
OFF

Alarm Output
p
OFF

OFF: Output transistor is OFF
ON: Output transistor is ON

Status When Alarm Occurred
During servomotor
operation

A, B
Cause

A
B
C

At power ON

C
Remedy

Part malfunctioned in reference read-in unit Reset alarm and restart operation.
(A/D converter, etc.).
Part defective in reference read-in unit
Replace SERVOPACK.
(A/D converter, etc.).
Circuit board (1PWB) defective
Replace SERVOPACK.

6

519

INSPECTION, MAINTENANCE, AND TROUBLESHOOTING
6.2.1 Troubleshooting Problems with Alarm Display cont.

J A.C1
Display and Outputs
Alarm Output

Digital Operator
g
p
Display d
Di l and
Alarm Name
A.C1
Servo overrun

ALO1
ON

Alarm Code Output
ALO2
OFF
ON

Alarm Output
p
ALO3
OFF

OFF: Output transistor is OFF
ON: Output transistor is ON
Status When Alarm Occurred
At power ON

Parameter Cn-01
Bit 0 = 0

When servo ON (/S-ON)
signal turned ON

E

A, B, C, D, E

On speed reference input

A, B, C, D, E

Occurred 1 to 3 seconds after power ON

Parameter Cn-01
Bit 0 = 1

A, B, C, D, E
Cause

6

A

Remedy

Servomotor wiring incorrect or
disconnected
Encoder wiring incorrect or disconnected

Check wiring and connectors at
servomotor.
Check wiring and connectors at encoder.

D

Incremental encoder power not supplied
from SERVOPACK.
Encoder defective

Use the SERVOPACK power supply for
the encoder.
Replace servomotor.

E

Circuit board (1PWB) defective

Replace SERVOPACK.

B
C

520

6.2 Troubleshooting

J A.C2
Display and Outputs
Alarm Output

Digital Operator
g
p
Display d
Di l and
Alarm Name
A.C2
Encoder phase
detection error

Alarm Code Output
ALO2
OFF
ON

ALO1
ON

Alarm Output
p
ALO3
OFF

OFF: Output transistor is OFF
ON: Output transistor is ON
Status When Alarm Occurred
At power ON

D

Occurred 1 to 3 seconds
after power ON

A, B, C, D
Cause

A

Noise in encoder wiring.

B
C

Encoder wiring incorrect or poor
connection
Encoder defective

D

Circuit board (1PWB) defective

During servomotor
operation

A, B, C, D

Remedy
Separate encoder wiring from main wiring
circuits.
Check wiring and connectors at encoder.
Replace servomotor.

6

Replace SERVOPACK.

521

INSPECTION, MAINTENANCE, AND TROUBLESHOOTING
6.2.1 Troubleshooting Problems with Alarm Display cont.

J A.C3
Display and Outputs
Alarm Output

Digital Operator
g
p
Display d
Di l and
Alarm Name
A.C3
Encoder A-,
B-phase
disconnection

Alarm Code Output
ALO2
OFF
ON

ALO1
ON

Alarm Output
p
ALO3
OFF

OFF: Output transistor is OFF
ON: Output transistor is ON
Status When Alarm Occurred
At power ON

Parameter Cn-01
Bit 0 = 0

When servo ON (/S-ON)
signal turned ON

D

A, B, C, D

During servomotor
operation

A, B, C, D

Occurred 1 to 3 seconds
after power ON

Parameter Cn-01
Bit 0 = 1

6

A, B, C, D
Cause

A

Remedy

B
C

Encoder defective

Separate encoder wiring from main wiring
circuits.
Replace servomotor.

D

522

Encoder wiring incorrect or poor
connection
Noise in encoder wiring.

Check wiring and connectors at encoder.

Circuit board (1PWB) defective

Replace SERVOPACK.

6.2 Troubleshooting

J A.C4
Display and Outputs
Alarm Output

Digital Operator
g
p
Display d
Di l and
Alarm Name
A.C4
Encoder C-phase
disconnection

Alarm Code Output
ALO2
OFF
ON

ALO1
ON

Alarm Output
p
ALO3
OFF

OFF: Output transistor is OFF
ON: Output transistor is ON
Status When Alarm Occurred
At power ON

Parameter Cn-01
Bit 0 = 0

When servo ON (/S-ON)
signal turned ON

C

A, B, C, D

During servomotor
operation

A, B, C, D

Occurred 1 to 3 seconds
after power ON

Parameter Cn-01
Bit 0 = 1

A, B, C, D
Cause

A

6

Remedy

B

Encoder wiring incorrect or poor
connection
Noise in encoder wiring.

Check wiring and connectors at encoder.

C

Encoder defective

Separate encoder wiring from main wiring
circuits.
Replace servomotor.

D

Circuit board (1PWB) defective

Replace SERVOPACK.

523

INSPECTION, MAINTENANCE, AND TROUBLESHOOTING
6.2.1 Troubleshooting Problems with Alarm Display cont.

J A.F1
Display and Outputs
Alarm Output

Digital Operator
g
p
Display d
Di l and
Alarm Name
A.F1
Power line open
phase

ALO1
OFF

Alarm Code Output
ALO2
ALO3
ON
OFF

Alarm Output
p
OFF

OFF: Output transistor is OFF
ON: Output transistor is ON
Status When Alarm Occurred
At main circuit power
supply ON.

A, B
Cause

A

One phase (R,S,T) of the main circuit
power supply is disconnected.

Occurred when the control
power turned ON.

C

Remedy
• Check power supply.
• Check wiring of the main circuit power supply.
• Check MCCB, noise filter, magnetic contactor.

B
C

6

524

There is one phase where the line voltage
is low.
SERVOPACK defective.

Check power supply.
Replace SERVOPACK.

6.2 Troubleshooting

J A.F3
Display and Outputs
Alarm Output

Digital Operator
g
p
Display d
Di l and
Alarm Name
A.F3
Power loss error

ALO1
OFF

Alarm Code Output
ALO2
ALO3
ON
OFF

Alarm Output
p
OFF

OFF: Output transistor is OFF
ON: Output transistor is ON
Status When Alarm Occurred
At main circuit power
supply ON.

A, B

During servomotor
operation

Cause
A
B

C

A, C
Remedy

Although power loss alarm is not
Set the parameter Cn-01 bit 5 to 0
necessary, its parameter is set valid.
Time between turning power OFF and back After turning power OFF, wait for at least
ON was shorter than 0.5 second.
0.5 second, before turning the power back
ON.
If any of the following power supply
conditions are met during motor operation:

Check the power supply.

Note Because of detector lag or detector
margin, there may be no alarm even if
the above values are exceeded.

drops, but not to zero.

Terms
• Complete power failure : half cycle of sup- • Complete power failure=Power failure
ply frequency
where voltage drops to zero.
• Voltage drop: full cycle of supply frequency • Voltage drop=Power failure where voltage

525

6

INSPECTION, MAINTENANCE, AND TROUBLESHOOTING
6.2.1 Troubleshooting Problems with Alarm Display cont.

J CPF00
Display and Outputs
Digital Operator
g
p
Display d
Di l and
Alarm Name
CPF00
Digital operator
transmission
error 1

Note

Alarm Output
ALO1
Not specified

Alarm Code Output
ALO2

Alarm Output
p
ALO3

This alarm is not stored in alarm trace-back function memory.
Status When Alarm Occurred
At power ON. Digital operator connected before
SERVOPACK power
turned ON.

A, B, C, D

Digital operator connected to SERVOPACK
while power turned ON.

Cause
A

A, B, C, D

Remedy

Malfunction due to external noise

C

Digital operator defective

Separate digital operator and cable from
noise source.
Replace digital operator.

D

526

• Check connector connections.

B

6

Cable defective or poor contact between
digital operator and SERVOPACK.

SERVOPACK defective

Replace SERVOPACK.

• Replace cable.

6.2 Troubleshooting

J CPF01
Display and Outputs
Digital Operator
g
p
Display d
Di l and
Alarm Name
CPF01
Digital operator
transmission
error 2

Note

Alarm Output
ALO1
Not specified

Alarm Code Output
ALO2

Alarm Output
p
ALO3

This alarm is not stored in alarm trace-back function memory.
Status When Alarm Occurred
During operation

A, B, C, D

Cause

Remedy

A

Cable defective or poor contact between
digital operator and SERVOPACK.

• Check connector connections.

B

Malfunction due to external noise

C

Digital operator defective

Separate digital operator and cable from
noise source.
Replace digital operator.

D

SERVOPACK defective

Replace SERVOPACK.

• Replace cable.

6

527

INSPECTION, MAINTENANCE, AND TROUBLESHOOTING
6.2.1 Troubleshooting Problems with Alarm Display cont.

J A.99
Display and Outputs
Alarm Output

Digital Operator
g
p
Display d
Di l and
Alarm Name
A.99

ALO1
OFF

Alarm Code Output
ALO2
ALO3
OFF
OFF

Alarm Output
p
ON

OFF: Output transistor is OFF
ON: Output transistor is ON
Status When Alarm Occurred
Indicates normal operation. Not an alarm.

6

528

6.2 Troubleshooting

6.2.2 Troubleshooting Problems With No Alarm Display
Refer to the tables below to identify the cause of a problem which causes no alarm display
and take the remedy described.
Turn OFF the servo system power supply before commencing the shaded procedures.
Contact your Yaskawa representative if the problem cannot be solved by the described procedures.

Troubleshooting Table No Alarm Display

Symptom
Servomotor does not start

Cause
Power not connected
Loose connection
Connector (1CN) external
wiring incorrect
Servomotor or encoder
wiring disconnected.
Overloaded

Inspection
Check voltage between
power supply terminals.
Check terminals of
connectors (1CN, 2CN).
Check connector (1CN)
external wiring

Correct the power circuit.

Run under no load.

Reduce load or replace with
larger capacity servomotor.
Correctly input
speed/position references.
Turn /S-ON input ON.
Refer to Section 3.2.1 and
set parameters to match
application.

Speed/position references
not input
/S-ON is turned OFF
/P-CON input function
setting incorrect

Check reference input pins.

Reference pulse mode
selection incorrect.
Encoder type differs from
parameter setting.
P-OT and N-OT inputs are
turned OFF.
CLR input is turned ON

Refer to Section 3.2.2.

SEN input is turned OFF.
Servomotor moves
instantaneously, then stops

Suddenly stops during
operation and will not restart

Servomotor speed unstable

Remedy

Cn-01 Bit 0 is 0.
Check parameter Cn-2B.

Incremental or absolute
encoder?
(If Cn-01 Bits 2, 3 are 0)
Check status of error
counter clear input.
Absolute encoder used with
Cn-01 Bit 1 set to 0.

Tighten any loose parts.
Refer to connection diagram
and correct wiring.
Reconnect wiring

Select correct parameters
Cn-02 Bits 3, 4, 5.
Set parameters Cn-01 Bit E
to the encoder type used.
Turn P-OT and N-OT input
signals ON.
Turn CLR input OFF.
Turn SEN input ON.

Number of encoder pulses
differs from parameter
setting.

Set the parameter (Cn-11) to
match the number of
encoder pulses.

Servomotor or encoder
wiring incorrect.
Alarm reset signal
(/ALM-RST) is turned ON
because an alarm occurred.

Refer to Section 3.8.8 and
correct wiring.
Remove cause of alarm.
Turn alarm reset signal
(/ALM-RST) from ON to
OFF.
Tighten any loose terminals
or connectors.

Wiring connection to motor
defective

Check connection of power
lead (U, V, and W phase)
and encoder connectors.

529

6

INSPECTION, MAINTENANCE, AND TROUBLESHOOTING
6.2.2 Troubleshooting Problems With No Alarm Display cont.

Symptom
Servomotor vibrates at
app o
a e y 00 o
approximately 200 to
400 Hz.

Cause

Inspection

Remedy

Speed loop gain value too
high.
Speed/position reference
input lead too long.

Reduce speed loop gain
(Cn-04) preset value.
Minimize length of
speed/position reference
input lead, with impedance
not exceeding several
hundred ohms

Speed/position reference
input lead is bundled with
power cables.

Separate reference input
lead at least 30 cm from
power cables.

High rotation speed
overshoot on starting and
stopping.

Speed loop gain value too
high.

Reduce speed loop gain
(Cn-04) preset value.

Servomotor overheated

Ambient temperature too
high

Measure servomotor
ambient temperature.

Reduce ambient
temperature to 40°C max.

Servomotor surface dirty

Visual check

Overloaded

Run under no load.

Mechanical mounting
co ec
incorrect

Servomotor mounting
screws loose?
Coupling not centered?
Coupling unbalanced?
Check noise and vibration
near bearing.
Foreign object intrusion,
damage or deformation of
sliding parts of machine.

Clean dust and oil from
motor surface.
Reduce load or replace with
larger capacity servomotor.
Tighten mounting screws.

Abnormal noise

Bearing defective
Machine causing vibrations

Speed reference 0 V but
servomotor rotates.

6

530

Speed reference voltage
offset applied

---

Center coupling.
Balance coupling.
Consult your Yaskawa
representative if defective.
Consult with machine
manufacturer.
Refer to Sections 4.2.4 and
4.2.5 and adjust reference
offset.

6.2 Troubleshooting

6.2.3 Internal Connection Diagram and Instrument Connection
Examples
The SGDB SERVOPACK internal connection diagram and instrument connection examples are given below.
Refer to these diagrams during inspection and maintenance.
J Internal Connection Diagram
• 0.3kW to 1.5kW
Three-phase
+10
200 to 230VAC %
−15
(50/60 Hz)
Servomotor

SGDB
-CCjjAA

Line filter

Voltage
detection
isolator
SGDB
-CBjjAA

Relay
driver

DC/DC
conversion
Voltage
adjustment

Power
OFF

Power
ON

Surge
suppressor
Open when
Servo alarm
occurs.

Optional
printed board
(not mounted)

Base driver, Overcurrent
Voltage
protection isolator
detection
isolator
Current
detection

PMW
generator
Digital
current
amplifier

DiviPG
der
signal
Reference
procespulse prosing
cessing

Current
reference
operation
Analog voltage
conversion

Analog monitor
output for observation

Speed
Axis address
control
Selection
Serial port

Position
control

(PG output)
(Reference pulse
input)
(Speed/torque
reference input)
(Sequence
input/output)

Digital operator,
personal computer

531

6

INSPECTION, MAINTENANCE, AND TROUBLESHOOTING
6.2.3 Internal Connection Diagram and Instrument Connection Examples cont.

• 2.0kW to 3.0kW
Three-phase +10
200 to 230VAC−15 %
(50/60 Hz)

FAN2 is not
used for 2.0 kW
Servomotor

SGDB
-CCjjAA

Line filter

Voltage
detection
isolator

Relay
driver

Base driver, Overcurrent
Voltage protection isolator
detection
isolator

SGDB
-CBjjAA

DC/DC
conversion
Voltage
adjustment
Power
OFF

Power
ON

Surge
suppressor
Open when
Servo alarm
occurs.

6

532

Optional
printed board
(not mounted)

Current
detection

PMW
generator
Digital
current
amplifier

DiviPG
der
signal
proces- Reference
sing
pulse processing

Current
reference
operation
Analog voltage
conversion

Analog monitor
output for observation

Axis address
Selection
Serial port
Digital operator,
personal computer

Gate driver
isolator

Position
control
Speed
control

(PG output)
(Reference pulse
input)
(Speed/torque
reference input)
(Sequence
input/output)

6.2 Troubleshooting

• 4.4kW to 5.0kW
Three-phase +10
200 to 230VAC−15 %
(50/60 Hz)

Servomotor
Line filter

Voltage
detection
isolator

Relay
driver

DC/DC
conversion
Voltage
adjustment
Power
OFF

Power
ON

Surge
suppressor
Open when
Servo alarm
occurs.

Optional
printed board
(not mounted)

Base driver, Overcurrent
Voltage
protection isolator
detection
isolator

Current
detection

PMW
generator
Digital
current
amplifier

DiviPG
der
signal
proces- Reference
sing
pulse processing

Current
reference
operation
Analog voltage
conversion

Analog monitor
output for observation

Gate driver
isolator

Speed
Axis address
control
Selection
Serial port

Position
control

(PG output)
(Reference pulse
input)
(Speed/torque
reference input)
(Sequence
input/output)

Digital operator,
personal computer

6

533

INSPECTION, MAINTENANCE, AND TROUBLESHOOTING
6.2.3 Internal Connection Diagram and Instrument Connection Examples cont.

• 6.0kW to 15.0 kW
Regenerative resistor (option)

Three-phase
+10
200 to 230VAC −15 %
(50/60 Hz)

Servomotor
Line filter

Voltage
detection
isolator

Relay
driver

DC/DC
conversion
Voltage
adjustment
Power
OFF

Power
ON

Surge
suppressor
Open when
Servo alarm
occurs.

Optional
printed board
(not mounted)

534

Base driver, Overcurrent
protection isolator
Gate driver
isolator
Current
detection

PMW
generator
Digital
current
amplifier

DiviPG
der
signal
proces- Reference
sing
pulse processing

Current
reference
operation
Analog voltage
conversion

Analog monitor
output for observation

6

Voltage
detection
isolator

Axis address
selection
Serial port
Digital operator,
personal computer

Position
control
Speed
control

(PG output)
(Reference pulse
input)
(Speed/torque
reference input)
(Sequence
input/output)

6.2 Troubleshooting

J Instrument connection examples
+10
Three-Phase 200 to 230VAC
−15 %
(50/60 Hz)

Noise filter

Noise filter eliminates external noise

Pwer

Servo alarm display

ON

For power supply switching
Attach a surge suppressor for
magnetic contactor or relay

OFF

SERVOPACK

Motor

Must be
grounded
Class 3
grounding
(100Ω or less)
Encoder
6.0kW or more
Regenerative
resistor circuit

Correctly terminate end
of the shielding wire

Power supply for open
collector reference pulse
Reference pulse
(MAX 450/kpps)
Error counter clear signal
(Active : High)

/PULS
/SIGN

6

/CLR

Power supply for speed,
torque reference
Maximum output current :
30 mA DC
Speed reference input
Torque reference input
rated torque/¦1Vµ¦10V
Torque monitor
2V / rated torque
Speed monitor
2V/1000 min−1
or 1V/1000min−1

(continued to next page)

535

INSPECTION, MAINTENANCE, AND TROUBLESHOOTING
6.2.3 Internal Connection Diagram and Instrument Connection Examples cont.

(from previous page)

Servo ON for 1Ry ON
P control for 2Ry ON
Reverse drive disabled for N-LS open
Forward drive disabled for P-LS open
Alarm reset for 3Ry ON
Reverse current limit ON for 6Ry ON
Forward current limit ON for 7Ry ON

/S-ON
/P-CON

/ALMRST
/N-CL
/P-CL

5Ry OFF for Servo alarm
/S-RDY+
/S-RDY−
/V-CMP+
/V-CMP−
/TGON+
/TGON−

4Ry ON for Servo ready
8Ry ON for speed coincidence
9Ry ON for TG ON
Phase A
Phase B

/PBO

Phase C

/PCO

Phase S

PG output line driver

/PAO

/Servo ON
/P control
Reverse drive disabled
Forward drive disabled
/Alarm reset
/Reverse current limit ON
/Forward current limit ON
Servo alarm
Servo ready Photocoupler output
D Maximum operational voltage = 30VDC
Speed
coincidence D Maximum operational current = 50 mA
/TGON

ON when the motor speed
level (set in parameter)is
exceeded

/PSO

Line driver
T-I made
SN75ALS194NS

SEN signal
input

Alarm code output
D Maximum operational voltage = 30VDC
D Maximum operational current = 20 mA

6
(Note)1 Signal input line represents twisted pair wires
2 24V power supply must be prepared by customers

536

For absolute encoder

6.2 Troubleshooting

J Connection method between SERVOPACK and Encoder
• In case of incremental encoder
Incremental encoder
Phase A

Blue
White Blue

/PA

Yellow
White Yellow

Phase B

/PBO

/PB

Green
White Green

/PAO

Phase C

/PC
Output line driver
T-I made
SN75ALS194 or equivalent

/PCO

Applicable
line driver
T-I made
SN75175 or
equivalent

Red
Black

(Customer’s side)
Shielded wire

Cable B9400064

• In case of absolute encoder
Absolute encoder
Blue
White Blue
Yellow
White Yellow
Green
White Green
Purple
White Purple
Red

Phase A
/PA

/PAO
Phase B
/PBO

/PB
Phase C

6

/PCO

/PC
Phase S*2
/PS Output line driver
T-I made SN75ALS194
or equivalent

Black

White Gray
Orange
White Orange

/PSO
Applicable line
driver
T-I made
SN75175 or
equivalent

Battery
(Customer’s side)

Shielded wire

Cable DP8409123

*1 By connecting DIR (2CN-7) to PG0V, the motor will be in reverse connection (motor
reversed by forward reference).
*2 S phase signal is valid only when 12-bit absolute encoder is used.
Note

P represents twisted pair wires.

537

Appendix

A

Servo Adjustment A

This appendix presents the basic rules for Σ-Series AC SERVOPACK gain
adjustment, describes various adjustment techniques, and gives some preset
values as guidelines.

A.1 Σ-Series AC SERVOPACK Gain Adjustment . . 476
A.1.1 Σ-Series AC SERVOPACKs and Gain Adjustment Methods .
A.1.2 Basic Rules for Gain Adjustment . . . . . . . . . . . . . . . . . . . . . .

476
477

A.2 Adjusting a Speed-control SERVOPACK . . . . . . 478
A.2.1 Adjusting Using Auto-tuning . . . . . . . . . . . . . . . . . . . . . . . . .
A.2.2 Manual Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

478
479

A.3 Adjusting a Position-control SERVOPACK . . . . 482
A.3.1 Adjusting Using Auto-tuning . . . . . . . . . . . . . . . . . . . . . . . . .
A.3.2 Manual Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

482
483

A.4 Gain Setting References . . . . . . . . . . . . . . . . . . . . 487
A.4.1 Guidelines for Gain Settings According to Load Inertia Ratio

487

539

SERVO ADJUSTMENT
A.1.1 Σ-Series AC SERVOPACKs and Gain Adjustment Methods

A.1

Σ-Series AC SERVOPACK Gain Adjustment
This section gives some basic information required to adjust the servo system.

A.1.1 Σ-Series AC SERVOPACKs and Gain Adjustment Methods

A

Five types of Σ-Series AC SERVOPACK are available: SGD, SGDA, DR1, DR2, and the
current SGDB.
The adjustment method is basically identical for each SERVOPACK type, except that
auto-tuning is not available for some types.
The SGDB, SGDA, SGD, and DR2 SERVOPACKs allow both manual adjustment by the
conventional method of observing the machine response and automatic adjustment using the internal auto-tuning function. The DR1 SERVOPACK does not offer auto-tuning.
The main parameters changed by the customer to adjust the servo system include the
following:
• Cn-04 (Speed Loop Gain)
• Cn-05 (Speed Loop Integration Time Constant)
• Cn-17 (Torque Reference Filter Time Constant)
• Cn-1A (Position Loop Gain)
In a speed-control SERVOPACK (where speed references are applied as analog voltages), the position loop is controlled by the host controller, so the position loop gain is
normally adjusted at the host controller.
If adjustment is not possible at the host controller, the same adjustment can be achieved
using Cn-03 (Speed Reference Gain), but the servomotor may not reach maximum
speed for some preset values of this parameter.
A simple block diagram of the servo system is shown below.
Servo System Block Diagram
Speed Speed
Pattern

Pulse
Train

Time

Position-control SERVOPACK
Analog Voltage
Error
Counter

Speed Kv
Control
Section Ti

(D/A
Converter)

Position Control Loop
Using Speed-control
SERVOPACK

Host Controller (supplied by customer)

Using Position-control
SERVOPACK
Host Controller
(supplied by
customer)

Speed-control SERVOPACK
Current
Control
Section

Speed Control Loop
Encoder
SERVOPACK

SERVOPACK

Note: A position-control SERVOPACK has no D/A converter for speed reference output. This conversion is handled by internal calculations.

540

Motor
Power
Converter

Kp: Position Loop Gain
Kv: Speed Loop Gain
Ti: Integration Time Constant

A.1 Σ-Series AC SERVOPACK Gain Adjustment

A.1.2 Basic Rules for Gain Adjustment
1) The servo system comprises three feedback systems: position loop, speed loop, and
current loop. The response must increase from outer loop to inner loop (see Servo System Block Diagram, above). The response deteriorates and oscillates if this principle is
not obeyed.
The customer cannot adjust the current loop. Sufficient response is assured for the current loop.
The customer can adjust the position loop gain and speed loop gain, as well as the speed
loop integration time constant and torque reference filter.
2) The position loop and speed loop must be adjusted to provide a balanced response.
In particular, if the position loop gain only is increased (adjustment with Cn-03 at the SERVOPACK if position loop gain adjustment is not possible at the host controller), the speed
references oscillate and the result is increased, oscillating position control times.
If the position loop gain (or Cn-03) is increased, the speed loop gain (Cn-04) must be
similarly increased.
If the mechanical system starts to oscillate after the position loop gain and speed loop
gain are increased, do not increase the gains further.
3) The position loop gain should not normally be increased above the characteristic frequency of the mechanical system.
For example, the harmonic gears used in an articulated robot form a structure with extremely poor rigidity and a characteristic frequency of approximately 10 to 20 Hz. This
type of machine allows a position loop gain of only 10 to 20 (1/sec).
Conversely, the characteristic frequency of a precision machine tool such as a chip
mounter or IC bonder exceeds 70 Hz, allowing a position loop gain exceeding 70 (1/sec)
for some machines.
Therefore, although the response of the servo system (controller, servo driver, motor, detectors, etc.) is an important factor where good response is required, it is also important to
improve the rigidity of the mechanical system.
4) In cases where the position loop response is greater than or equal to the speed loop response and linear acceleration or deceleration is attempted, the poor speed loop response and follow-up cause an accumulation of position loop errors and result in increased output of speed references from the position loop.
The motor moves faster and overshoots as a result of increased speed references, and
the position loop tends to decrease the speed references. However, the poor motor follow-up due to the poor speed loop response results in oscillating speed references, as
shown in the diagram below.
If this problem occurs, reduce the position loop gain or increase the speed loop gain to
eliminate the speed reference oscillations.
Speed Reference Output with Unbalanced Position Loop Gain and Speed Loop
Gain
Speed
Reference
Speed references actually output from controller
Speed references calculated in controller
Time

541

A

SERVO ADJUSTMENT
A.2.1 Adjusting Using Auto-tuning

A.2

Adjusting a Speed-control SERVOPACK
This section gives examples of adjusting the gains of a speed-control SERVOPACK manually
and using auto-tuning.

A

A.2.1 Adjusting Using Auto-tuning
The DR1 SERVOPACK does not offer auto-tuning.
J Important Points About Auto-tuning
• Speed During Auto-tuning
Auto-tuning may not function correctly if the speed is too low. Set the speed to approximately 500 min−1.
Set the speed with the parameter Cn-10 (Jog speed).
• Selecting Machine Rigidity
If the machine rigidity is unknown, select the rigidity according to the following standards.
Machine Rigidity

Drive Method
Ball screw, direct

SGDB, SGDA, DR2
3 (C-003) to 7 (C-007)

SGD
High/medium response

Ball screw, with reduction gears

2 (C-002) to 3 (C-003)

Medium response

Timing belt

1 (C-001) to 3 (C-003)

Low/medium response

Chain

1 (C-001) to 2 (C-002)

Low response

Wave reduction gears*

1 (C-001) to 2 (C-002)

Low response

* Product name: Harmonic Drive

Select the machine rigidity level for SGDB, SGDA and DR2 according to the table.
Level

Rigidity

7 (C-007)

High

6 (C-006)



5 (C-005)



4 (C-004)



3 (C-003)

Medium

2 (C-002)



1 (C-001)

Low

Auto-tuning may not end if high response is selected for a low-rigidity machine or low
response is selected for a high-rigidity machine.
If this occurs, halt the auto-tuning and change the machine rigidity selection.

542

A.2 Adjusting a Speed-control SERVOPACK

J If Auto-tuning is Unsuccessful
Auto-tuning may be unsuccessful (the end of auto-tuning not displayed) for machines
with large play or extremely low rigidity.
Similarly, auto-tuning may be unsuccessful for a machine with high load inertia (exceeding 15 to 30 times the motor moment of inertia).
In these cases, use conventional manual adjustment.
Even if auto-tuning is successful for a machine with large fluctuations in load inertia or
load torque, vibrations or noise may still occur in some positions.
J Response During Operation is Unsatisfactory after Auto-tuning
Auto-tuning sets the gain and integration time constant with some safety margin (to avoid
oscillations). This can result in long positioning times.
In particular, the target position may not be reached if low response is selected, because
the machine does not move in response to the final minute references. An excessively
high setting of the integration time constant (Cn-05) during auto-tuning is one cause of
this problem.
If response is slow after auto-tuning, the speed loop gain cannot be manually increased
very much before oscillation starts.
In this case, manually reduce the integration time constant while observing the machine
behavior to ensure oscillation does not occur.
Auto-tuning does not set the torque reference filter (Cn-17) or speed reference gain
(Cn-03).

A.2.2 Manual Adjustment
J Parameters
The role of each parameter is briefly described below.
• Speed Loop Gain (Cn-04)
This parameter sets the speed loop response.
The response is improved by setting this parameter to the maximum value in the range
which does not cause vibrations in the mechanical system.
The following formula relates the speed loop gain to the load inertia.
Speed Loop Gain Kv [Hz] =

2

GD L 2
GD M

+1
2

× (Cn-04 Preset value)

GDL2: Motor Axis Converted Load Inertia
GDM2: Motor Moment of Inertia

• Speed Loop Integration Time Constant (Cn-05)
The speed loop has an integration element to allow response to micro-inputs.
This integration element can produce a delay in the servo system, and the positioning
setting time increases and response becomes slower as the time constant increases.

543

A

SERVO ADJUSTMENT
A.2.2 Manual Adjustment cont.

However, the integration time constant must be increased to prevent machine vibration
if the load inertia is large or the mechanical system includes a element that is prone to
vibration.
The following formula calculates a guideline value.
Ti ≥ 2.3 ×

1
2π × Kv

Ti: Integration Time Constant (sec)

A

Kv: Speed Loop Gain (Hz) (calculated above)

• Torque Reference Filter Time Constant (Cn-17)
When a ball screw is used, torsional resonance may occur which increases the pitch of
the vibration noise.
This vibration can sometimes be overcome by increasing the torque reference filter
time constant.
However, this filter will produce a delay in the servo system, just like the integration time
constant, and its value should not be increased more than necessary.
• Speed Reference Gain (Cn-03)
Changing the speed reference gain (Cn-03) changes the position loop gain an equivalent amount. That is, reducing the speed reference gain is equivalent to reducing the
position loop gain and increasing it is equivalent to increasing the position loop gain.
Use this parameter (Cn-03) in the following circumstances:
• No position loop gain adjustment at host controller (including cases where fine adjustment not possible by changing number of D/A converter bits)
• Clamping the speed reference output range to specific speeds
Normally leave at the factory setting.
NOTE

For a speed-control SGD or SGDA SERVOPACK, or SGDB or DR2 SERVOPACK used for
speed control, the position loop gain (Cn-1A) is valid in zero-clamp mode only.
The position loop gain (Cn-1A) parameter is always invalid for a DR1 SERVOPACK.
For normal control, change the position loop gain at the host controller or adjust the speed
reference gain (Cn-03) in the SERVOPACK.
Changing Cn-1A does not change the position loop gain.
J Adjustment Procedure
1. Set the position loop gain at the host controller to a low value and increase the speed
loop gain (Cn-04) within the range that no abnormal noise or vibration occurs.
If adjustment of the position loop gain is not possible at the host controller, reduce the
speed reference gain (Cn-03).
2. Slightly reduce the speed loop gain from the value at step 1, and increase the position
loop gain at the host controller in the range that no overshooting or vibration occurs.
If adjustment of the position loop gain is not possible at the host controller, increase
the speed reference gain (Cn-03).

544

A.2 Adjusting a Speed-control SERVOPACK

3. Determine the speed loop integration time constant (Cn-05), by observing the positioning setting time and vibrations in the mechanical system.
The positioning setting time may become excessive if the speed loop integration time
constant (Cn-05) is too large.
4. It is not necessary to change the torque reference filter time constant (Cn-17) unless
torsional resonance occurs in the machine shafts.
Torsional resonance may be indicated by a high vibration noise. Adjust the torque reference filter time constant (Cn-17) to reduce the vibration noise.
5. Finally, fine adjustment of the position gain, speed gain, and integration time constant
is required to determine the optimum point for step response.

545

A

SERVO ADJUSTMENT
A.3.1 Adjusting Using Auto-tuning

A.3

Adjusting a Position-control SERVOPACK
This section gives examples of adjusting the gains of a position-control SERVOPACK manually and using auto-tuning.

A

A.3.1 Adjusting Using Auto-tuning
The DR1 SERVOPACK does not offer auto-tuning.
J Important Points About Auto-tuning
• Speed During Auto-tuning
Auto-tuning may not function correctly if the speed is too low. Set the speed to approximately 500 min−1.
Set the speed with the parameter Cn-10 (Jog speed).
• Selecting Machine Rigidity
If the machine rigidity is unknown, select the rigidity according to the following standards.
Machine Rigidity

Drive Method
Ball screw, direct

SGDB, SGDA, DR2
3 (C-003) to 7 (C-007)

SGD
High/medium response

Ball screw, with reduction gears

2 (C-002) to 3 (C-003)

Medium response

Timing belt

1 (C-001) to 3 (C-003)

Low/medium response

Chain

1 (C-001) to 2 (C-002)

Low response

Wave reduction gears*

1 (C-001) to 2 (C-002)

Low response

* Product name: Harmonic Drive

Select the machine rigidity level for SGDB, SGDA and DR2 according to the table.
Level

Rigidity

7 (C-007)

High

6 (C-006)



5 (C-005)



4 (C-004)



3 (C-003)

Medium

2 (C-002)



1 (C-001)

Low

Auto-tuning may not end if high response is selected for a low-rigidity machine or low
response is selected for a high-rigidity machine.
If this occurs, halt the auto-tuning and change the machine rigidity selection.

546

A.3 Adjusting a Position-control SERVOPACK

J If Auto-tuning is Unsuccessful
Auto-tuning may be unsuccessful (the end of auto-tuning not displayed) for machines
with large play or extremely low rigidity.
Similarly, auto-tuning may be unsuccessful for a machine with high load inertia (exceeding 15 to 30 times the motor moment of inertia).
In these cases, use conventional manual adjustment.
Even if auto-tuning is successful for a machine with large fluctuations in load inertia or
load torque, vibrations or noise may still occur in some positions.
J Response During Operation is Unsatisfactory after Auto-tuning
Auto-tuning sets the gain and integration time constant with some safety margin (to avoid
oscillations). This can result in long positioning times.
In particular, the target position may not be reached if low response is selected, because
the machine does not move in response to the final minute references. An excessively
high setting of the integration time constant (Cn-05) during auto-tuning is one cause of
this problem.
If response is slow after auto-tuning, the speed loop gain cannot be manually increased
very much before vibration starts.
In this case, manually reduce the integration time constant while observing the machine
behavior to ensure oscillation does not occur.
Auto-tuning does not set the torque reference filter (Cn-17).

A.3.2 Manual Adjustment
J Parameters
The role of each parameter is briefly described below.
• Speed Loop Gain (Cn-04)
This parameter sets the speed loop response.
The response is improved by setting this parameter to the maximum value in the range
which does not cause vibrations in the mechanical system.
The following formula relates the speed loop gain to the load inertia.
Speed Loop Gain Kv [Hz] =

2

GD L 2
GD M

+1
2

× (Cn-04 Preset value)

GDL2: Motor Axis Converted Load Inertia
GDM2: Motor Moment of Inertia

• Speed Loop Integration Time Constant (Cn-05)
The speed loop has an integration element to allow response to micro-inputs.
This integration element can produce a delay in the servo system, and the positioning
setting time increases and response becomes slower as the time constant increases.

547

A

SERVO ADJUSTMENT
A.3.2 Manual Adjustment cont.

However, the integration time constant must be increased to prevent machine vibration
if the load inertia is large or the mechanical system includes a vibration elements.
The following formula calculates a guideline value.
Ti ≥ 2.3 ×

1
2π × Kv

Ti: Integration Time Constant (sec)
Kv: Speed Loop Gain (Hz) (calculated above)

A

• Torque Reference Filter Time Constant (Cn-17)
When a ball screw is used, torsional resonance may occur which increases the pitch of
the vibration noise.
These vibrations can sometimes be overcome by increasing the torque reference filter
time constant.
However, this filter can produce a delay in the servo system, as is the integration time
constant, and its value should not be increased more than necessary.
• Position Loop Gain
The position loop gain parameter sets the servo system response.
The higher the position loop gain is set, the better the response and shorter the positioning times.
To enable a high setting of the position loop gain, increase the machine rigidity and raise
the machine characteristic frequency.
Increasing the position loop gain only to improve the response can result in oscillating
response of the overall servo system, that is, the speed references output from the position loop oscillate. Therefore, also increase the speed loop gain while observing the response.
J Adjustment Procedure
1. Set the position loop gain to a low value and increase the speed loop gain (Cn-04)
within the range that no abnormal noise or oscillation occurs.
2. Slightly reduce the speed loop gain from the value at step 1, and increase the position
loop gain in the range that no overshooting or vibration occurs.
3. Determine the speed loop integration time constant (Cn-05), by observing the positioning set time and vibrations in the mechanical system.
The positioning set time may become excessive if the speed loop integration time
constant (Cn-05) is too large.
4. It is not necessary to change the torque reference time constant (Cn-17) unless torsional resonance occurs in the machine shafts.
Torsional resonance may be indicated by a high vibration noise. Adjust the torque reference filter time constant to reduce the vibration noise.
5. Finally, fine adjustment of the position gain, speed gain, and integration time constant
is required to determine the optimum point for step response, etc.

548

A.3 Adjusting a Position-control SERVOPACK

J Functions to Improve Response
The mode switch, feed-forward, and bias functions improve response.
However, they are not certain to improve response and may even worsen it in some
cases. Follow the points outlined below and observe the actual response while making
adjustments.
• Mode Switch
The mode switch improves the transition characteristics when the torque references
become saturated during acceleration or deceleration.
Above the set level, the speed loop control switches from PI (proportional/integral) control to P (proportional) control.
• Feed-forward Function
Use feed-forward to improve the response speed. However, feed-forward may be ineffective in systems where a sufficiently high value of position loop gain is not possible.
Follow the procedure below to adjust the feed-forward amount (Cn-1D).
1. Adjust the speed loop and position loop, as described above.
2. Gradually increase the feed-forward amount (Cn-1D), such that the positioning complete (/COIN) signal is output early.
At this point, ensure that the positioning complete (/COIN) signal breaks up (alternately turns ON/OFF) and that the speed does not overshoot. These problems can
arise if the feed-forward is set too high.
For all types of SERVOPACK except DR1, a primary delay filter can be applied to
feed-forward. This filter can be used to correct breakup (alternatingly turning ON/
OFF) of the positioning complete (/COIN) signal or speed overshoot arising when
feed-forward is activated.
• Bias Function
When the lag pulses in the error counter exceeds the positioning complete width
(Cn-1B), the bias amount (Cn-1C) is added to the error counter output (speed reference). If the lag pulses in the error counter lies within the positioning complete width
(Cn-1B), the bias amount (Cn-1C) is no longer added.
This reduces the number of pulses in the error counter and shortens the positioning
time.
The motor speed becomes unstable if the bias amount is too large.
Observe the response during adjustment as the optimum value depends on the load,
gain, and positioning complete width.
Set Cn-1C to zero (0) when the bias is not used.
Bias Function
Speed
Speed
Reference

Motor Speed with No Bias
Motor Speed with Bias

Time
Positioning Complete
(/COIN) Signal

549

A

SERVO ADJUSTMENT
A.3.2 Manual Adjustment cont.

The adjustment procedures described above are common for all Yaskawa digital AC SERVOPACKs. However, not all functions are available on each SERVOPACK. Consult the technical specifications of your SERVOPACK for details.
The adjustment procedures are also identical for conventional analog servos. However, in
this case, the adjustments are made using potentiometers instead of the parameters.

A

550

A.4 Gain Setting References

A.4

Gain Setting References

This section presents tables of load inertia values for reference when adjusting the gain.

A.4.1 Guidelines for Gain Settings According to Load Inertia Ratio
Adjustment guidelines are given below according to the rigidity of the mechanical system
and load inertia. Use these values as guidelines when adjusting according to the procedures described above.
These values are given as guidelines only. Oscillations and poor response may occur
inside the specified value ranges. Observe the response (waveform) when optimizing
the adjustment.
Higher gains are possible for machines with high rigidity.
J Machines with High Rigidity
Ball Screw, Direct Drive Machines
Example: Chip mounter, IC bonder, precision machine tools
Load/Inertia Ratio
(GDL2/GDM2)
1x
3x
5x
10 x
15 x
20 x
30 x

Position Loop Gain
(Cn-1A) [1/s]
50 to 70

Speed Loop Gain
(Cn-04)

50 to 70
100 to 140
150 to 200
270 to 380
400 to 560
500 to 730
700 to 1100

Speed Loop
Integration Time
Constant
(Cn-05) [ms]
5 to 20
Slightly increase for
inertia ratio of 20 x, or
greater.
greater

For an inertia ratio of 10 x, or greater, slightly reduce the position loop gain and speed
loop gain below the values shown and set the integration time constant to a higher
value before starting the adjustment.
As the inertia ratio increases, set the position loop gain and speed loop gain to the
lower limit of the range of values specified. Conversely, increase the speed loop integration time constant.
J Machines with Medium Rigidity
Machines driven by ball screw through reduction gears, or machines directly driven
by long ball screws.
Example: General machine tools, orthogonal robots, conveyors

551

A

SERVO ADJUSTMENT
A.4.1 Guidelines for Gain Settings According to Load Inertia Ratio cont.

Load/Inertia Ratio
(GDL2/GDM2)

30 to 50

1x
3x
5x
10 x
15 x
20 x
30 x

A

Position Loop Gain
(Cn-1A) [1/s]

Speed Loop Gain
(Cn-04)

30 to 50
60 to 100
90 to 150
160 to 270
240 to 400
310 to 520
450 to 770

Speed Loop
Integration Time
Constant (Cn-05)
[ms]
10 to 40
Slightly increase for
inertia ratio of 20 x, or
greater.
greater

For an inertia ratio of 10 x, or greater, slightly reduce the position loop gain and speed
loop gain below the values shown and set the integration time constant to a higher
value before starting the adjustment.
As the inertia ratio increases, set the position loop gain and speed loop gain to the
lower limit of the range of values specified. Conversely, increase the speed loop integration time constant.
J Machines with Low Rigidity
Machines driven by timing belts, chains or wave reduction gears (product name: Harmonic Drive).
Example: Conveyors, articulated robots
Load/Inertia Ratio
(GDL2/GDM2)
1x
3x
5x
10 x
15 x
20 x
30 x

Position Loop Gain
(Cn-1A) [1/s]
10 to 20

Speed Loop Gain
(Cn-04)

10 to 20
20 to 40
30 to 60
50 to 110
80 to 160
100 to 210
150 to 310

Speed Loop
Integration Time
Constant (Cn-05)
[ms]
50 to 120
Slightly increase for
inertia ratio of 20 x, or
greater.
greater

For an inertia ratio of 10 x, or greater, slightly reduce the position loop gain and speed
loop gain below the values shown and set the integration time constant to a higher
value before starting the adjustment.
As the inertia ratio increases, set the position loop gain and speed loop gain to the
lower limit of the range of values specified. Conversely, increase the speed loop integration time constant.

552

A.4 Gain Setting References

When a speed-control SERVOPACK is used, set the position loop gain at the host controller.
If the position loop gain cannot be set at the host controller, adjust the SERVOPACK
speed reference gain (Cn-03).
The position loop gain (Cn-1A) of a speed-control SERVOPACK is valid in zero-clamp
mode only.
The position loop gain is determined from the following relationship.
V
K P = ÁS
KP [1/s]:

Position loop gain

VS [PPS]: Steady speed reference
ε: (pulse): Steady error
(The number of pulses in the error counter at steady speed.)

553

A

Appendix

B

List of I/O Signals
B
This appendix lists I/O signal terminals (connector 1CN) on SERVOPACKs
which connect to a host controller or external circuit.

I/O signal

Host controller or external
circuit

NOTE 1) Refer to Chapter 3 for details of how to use I/O signals.
2) Note that the functions of I/O signal terminals differ according
to the memory switch (Cn-01, Cn-02) settings.

555

LIST OF I/O SIGNALS

List of Input Output Signals
Number “x.x.x” in box represents a section number corresponding to each signal name. For
example, 3.2.1 represents Section 3.2.1.
1CN Terminal Number

SG

Signal ground

2

SG

Signal ground

3

PL1

Power supply for open collector
reference

3.2.2

*2

4

SEN

Sensor ON

3.8.5

*6

5

V-REF

Speed reference input

3.2.1

*1

6

SG

Signal ground

7

PULS

Reference p
pulse input
p

3.2.2

*2

8

/PULS

9

T-REF

Torque reference input

3.2.7

*1

10

SG

Signal ground

11

SIGN

Reference sign input

3.2.2

*2

12

/SIGN

13

PL2

Power supply for open collector
reference

3.2.2

*2

14

/CLR

Clear signal input
g
p

3.2.2

*2

15

CLR

16

TRQ-M

Torque monitor

3.2.12

*3

17

VTG-M

Speed monitor

3.2.12

*3

18

PL3

Power supply for open collector
reference

3.2.2

*2

19

PCO

C phase output signal

3.2.3

20

/PCO

21

BAT

Back-up battery input
p
y p

3.8.5

*6

22

BAT0

23

+12V

Power supply for analog reference
pp y
g

3.2.1

*1

24

−12V

25

/V-CMP,
/COIN+

Speed coincidence output/positioning completion signal

3.7.4
3.7.3

*4

26

/V-CMP,
/COIN−

Speed coincidence output/positioning 3.7.4
3.7.3
completion signal

*4

27

/TGON+

Rotating detection
g

3.7.5

*4

28

/TGON−

29

/S-RDY+

Servo ready
y

3.7.7

*4

30

556

Signal name

1

B

Abbreviated
symbol

/S-RDY−

31

ALM+

32

ALM−

33

PAO

34

/PAO

35

PBO

36

/PBO

37

ALO1

38

ALO2

39

ALO3

40

3.7.1

A phase output signal

3.2.3

B phase output signal
p
p
g

3.2.3

Alarm code output
p

3.7.1

/S-ON

Servo ON

3.7.2

41

/P-CON

Proportional control
(P control) reference

3.2.1

42

P-OT

Forward drive disabled

3.1.2

43

N-OT

Reverse drive disabled

3.1.2

44

/ALMRST

Alarm reset

3.7.1

45

/P-CL

Forward torque limit

3.1.3

*5

46

/N-CL

Reverse torque limit

3.1.3

*5

47

+24 V IN

24V external power
supply input

3.2.4

48

PSO

Sp
phase input signal
p
g

3.8.5

49

/PSO

50
*1
*2
*3
*4
*5
*6

Alarm output
p

FG

Frame ground

3.2.3

B

*5

*6

Used for analog reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See page 558
Used for pulse reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See page 558
Specifications vary depending on bits 6, 7 of Cn-02 . . . . . . . . refer to page 559
Specifications vary according to setting values of Cn-2D . . . refer to Appendix D (page 569)
Specifications vary according to setting values of Cn-2B . . . refer to page 559
Used only for absolute encoder (used only when bit E of Cn-01 equal to 1)

557

LIST OF I/O SIGNALS

*1 Signals used for analog reference
For speed control
Specifications

Speed control
Cn-02
Bit 8 = 0
Bit 9 = 0

Setting

Speed control with torque limit
by analog voltage reference
Cn-02
Bit 8 = 1
Bit 9 = 0

Speed control with torque
feed-forward
Cn-02
Bit 8 = 0
Bit 9 = 1

1CN
Terminal
number
5

V-REF

Speed reference

V-REF

Speed reference

9

---

Terminal unused

T-REF

Torque limit
input

B

3.2.9

V-REF
T-REF

Speed reference

3.2.8
Torque feedforward reference

For torque control
Specifications

Torque control
Cn-02
Bit 2= 0

Setting

Torque control with speed limit
by analog voltage reference
Cn-02
Bit 2= 1

1CN
Terminal
number
5

---

Terminal unused

V-REF

Speed limit value

9

T-REF

Torque reference

T-REF

Torque reference

3.1.3

*2 Signals used for pulse reference
Specifications

Sign + pulse train input reference

CCW pulse + CW pulse reference

Cn-02
Bit 5 = 0
Bit 4 = 0
Bit 3 = 0

Cn-02
Bit 5 = 0
Bit 4 = 0
Bit 3 = 1

Setting

1CN
Terminal
number
7
8

PULS
/PULS

Reference p
pulse input
p

PULS
/PULS

11

SIGN

Reference sign input
g
p

SIGN

12

/SIGN

558

/SIGN

Forward reference
pulse input (CCW)
l i
3.2.2
Reverse reference
pulse input (CW)
l i

Two phase pulse reference
with 90_ phase difference
Cn-02 bits 5, 4, 3
= 0, 1, 0 (x1 multiplication)
= 0, 1, 1 (x2 multiplication)
= 1, 0, 0 (x4 multiplication)

PULS
/PULS

Ap
phase reference
pulse input
l i

SIGN

3.2.2
Bp
phase reference
pulse input
l i

/SIGN

*3 Analog monitor signals
Control
mode
Setting

1CN
Terminal
number
16

----------

Speed mode

Cn-02
Bit 6 = 0

TRQ-M

Setting

Torque monitor

TRQ-M

Position control
Cn-02
Bit 6 = 1

Speed reference monitor

Cn-02
Bit 7 = 0

Torque control

Reference
pulse speed
monitor

¢

Cn-02
Bit 7 = 1

B

1CN
Terminal
number
17

VTG-M

Speed monitor

VTG-M

¢

Position error
monitor

¢

x means don’t care for voltage values.

Note
*5
Specifications
Setting

Speed control
Position control
Cn-2B = 0, 1

Torque control

Speed control
(contact reference)
Cn-2B = 3, 4, 5, 6

Cn-2B = 2

1CN
Terminal
number
41

/P-CON

Proportional control ref- --erence

Terminal unused

/P-CON

Rotation direction reference for contact input
speed selection

45

/P-CL
/N-CL

Forward (Reverse)
torque limit

/P-CL

46

Forward (Reverse)
torque limit

Contact input speed
selection (control mode
switching)

Specifications

Position
Position
Torque

Setting

Speed
Torque
Speed

/P-CL
/N-CL

Speed control with zero clamp

Position control with reference
pulse inhibit function

Cn-2B = 10

Cn-2B = 11

Cn-2B = 7, 8, 9

1CN
Terminal
number
41

/P-CON

45
46

/P-CL
/N-CL

/N-CL

Control mode switching /P-CON
signal
Forward (
(Reverse)
)
/P-CL
torque limit
li i
/N-CL

Zero clamp operation
reference
Forward (
(Reverse)
)
torque limit
li i

/P-CON
/P-CL
/N-CL

Reference pulse inhibit
reference
Forward (
(Reverse)
)
torque limit
li i

559

Appendix

C

List of Parameters
Σ-Series SERVOPACKs provide many functions, and have parameters
called “parameters” to allow the user to select each function and perform fine
adjustment. This appendix lists these parameters.
Parameters are divided into the following two types:
1) Memory switch
Cn-01, Cn-02

Each bit of this switch is turned ON or OFF to select a
function.

2) Parameter setting
Cn-03 and later

A numerical value such as a torque limit value or speed
loop gain is set in this constant.

NOTE

1) Refer to Chapter 3 for details of how to use parameters.
2) For details of how to set parameters, refer to Section 4.1.6
Operation in Parameter Setting Mode.

561

C

LIST OF USER CONSTANTS

List of Parameters (Parameter Setting)

Category

Basic
Co s a s
Constants

Parameter No.
Cn-00
Cn-01
Cn-02
Cn-11
Cn-2B

Gain Related
Co s a s
Constants

Cn-2A
Cn-03
Cn-04
Cn-05

C

Cn-1A
Cn-1C
Cn-1D
Cn-17
Cn-28
Cn-0C
Cn-0D
Cn-0E
Cn-0F
Reference related
l d
constants

Cn-0A
Cn-24
Cn-25
Cn-07
Cn-23
Cn-26

Code

Cn-27
Cn-08

FFFILT
TLMTF

Cn-09

TLMTR
CLMIF

Cn-19

562

Unit

Lower
Limit

Upper
Limit

Factory
Setting

Not a parameter. (Cn-00 is used to select a special mode for digital operator)
Memory switch (See page 564)bit E (encoder selection) *2
Memory switch (See page 566)
*2(Except bit 6, 7, E)
PULSNO
Number of encoder
P/R
513
32768
*1
pulses
CTLSEL
Control method
*1
0
11
0
selection
MTRSEL
Motor selection
*1
0
254
*1
−1)/V
VREFGN
Speed reference
(min
10
2000
*1
adjustment gain
LOOPHZ
Speed loop gain
Hz
1
2000
80
PITIME
Speed loop integration 0.01 ms
200
51200
2000
time constant
POSGN
Position loop gain
1/s
1
1000
40
BIASLV
Bias
min−1
0
450
0
FFGN
Feed-forward
%
0
100
0
TRQFIL
Torque reference filter 0.1 ms
0
250
*5
time constant
NFBCC
Speed loop com--0
100
0
pensation constant
TRQMSW
Mode switch torque
%
0
800
200
reference
REFMSW
Mode switch speed
min−1
0
10000
0
reference
ACCMSW
Mode switch accelera- 10 min−1/s 0
3000
0
tion
reference
ERPMSW
Mode switch error
0
10000
0
unit
pulse
PGRAT
PG dividing ratio
P/R
16
32768
*1
RATB
Electronic gear ratio
--1
65535
4
(numerator)
RATA
Electronic gear ratio
--1
65535
1
(denominator)
SFSACC
Soft start acceleration ms
0
10000
0
time
SFSDEC
Soft start deceleration ms
0
10000
0
time
ACCTME
Position reference ac- 0.1 ms
0
640
0
celeration/deceleration
constant

Cn-18

Torque Rea ed
lated
Constants

Name

CLMIR

Feed-forward filter
Forward rotation
torque limit
Reverse rotation
torque limit
Forward external current limit
Reverse external current limit

0.1 ms
%

0
0

640
800

0
800

%

0

800

800

%

0

800

100

%

0

800

100

Remar
ks

*2
*2
*2

*3
*3
*3

*2
*2
*4
*4

Category

Parameter No.

Code

Name

Cn-06

TCRFGN

Cn-14

TCRLMT

Cn-2D
Cn-0B
Cn-29
Cn-22

OUTSEL
TGONLV
ZCLVL
VCMPLV

Cn-1B

COINLV

Cn-1E

OVERLV

Cn-12

BRKTIM

Time delay from brake
reference until servo
OFF

Cn-15

BRKSPD

Speed level for brake
reference output during motor operation

Cn-16
Other
Constants
C

EMGTRQ

Cn-13

Sequence Req
lated
l d
Constants

Emergency stop
torque
Torque reference gain

Unit

BRKWAI

Output timing of brake 10 ms
reference during motor
operation

Cn-10
Cn-1F

JOGSPD
SPEED1

Cn-20

SPEED2

Cn-21

SPEED3

Cn-2C

PGPWR

Jog speed
1st speed (contact input speed control)
2nd speed (contact input speed control)
3rd speed (contact input speed control)
PG power supply voltage change

Speed limit for torque
control
Output signal selection
Zero-speed level
Zero clamp level
Speed coincidence
signal output range
Positioning completion
range
Overflow

Lower
Limit

Upper
Limit

Factory
Setting

%

0

800

800

0.1 V/
100%
min−1

10

100

30

0

10000

10000

*1
min−1
min−1
min−1

110
1
0
0

666
10000
10000
100

210
20
10
10

reference
unit

0

250

7

256 refer- 1
ence unit
10 ms
0

32767

1024

50

0

min−1

0

10000

100

10

100

50

min−1
min−1

0
0

10000
10000

500
100

min−1

0

10000

200

min−1

0

10000

300

0.1 mV

52000

58000

Remar
ks

52500

C

: Parameters must be set and checked before turning the motor power ON.
Note

*1
*2
*3
*4
*5

Refer to page 568.
After changing the setting, always turn the power OFF, then ON. This makes the new
setting valid.
Automatically set by auto tuning function
To use soft start function, always set both Cn-07 and Cn-23.
6.0kW or less : 4, 7.5kW : 8, 11.0 to 15.0kW : 16

563

LIST OF USER CONSTANTS

List of Parameters (Memory Switch Setting) (1)

Input signal
p
g
enable/disable
bl /di bl

ParamBit
eter No. No.
Cn-01
0

Setting
0
Uses servo ON input (/S-ON).

1
Does not use servo ON input (/SON). Servo is always ON.
1
Does not use SEN signal input
(SEN) when absolute encoder is
used. SERVOPACK automatically
treats signal voltage as high level.
1
Does not use forward rotation prohibited input (P-OT). Forward rotation is always possible.

Factory
Setting
0

1

2

0
Uses forward rotation prohibited input (P-OT).

3

C

0
Uses SEN signal input (SEN) when
absolute encoder is used.

0
Uses reverse rotation prohibited input (N-OT).

Reserved
Operation perp
p
formed at ref
d
covery from
power loss

4
5

Reserved : Setting = 0 (do not change the setting)
0
1
Resets servo alarm status at power
Remains in servo alarm status at
recovery from its momentary power
power recovery from momentary
loss.
power loss.

0
0

Sequence
q
selection at
l i
alarm condition

6

0
Stops the motor by applying dynamic
brake (DB)at base block.
0
At base block, stops the motor by
applying dynamic brake (DB)and
then release DB.

0

7

8

9

0

*1

0
1
Decelerates the motor to a stop by
applying the torque specified in
Cn-06 when overtravel is detected
(P-OT, N-OT).
0
0
1
When overtravel is detected (P-OT,
When overtravel is detected (P-OT,
N-OT), decelerates the motor to a
N-OT), decelerates the motor to a
stop by applying the torque specified stop by applying the torque specified
in Cn-06 and then performs Servo
in Cn-06 and then turns the zeroOFF.
clamp.

A

0
Clears error pulse at Servo OFF

Mode switch
selection
l i

B

0
Uses mode switch function. Follows
Cn-01 bits D, C
0⋅0
0⋅1
Uses internal
Uses speed reftorque reference erence as a
as a condition
condition
(Level setting :
Cn-0C)

564

1
Makes the motor coast to a stop at
base block.
1
At base block, stops the motor by
applying dynamic brake (DB)but
does not release DB.

0

0
Stops the motor according to bit 6
setting when overtravel is detected
(P-OT, N-OT).

Process selection for S
i f Servo
OFF

D⋅C

1
Does not use reverse rotation prohibited input (N-OT). Reverse rotation is always possible.

0

(Level setting :
Cn-0D)

1
Does not clear error pulse at Servo
OFF
1
Does not use mode switch function.

0

1⋅0
Uses acceleration as a condition

0⋅0

(Level setting :
Cn-0E)

1⋅1
Uses error pulse
as a condition
(Level setting :
Cn-0E)

0

Encoder selection
i

Parameter No.
Cn-01

Reserved

Bit
No.
E
F

Setting

Factory
Setting
*2

0
1
Uses incremental encoder.
Uses absolute encoder.
Reserved : Setting = 0 (do not change the setting)

0

: Parameters must be set and checked before turning the motor power ON.
*1 less than or equal to 1.5 kW : 1

greater than or equal to 2.0 kW : 0

*2 If Applicable motor is SGMG, SGMS, SGM, SGMP type : 0
NOTE

SGMD type : 1

For the Cn-01 memory switch, always turn the power OFF, then ON after changing the setting. This makes the new setting valid.

C

565

LIST OF USER CONSTANTS

List of Parameters (Memory Switch Setting) (2)

Rotation direction selection
i
l i

Parameter
No.
Cn-02

Bit No.

Setting

Factory Setting

0
Defines counterclockwise (CCW)
rotation as forward rotation.

Home p
position
error processing selection

1

2

Reference
pulse form
l f

5⋅4⋅3

Analog monitor
g
selection
l i

6

0
1
Detects home position error (when
Does not detect home position error.
absolute encoder is used).
0
1
Does not use analog speed limit
Uses analog speed limit function
function
0⋅0⋅0
0⋅0⋅1
0⋅1⋅0
0⋅1⋅1
1⋅0⋅0
Sign + Pulse CW+CCW
A-phase + B- A-phase + B- A-phase + Bphase (x1
phase (x2
phase (x4
multiplicamultiplicamultiplication)
tion)
tion)
0
1
Outputs torque to TRQ-M
Outputs reference speed to TRQ-M
0
1
Outputs speed to VTG-M
Outputs position error to VTG-M
0
1
Does not use analog current limit
Uses analog current limit function
function
0
1
Does not use torque feed-forward
Uses torque feed-forward function
function
0
1
Clears the error counter when an er- Clears the error counter on the risror counter clear signal is at high
ing edge of an error counter clear
level
signal

0

Analog speed
g p
limit function
li i f
i

C

0

Reserved : Setting = 0 (do not change the setting)
0
1
Uses torque filter as primary filter
Uses torque filter as secondary filter
0
1
Does not invert reference pulse log- Inverts reference pulse logic
ic
0
1
Displays position error in x1 referDisplays position error in x100 reference units while in monitor mode
ence units while in monitor mode
0
1
Selects filter time constant ’small’.
Selects filter time constant ’large’.
(450 kpps max)
(200 kpps max)

0

7
Analog current
g
limit function
li i f
i

8

Torque feed-forq
ward f
d function
i

9

Clear signal
g

A

Reserved
Torque filter
q

B
C

Reference
pulse form
l f

D

Position error
monitor
i

E

Reference
pulse filter
l fil

F

* 5.0 kW or less : 0,
NOTE

566

1
Defines clockwise (CW) rotation as
forward rotation (reverse rotation
mode).

0

0

0⋅0⋅0

0
0
0

0

0

*
0

0

0

6.0kW or more : 1

For the Cn-02 memory switch, always turn the power OFF, then ON after changing the setting. This makes the new setting valid. However, bits 6, 7, E become valid immediately after
setting

*1 Control method selection (Cn-2B) setting values
Setting values

Control method

0

Speed control (analog reference)

1

Position control (pulse train reference)

2

Torque control (analog reference)

3

Speed control (contact reference)

$Speed control (0 reference)

4

Speed control (contact reference)

$Speed control (analog reference)

5

Speed control (contact reference)

$Position control (pulse train reference)

6

Speed control (contact reference)

$Torque control (analog reference)

7

Position control (pulse train reference) $Speed control (analog reference)

8

Position control (pulse train reference) $Torque control (analog reference)

9

Torque control (analog reference)

$Speed control (analog reference)

10

Speed control (analog reference)

$Zero clamp control

11

Position control (pulse train reference) $Position control (inhibit)

• Outputs signal selection (CN-2D) setting values
Selects which function of signal sent to output signal of 1CN.
1st decimal digit

to select function of CN-25, 26 (/COIN, /V-CMP)

2nd decimal digit

to select function of CN-27, 28 (/TGON)

3rd decimal digit

C

to select function of CN-29, 30 (/S-RDY)

Setting value

Function

0

/COIN, /V-CMP (only assigned to 1CN-25, 26)

1

/TGON

2

/S-RDY

3

/CLT

4

/BK

5

OL warning

6

OL alarm

567

LIST OF USER CONSTANTS

• Factory settings
SERVOPACK
models
SGDB-05ADG
SGDB-10ADG
SGDB-15ADG
SGDB-20ADG
SGDB-30ADG
SGDB-44ADG
SGDB-60ADG
SGDB-75ADG
SGDB-1AADG
SGDB-1EADG
SGDB-03ADM
SGDB-07ADM
SGDB-10ADM
SGDB-15ADM
SGDB-20ADM
SGDB-30ADM
SGDB-44ADM
SGDB-60ADM
SGDB-10ADS
SGDB-15ADS
SGDB-20ADS
SGDB-30ADS
SGDB-44ADS
SGDB-50ADS
SGDB-30ADD
SGDB-44ADD
SGDB-50ADD
SGDB-05AD
SGDB-10AD
SGDB-05ADP
SGDB-10ADP
SGDB-15ADP

C

568

Applicable motor type
SGMG-05AjA
SGMG-09AjA
SGMG-13AjA
SGMG-20AjA
SGMG-30AjA
SGMG-44AjA
SGMG-55AjA
SGMG-75AjA
SGMG-1AAjA
SGMG-1EAjA
SGMG-03AjB
SGMG-06AjB
SGMG-09AjB
SGMG-12AjB
SGMG-20AjB
SGMG-30AjB
SGMG-44AjB
SGMG-60AjB
SGMS-10AjA
SGMS-15AjA
SGMS-20AjA
SGMS-30AjA
SGMS-40AjA
SGMS-50AjA
SGMD-22AjA
SGMD-32AjA
SGMD-40AjA
SGM-04A
SGM-08A
SGMP-04A
SGMP-08A
SGMP-15A

Cn-2A
142
143
144
145
146
147
148
149
140
150
171
172
173
174
175
176
177
178
163
164
165
166
167
168
155
156
157
106
107
126
127
128

Cn-11
Cn-0A
8192

Cn-03
250

8192

167

4096

500

1024

333

2048

500

2048

500

Appendix

D

List of Alarm Displays
SGDB SERVOPACK allows up to 10 last alarms to be displayed at a digital
operator. This function is called a trace-back function.

Alarm number

Alarm display

D

This appendix provides the name and meaning of each alarm display.
For details of how to display an alarm, refer to the following section:
Section 4.2.1 Operation in Alarm Trace-back Mode
For the cause of each alarm and the action to be taken, refer to the following
section:
Section 6.2.1 Troubleshooting Problems with Alarm Display

569

LIST OF ALARM DISPLAYS

Alarm Display
Alarm
Display
Di l
on Digital
Operator

Alarm Output
Alarm Code Output

Alarm Name

Meaning
g

Remarks

ALM
Output

ALO2

ALO3

A.00

OFF

OFF

OFF

OFF

Absolute data
error

Absolute data fails to be received, or received absolute
data is abnormal.

A.02

OFF

OFF

OFF

OFF

A.04

OFF

OFF

OFF

OFF

A.10

ON

OFF

OFF

OFF

Parameter
breakdown
Parameter setting error
Overcurrent

A.30

ON

ON

OFF

OFF

Detection of regenerative error

Checksum results of parameters are abnormal.
The parameter setting is outside
the allowable setting range.
An overcurrent flowed through
the power transistor.
Regenerative circuit is faulty

A.31

ON

ON

OFF

OFF

Position error
pulse overflow

Position error pulse has exceeded the value set in parameter Cn-1E (overflow).

A.40

D

ALO1

OFF

OFF

ON

OFF

Main circuit
voltage error
detection

Main circuit voltage is abnormal

A.51

ON

OFF

ON

OFF

Overspeed

Rotation speed of the motor has Detection level =
exceeded detection level
Maximum rotation
speed x 1.1 or x1.2

A.71

ON

ON

ON

OFF

Overloaded
(high load)

A.72

ON

ON

ON

OFF

Overloaded
(low load)

The motor was running for several seconds to several tens of
seconds under a torque largely
exceeding ratings.
The motor was running continuously under a torque largely exceeding ratings

A.80

OFF

OFF

OFF

OFF

Absolute encoder error

The number of pulses per abso- For absolute enlute encoder revolution is abnor- coder only
mal.

A.81

OFF

OFF

OFF

OFF

Absolute encoder backup
error

A.82

OFF

OFF

OFF

OFF

Absolute encoder checksum error

All three power supplies for the
absolute encoder (+5 V, battery
and internal capacitor) have
failed.
The checksum results of absolute encoder memory is abnormal.

TERMS

For absolute encoder only

For 12 bit absolute
encoder only

For 12 bit absolute
encoder only

Checksum
An automatic check function for a set of data such as parameters. It stores the sum of parameter data, recalculates the sum at specific timing, and then checks whether the stored
value matches the recalculated value. This function is a simple method of checking whether
a set of data is correct.

570

Alarm
Display
on Digital
Operator

Alarm Output
Alarm Code Output

Alarm Name

Meaning

Remarks

ALM
Output

ALO1

ALO2

ALO3

A.83

OFF

OFF

OFF

OFF

Absolute encoder battery
error

Battery voltage for the absolute
encoder is abnormal.

For 12 bit absolute
encoder only

A.84

OFF

OFF

OFF

OFF

Absolute encoder data error

Received absolute data is abnormal.

For 12 bit absolute
encoder only

A.85

OFF

OFF

OFF

OFF

Absolute encoder overspeed

The motor was running at a
speed exceeding 400 min−1
when the absolute encoder was
turned ON.

For 12 bit absolute
encoder only

OFF:
ON:

Output transistor is OFF
Output transistor is ON

D

571

LIST OF ALARM DISPLAYS

Alarm Output

Alarm Display on
l
Digital Op
Operator

ALO1

ALO2

ALO3

A.A1

ON

ON

ON

OFF

A.b1

OFF

OFF

OFF

OFF

A.C1

ON

OFF

ON

OFF

A.C2

ON

OFF

ON

OFF

A.C3

ON

OFF

ON

OFF

A.C4

ON

OFF

ON

A.F1

OFF

ON

A.F3

D

Alarm Name

Meaning
g

Heat sink overheated
Reference input read error
Servo overun
detected
Encoder output
phase error
Encoder A-, Bphase disconnection

Heat sink of SERVOPACK was
overheated
SERVOPACK CPU failed to detect reference input.
The servomotor (encoder) ran
out of control.
Phases A, B and C output by
the encoder are abnormal.
Wiring in encoder phase A or B
is disconnected.

OFF

Encoder Cphase disconnection

Wiring in encoder phases C is
disconnected.

OFF

OFF

OFF

OFF

Power lines
open phase
Power loss error

One phase is not connected in
the main power supply
A power interruption exceeding only when bit 5 of
one cycle occurred in AC power Cn-01 set to 1
supply.

OFF

ON

CPF00

Undefined

Digital operator
transmission
error 1

CPF01

Undefined

Digital operator
transmission
error 2

Digital operator fails to communicate with SERVOPACK even
five seconds after power is
turned ON.
Transmission error has occurred five consecutive times.

A.99

OFF

Alarm Code Output

ALM
Output

OFF

OFF

OFF:
ON:

572

Remarks

Output transistor is OFF
Output transistor is ON

ON

Not an error

Normal operation status

These alarms are
not stored in alarm
trace-back
y
memory.

INDEX

INDEX
Numbers
1CN connector
dimensional drawings, 481
specifications, 481
1CN connector kit, 31

A
absolute data
exchange sequence, 156
transmitting sequence, 158
absolute value detection system, 152
alarm, display, list, 570
alarm code output, 127
alarm output signals, wiring, 127
alarm traceback data, clearing, 213
alarm traceback mode, 194
alarms
display, 160

troubleshooting, 503

Servo, resetting using Digital Operator, 180
servo, reset, 180
alignment, 25
radial load, 26
thrust load, 26
analog monitor, 99
autotuning, 204
adjustment of position control Servopacks, 546
adjustment of speed-control Servopacks, 542
precautions, 201
autotuning function, 117
Digital Operators, 201

B
battery, 155
absolute encoder, 480
replacement, absolute encoder, 502
bits, turning ON and OFF, 189
brake power supply, 31
dimensional drawings, 466
internal circuit, 467
specifications, 466

C
cables, 32, 142
encoders

dimensional drawings, 469
specifications, 469

for connecting PC and Servopack, 494
motor

connectors, 462
dimensional drawings, 446
specifications, 446

specifications, 442
tension, 142
comparators, 9

connections
contact input signal terminals, 77
contact output signal terminals, 78
connector kits, 447
dimension drawings, 447
specifications, 447
connector terminal block conversion unit, 31, 483
connectors
1CN, test run, 42
2CN, reverse rotation mode, 55
absolute encoder, 168, 170
Digital Operator, 175
encoder cables, 462
incremental encoder, 167, 169
motor cables, 462
Servomotors with holding brake, 394

IP67-based, 398

Servomotors without holding brake, 392

IP67-based, 396

standard-type motor without brake, 171, 173
standard-type motor with brake, 172, 174
terminal layouts, 166

Servopack, 166

contact input signal terminals, connections, 77
contact input speed control function, 83
motor speeds, 84
prohibiting, 63
soft start time, 84
contact output signal terminals, connections, 78
controlled systems
components, 6
meaning, 5
current detection offset, manual adjustment mode, 217

D
deceleration stop mode, 57
detectors
encoders, 8

573

INDEX

meaning, 5
Digital Operator, 31
Digital Operators, 14
alarm traceback mode, 194
autotuning, 201
connection, 178
dimensional drawings, 412
mode selection, 181

monitor mode, 191
status display mode, 182
user constant setting mode, 186

motor operation, 198
selection, 235

flowchart, 236

servo alarm reset, 180
simple motor check, 197
test run, 43
dimensional diagrams, noise filter, 486
dimensional drawings, 292
1CN connector, 481
brake power supply, 466
cables, encoders, 469
connector kits, 447
Digital Operators, 412
Encoder Signal Converter Unit, 492
motor cables, 446
regenerative resistor unit, 490
Servomotors, 292–326
Servopacks, 400
variable resistors, 491
dividing, 73
drive systems, 6
dynamic brake, 106
stop mode, 58

encoders
absolute, 8, 152

battery, 480
battery replacement, 502
home position error detection, 161

cables

connectors, 462
dimensional drawings, 469
specifications, 469

extending cables, 162
incremental, 8
power voltage adjustment, 104
specification, 76
error counter, clearing, 72
external torque limit, 61
external torque limit input, 62
forward, 62
reverse, 62

F
feed-forward control, 119
feedback control, meaning, 3
fuse, 144

G
gain
adjustment, 114, 117

AC Servopack, 540

setting references, load inertia ratio, 551
gears, lubrication, 245, 255
ground wire, 142

E
electronic gear function, 79
setting, 79
electronic gear ratio, 79
for different load mechanisms, 82
load travel distance per revolution of load shaft in reference
units, 80
machine specifications, 79
number of encoder pulses for the SGM Servomotor, 79
reference unit, 80
encoder output, 73
signals, divided, 73
encoder pulses, number per revolution, 102
Encoder Signal Converter Unit
dimensional drawings, 492
specifications, 492
Encoder Specifications, 20

574

ground-fault interrupter, 17
grounding, 17
wiring, 145

H
high-voltage lines, Servopacks, 164
holding brake, 108
electrical specifications, 200-VAC SGM Servomotors, 239,
250, 260, 267
home position error detection, 161
host controllers, 5, 10, 31
hot start, 288

I
I/O signal terminals, list, 556

INDEX

impact resistance, 270
INHIBIT function. See reference pulse inhibit function
input pulse multiply function, 71
input signal terminals
alarm reset, 130
battery, 75
error counter clear input, 72
forward external torque limit input, 62
forward rotation prohibited, 56
I/O power supply, 77
motor rotation direction, 86
proportional/integral control, 67
reference pulse input, 70
reference sign input, 70
reverse external torque limit input, 62
reverse rotation prohibited, 56
SEN signal input, 75
servo ON, 130
signal ground for speed reference input, 64, 91
signal ground for torque reference input, 90
speed reference input, 64, 91
speed selection, 85
torque reference input, 90
zero-clamp speed control, 107
inspection, 500, 501
Servomotors, 500
Servopacks, 501
installation, 18
servomotor, alignment, 25
Servomotors, 24
Servopacks, 27
internal torque limit, 59

J
jog speed, 101

L
limit switch, 56
overtravel limit function, 56
load inertia, 290
gain settings, 551
loads
allowable radial load, 269
allowable thrust load, 269

M
machine data table, 231
machine rigidity, 203
selection, 201
magnetic contactor, 31

maintenance, 500, 501
Servomotors, 500
Servopacks, 501
MCCB, 31, 143, 144, 486
mechanical tolerance, 270
memory switches. See user constants
mode selection, Digital Operators, 181
mode switch, 121
detection points

error pulse, 124
motor acceleration, 123
speed reference, 123
torque reference, 122

molded-case circuit breaker. See MCCB
monitor mode, 191
motor
checking, Digital Operators, 197
operation, Digital Operators, 198

N
N-OT input signal, 56
noise control, 17
filter, 31, 143, 150

dimensional diagrams, 486
installation, 146
specifications, 486

wiring, 144

O
order lists, 424
output phase, form, 75
absolute encoder, 75
incremental encoder, 75
output signal terminals
alarm code output, 128
brake interlock output, 110
encoder output, 74, 75
frame ground, 75
output signal ground common, 78
overload alarm, 138
overload warning, 138
positioning complete output, 132
running output, 136
servo alarm output, 127
servo ready, 140
signal ground, 75
signal ground for alarm code output, 128
signal ground for servo alarm output, 127
speed coincidence output, 134
speed monitor, 99
torque limit output, 60
torque monitor, 99

575

INDEX

overhanging load
precautions, 17
Servomotors, 291
overload
alarm, 138
characteristics, Servopacks, 288
warning, 138
overtravel limit function, 56
limit switch, 56

P
P-OT input signal, 56
peripheral devices
selection, 414

reference pulse input filter selection function, 98
regenerative resistor unit, 31
dimensional drawings, 490
specifications, 490
regenerative unit
connection, 151
models, 151
residual voltage, precautions, 16
reverse rotation mode, 54, 55
2CN connector, 55
user constant, 55
rotation, 57
forward, prohibiting, 57
reverse, prohibiting, 57
running output signal, 136

flowchart, 415

specifications, 442
wiring, 30

personal computer, 31
position references, inputs, 68
line driver output, 69
open collector output, 69
positioning complete signal, 131

S
SEN signal, 153
servo amplifiers, 9
meaning, 5
servo drive, meaning, 4

power amplifiers, 9

servo mechanisms
illustration, 5
meaning, 2

power loss, 141

servo OFF, 58

precautions, 16

servo ON input signal, 130

pressure control, 88

Servomotors, 500
100-VAC SGM ratings, 265, 267
100-VAC SGM specifications, 265, 267
200-VAC SGM ratings, 237
200-VAC SGM specifications, 237
200-VAC SGM torque-motor speed characteristics, 240, 251,
261, 266, 268
AC, 7

positioning time, minimizing, 117

proportional control, 120
proportional/integral control, 9, 119
signal, 67
protective sequence, 127
pulse dividing ratio, 76

R
radial load, 26
ratings
100-VAC SGM Servomotors, 265, 267
200-VAC SGM Servomotors, 237
SGDM Servopacks, 285
reference offset, 207
automatic adjustment, 105, 115, 207
manual adjustment, 105, 115
reference pulse
form, 70
input

allowable voltage level, 72
timing, 72

reference pulse inhibit function, 97

576

induction, 7
synchronous, 7

components, 7
DC, 7
dimensional drawings, 292–326
inspection, 500
installation, 24
maintenance, 500
meaning, 4, 5
overhanging load, 291
selection, 223

flowchart, 225, 229
machine data table, 231

setting the type, 103
test run, 42

Servopacks, 501
AC, gain adjustment, 540
dimensional drawings, 400
high-voltage lines, 164
inspection, 501

INDEX

installation, 27
instrument connection examples, 531
internal connection diagram, 531
maintenance, 501
meaning, 4
overload characteristics, 288
position control

autotuning, 546
manual adjustment, 547

ratings, 285
selection, 233

according to the motor, 234

specifications, 285
speed-control

autotuning, 542
manual adjustment, 543

test run, 44

servos
alarm output, 127
alarm reset, 180
control systems, meaning, 4
gain adjustment, 114, 117
meaning, 3
SGMGH Servomotors, gear lubrication, 245, 255
shaft opening, 25
smoothing function, 114
position reference acceleration/deceleration time constant, 114
soft start function, 86, 113
specifications
100-VAC SGM Servomotors, 265, 267
1CN connector, 481
200-VAC SGM Servomotors, 237
brake power supply, 466
cables, 442

encoders, 469

connector kits, 447
home position pulse, 159
incremental pulse, 159
noise filter, 486
peripheral devices, 442
regenerative resistor unit, 490
serial data, 158
Servopack/Servomotor combination, 282
SGDM Servopacks, 285
speed bias, 120
speed coincidence output signal, 134
speed control, 65
analog reference, 66
contact reference, 66
position/torque control, 66
zero-clamp, 66
speed reference offset, manual adjustment mode, 210
speed references, 64
gain, 67
inputs, 64
starting time, 289

status display mode, 182
stop mode, setting, 105
stop torque, 58
stopping time, 289
surge suppressor, 490

T
tension control, 88
terminals
standard-type motor without brake, 171, 173
standard-type motor with brake, 172, 174
test run, 40
minimum user constants, 49
motor alone, 42
motor connected to the machine, 46
position control from the host controller, 48
servomotor with brake, 47
thrust load, 26
torque control, 59, 87
torque feed-forward function, 94
torque limit
input signals, 63
output signal, 60
value, 96
torque reference filter time constant, 115
torque restriction function, 61
by analog voltage reference, 95
torque limit value, 61
troubleshooting
alarm display, 503
without alarm display, 529

U
user constant setting mode, 186
user constants, 55, 56, 63
bias, 120
brake signal output timing during motor operation, 112
brake signal speed level output during motor operation, 112
contact input speed control function, 63
control mode selection, 63, 65, 83
dividing ratio setting, 76, 159
dividing ratio settings, 74
electronic gear ratio, 81
emergency stop torque, 58
encoder power voltage adjustment, 104
encoder type selection, 76, 102, 154
error counter clear signal selection, 73
feed-forward gain, 119
forward external torque limit, 61
forward rotation torque limit, 59
jog speed, 101
list, 562

577

INDEX

mode switch ON/OFF, 124
mode switch selection, 125
motor selection, 103
motor speeds, 84
N-OT input signal, 56
number of encoder pulses, 102, 154
operation at recovery from power loss, 141
operation when motor stops after overtravel, 57
operation when motor stops after servo OFF, 58
output signal selection, 60, 110, 132, 138, 140
overflow, 118
PI/P changeover, 120
position loop gain, 118
positioning complete range, 133, 134, 136
P-OT input signal, 56
reference pulse form selection, 70
reference pulse inhibit function, 97
reference pulse input filter selection function, 98
reverse external torque limit, 61
reverse rotation mode, 55
reverse rotation torque limit, 59
rotation direction selection, 55
SEN input signal, 153
servo ON input signal, 131
soft start time, 84, 113
speed coincidence signal output width, 135
speed limit for torque control I, 92
speed loop gain, 118
speed loop integration time constant, 118
speed reference gain, 67, 93
stopping motor at servo OFF, 58, 106
stopping the motor at overtravel, 57
time delay from brake signal output to servo OFF, 111
torque control, 88
torque feed-forward function selection, 94

578

torque reference filter selection, 116
torque reference filter time constant, 115
torque reference gain, 92, 95, 96
torque restriction by analog voltage reference, 95
zero-clamp speed control, 107
zero-speed level, 137
zero-clamp level, 108

V
variable resistor, dimensional drawings, 491
vibration class, 271
vibration resistance, 271
voltage resistance test, 17

W
wiring, 30, 34, 55, 142
grounding, 145
main circuit, 34
more than one servo drive, 149
noise control, 144
peripheral devices, 30
precautions, 16, 142
shorting, 2CN connector, 55

Z
zero-clamp function, 67, 107

IRUMA BUSINESS CENTER
480, Kamifujisawa, Iruma, Saitama 358-8555, Japan
Phone 81-42-962-5696 Fax 81-42-962-6138

YASKAWA ELECTRIC AMERICA, INC.
2121 Norman Drive South, Waukegan, IL 60085, U.S.A.
Phone 1-847-887-7000 Fax 1-847-887-7370

MOTOMAN INC. HEADQUARTERS
805 Liberty Lane West Carrollton, OH 45449, U.S.A.
Phone 1-937-847-6200 Fax 1-937-847-6277

YASKAWA ELETRICO DO BRASIL COMERCIO LTD.A.
Avenida Fagundes Filho, 620 Bairro Saude-Sao Paulo-SP, Brazil
Phone 55-11-5071-2552 Fax 55-11-5581-8795

CEP: 04304-000

YASKAWA ELECTRIC EUROPE GmbH
Am Kronberger Hang 2, 65824 Schwalbach, Germany
Phone 49-6196-569-300 Fax 49-6196-569-398

Motoman Robotics Europe AB
Box 504 S38525 Torsas, Sweden
Phone 46-486-48800 Fax 46-486-41410

Motoman Robotec GmbH
Kammerfeldstra e 1, 85391 Allershausen, Germany
Phone 49-8166-90-100 Fax 49-8166-90-103

YASKAWA ELECTRIC UK LTD.
1 Hunt Hill Orchardton Woods Cumbernauld, G68 9LF, United Kingdom
Phone 44-1236-735000 Fax 44-1236-458182

YASKAWA ELECTRIC KOREA CORPORATION
Kfpa Bldg #1201, 35-4 Youido-dong, Yeongdungpo-Ku, Seoul 150-010, Korea
Phone 82-2-784-7844 Fax 82-2-784-8495

YASKAWA ELECTRIC (SINGAPORE) PTE. LTD.
151 Lorong Chuan, #04-01, New Tech Park Singapore 556741, Singapore
Phone 65-6282-3003 Fax 65-6289-3003

YASKAWA ELECTRIC (SHANGHAI) CO., LTD.
No.18 Xizang Zhong Road. Room 1805, Harbour Ring Plaza Shanghai 20000, China
Phone 86-21-5385-2200 Fax 86-21-5385-3299

YATEC ENGINEERING CORPORATION
4F., No.49 Wu Kong 6 Rd, Wu-Ku Industrial Park, Taipei, Taiwan
Phone 886-2-2298-3676 Fax 886-2-2298-3677

YASKAWA ELECTRIC (HK) COMPANY LIMITED
Rm. 2909-10, Hong Kong Plaza, 186-191 Connaught Road West, Hong Kong
Phone 852-2803-2385 Fax 852-2547-5773

BEIJING OFFICE
Room No. 301 Office Building of Beijing International Club, 21
Jianguomenwai Avenue, Beijing 100020, China
Phone 86-10-6532-1850 Fax 86-10-6532-1851

TAIPEI OFFICE
9F, 16, Nanking E. Rd., Sec. 3, Taipei, Taiwan
Phone 886-2-2502-5003 Fax 886-2-2505-1280

SHANGHAI YASKAWA-TONGJI M & E CO., LTD.
27 Hui He Road Shanghai China 200437
Phone 86-21-6553-6060 Fax 86-21-5588-1190

BEIJING YASKAWA BEIKE AUTOMATION ENGINEERING CO., LTD.
30 Xue Yuan Road, Haidian, Beijing P.R. China Post Code: 100083
Phone 86-10-6233-2782 Fax 86-10-6232-1536

SHOUGANG MOTOMAN ROBOT CO., LTD.
7, Yongchang-North Street, Beijing Economic Technological Investment & Development Area,
Beijing 100076, P.R. China
Phone 86-10-6788-0551 Fax 86-10-6788-2878

YASKAWA ELECTRIC CORPORATION

YASKAWA
In the event that the end user of this product is to be the military and said product is to be
employed in any weapons systems or the manufacture thereof, the export will fall under
the relevant regulations as stipulated in the Foreign Exchange and Foreign Trade
Regulations. Therefore, be sure to follow all procedures and submit all relevant
documentation according to any and all rules, regulations and laws that may apply.
Specifications are subject to change without notice
for ongoing product modifications and improvements.
© 1995-2003 YASKAWA ELECTRIC CORPORATION. All rights reserved.

MANUAL NO. TSE-S800-16E
© Printed in Japan September 2003 95-9
03-4 94-C23-065L

17