stuff.zip

Wyświetlacz danych z komputera

http://obrazki.elektroda.pl/2734993400_1442786990_thumb.jpg Witam wszystkich, postanowiłem w końcu pochwalić się kilkoma układami, które wykonałem. Na pierwszy ogień idzie ten oto wyświetlacz. Pomysł na ten projekt zrodził się po tym jak wyświetlacz działający przez lcd2usb nie spełniał moich oczekiwań na linuxie. Postanowiłem wykonać własną wersję od podstaw. Do komunikacji z komputerem wykorzystywany jest interfejs rs232. Główne funkcje układu to: -wyświetlanie danych dotyczących komputera -zarządzanie frontpanelem (możliwość wyłączenia, oraz płynna 'animacja' podczas uśpienia komputera) -alarm w przypadku przekroczenia określonej temperatury http://obrazki.elektroda.pl/6768228000_1442788927_thumb.jpg http://obrazki.elektroda.pl/4429912400_1442787475_thumb.jpg http://obrazki.elektroda.pl/8074436600_1442787463_thumb.jpg http://obrazki.elektroda.pl/8237474700_1442787467_thumb.jpg http://obrazki.elektroda.pl/5742953500_1442787471_thumb.jpg Sercem układu jest Atmega8 taktowana kwarcem 16MHz. Program napisany w C. Wyświetlacz działa na sterowniku HD44780. Schemat i projekt PCB wykonany w Eaglu. Płytka ma wymiary takie, że całość mieści się pod półką którą mam na biurku. Niestety na pcb pojawił się błąd w odległości między otworami na śrubki i musiałem je nieco rozwiercić żeby wszystko dało się ładnie złożyć. Inną kwestią o której zupełnie nie pomyślałem wysyłając płytkę do wykonania jest to, że fabryka nie miała polskiej czcionki, przez co podpis jest dłuższy niż w projekcie i o mało nie wszedł na ścieżki. http://obrazki.elektroda.pl/5992588500_1442788195_thumb.jpg http://obrazki.elektroda.pl/6308335100_1442788199_thumb.jpg http://obrazki.elektroda.pl/2463219600_1442788202_thumb.jpg http://obrazki.elektroda.pl/1151669600_1442788206_thumb.jpg http://obrazki.elektroda.pl/3001253800_1442788208_thumb.jpg Jeśli chodzi o komunikację , jest ona dosyć prosto zrealizowana i umożliwia wyświetlenie niemalże dowolnego tekstu na wyświetlaczu. Komputer generuje zawartość każdej linijki i wysyła ją dodając na końcu specjalny identyfikator danej linijki. Poza wysyłaniem tekstu mogą być wysłane także kody (128-255), które umożliwiają sterowanie podświetleniem (on/off), sterowanie buzzerem, lub też wysłanie pojedynczego znaku w konkretne miejsce (x,y). Dane na komputerze są zbierane używając różnych systemowych bibliotek, a także poprzez parsowanie wyjścia niektórych linuxowych komend. Do tego skleiłem na szybko aplikację graficzną wyświetlającą to samo co lcd oraz umożliwiającą ustawienie temperatur alarmów i sterowanie podświetleniem. Aplikacja graficzna komunikuje się z główną aplikacją używając współdzielonej pamięci (shared memory). http://obrazki.elektroda.pl/6750052400_1442788801_thumb.jpg W załączniku znajduje się kod źródłowy do mikrokontrolera, pliki z Eagla i główny program działający po stronie komputera. Od razu uprzedzam że kody nie należą do najczytelniejszych, więc przeglądanie kodu polecam tylko zdesperowanym osobom.

  • stuff.zip
    • test_lcd.c
    • lcd.h
    • lcd.c
    • Makefile


Download file - link to post

stuff.zip > lcd.c

/****************************************************************************
Title : HD44780U LCD library
Author: Peter Fleury & lt; pfleury@gmx.ch & gt; http://jump.to/fleury
File: $Id: lcd.c,v 1.14.2.2 2012/02/12 07:51:00 peter Exp $
Software: AVR-GCC 3.3
Target: any AVR device, memory mapped mode only for AT90S4414/8515/Mega

DESCRIPTION
Basic routines for interfacing a HD44780U-based text lcd display

Originally based on Volker Oth's lcd library,
changed lcd_init(), added additional constants for lcd_command(),
added 4-bit I/O mode, improved and optimized code.

Library can be operated in memory mapped mode (LCD_IO_MODE=0) or in
4-bit IO port mode (LCD_IO_MODE=1). 8-bit IO port mode not supported.

Memory mapped mode compatible with Kanda STK200, but supports also
generation of R/W signal through A8 address line.

USAGE
See the C include lcd.h file for a description of each function

*****************************************************************************/
#include & lt; inttypes.h & gt;
#include & lt; avr/io.h & gt;
#include & lt; avr/pgmspace.h & gt;
#include " lcd.h "



/*
** constants/macros
*/
#define DDR(x) (*( & x - 1)) /* address of data direction register of port x */
#if defined(__AVR_ATmega64__) || defined(__AVR_ATmega128__)
/* on ATmega64/128 PINF is on port 0x00 and not 0x60 */
#define PIN(x) ( & PORTF== & (x) ? _SFR_IO8(0x00) : (*( & x - 2)) )
#else
#define PIN(x) (*( & x - 2)) /* address of input register of port x */
#endif


#if LCD_IO_MODE
#define lcd_e_delay() __asm__ __volatile__( " rjmp 1f\n 1: " ); //#define lcd_e_delay() __asm__ __volatile__( " rjmp 1f\n 1: rjmp 2f\n 2: " );
#define lcd_e_high() LCD_E_PORT |= _BV(LCD_E_PIN);
#define lcd_e_low() LCD_E_PORT & = ~_BV(LCD_E_PIN);
#define lcd_e_toggle() toggle_e()
#define lcd_rw_high() LCD_RW_PORT |= _BV(LCD_RW_PIN)
#define lcd_rw_low() LCD_RW_PORT & = ~_BV(LCD_RW_PIN)
#define lcd_rs_high() LCD_RS_PORT |= _BV(LCD_RS_PIN)
#define lcd_rs_low() LCD_RS_PORT & = ~_BV(LCD_RS_PIN)
#endif

#if LCD_IO_MODE
#if LCD_LINES==1
#define LCD_FUNCTION_DEFAULT LCD_FUNCTION_4BIT_1LINE
#else
#define LCD_FUNCTION_DEFAULT LCD_FUNCTION_4BIT_2LINES
#endif
#else
#if LCD_LINES==1
#define LCD_FUNCTION_DEFAULT LCD_FUNCTION_8BIT_1LINE
#else
#define LCD_FUNCTION_DEFAULT LCD_FUNCTION_8BIT_2LINES
#endif
#endif

#if LCD_CONTROLLER_KS0073
#if LCD_LINES==4

#define KS0073_EXTENDED_FUNCTION_REGISTER_ON 0x2C /* |0|010|1100 4-bit mode, extension-bit RE = 1 */
#define KS0073_EXTENDED_FUNCTION_REGISTER_OFF 0x28 /* |0|010|1000 4-bit mode, extension-bit RE = 0 */
#define KS0073_4LINES_MODE 0x09 /* |0|000|1001 4 lines mode */

#endif
#endif

/*
** function prototypes
*/
#if LCD_IO_MODE
static void toggle_e(void);
#endif

/*
** local functions
*/



/*************************************************************************
delay loop for small accurate delays: 16-bit counter, 4 cycles/loop
*************************************************************************/
static inline void _delayFourCycles(unsigned int __count)
{
if ( __count == 0 )
__asm__ __volatile__( " rjmp 1f\n 1: " ); // 2 cycles
else
__asm__ __volatile__ (
" 1: sbiw %0,1 " " \n\t "
" brne 1b " // 4 cycles/loop
: " =w " (__count)
: " 0 " (__count)
);
}


/*************************************************************************
delay for a minimum of & lt; us & gt; microseconds
the number of loops is calculated at compile-time from MCU clock frequency
*************************************************************************/
//#define delay(us) _delayFourCycles( ( ( 1*(XTAL/4000) )*us)/1000 )

#define delay(us) _delayFourCycles( ( ( 1*(XTAL/4000) )*us)/32000 )

#if LCD_IO_MODE
/* toggle Enable Pin to initiate write */
static void toggle_e(void)
{
lcd_e_high();
lcd_e_delay();
lcd_e_low();
}
#endif


/*************************************************************************
Low-level function to write byte to LCD controller
Input: data byte to write to LCD
rs 1: write data
0: write instruction
Returns: none
*************************************************************************/
#if LCD_IO_MODE
static void lcd_write(uint8_t data,uint8_t rs)
{
unsigned char dataBits ;


if (rs) { /* write data (RS=1, RW=0) */
lcd_rs_high();
} else { /* write instruction (RS=0, RW=0) */
lcd_rs_low();
}
lcd_rw_low();

if ( ( & LCD_DATA0_PORT == & LCD_DATA1_PORT) & & ( & LCD_DATA1_PORT == & LCD_DATA2_PORT ) & & ( & LCD_DATA2_PORT == & LCD_DATA3_PORT )
& & (LCD_DATA0_PIN == 0) & & (LCD_DATA1_PIN == 1) & & (LCD_DATA2_PIN == 2) & & (LCD_DATA3_PIN == 3) )
{
/* configure data pins as output */
DDR(LCD_DATA0_PORT) |= 0x0F;

/* output high nibble first */
dataBits = LCD_DATA0_PORT & 0xF0;
LCD_DATA0_PORT = dataBits |((data & gt; & gt; 4) & 0x0F);
lcd_e_toggle();

/* output low nibble */
LCD_DATA0_PORT = dataBits | (data & 0x0F);
lcd_e_toggle();

/* all data pins high (inactive) */
LCD_DATA0_PORT = dataBits | 0x0F;
}
else
{
/* configure data pins as output */
DDR(LCD_DATA0_PORT) |= _BV(LCD_DATA0_PIN);
DDR(LCD_DATA1_PORT) |= _BV(LCD_DATA1_PIN);
DDR(LCD_DATA2_PORT) |= _BV(LCD_DATA2_PIN);
DDR(LCD_DATA3_PORT) |= _BV(LCD_DATA3_PIN);

/* output high nibble first */
LCD_DATA3_PORT & = ~_BV(LCD_DATA3_PIN);
LCD_DATA2_PORT & = ~_BV(LCD_DATA2_PIN);
LCD_DATA1_PORT & = ~_BV(LCD_DATA1_PIN);
LCD_DATA0_PORT & = ~_BV(LCD_DATA0_PIN);
if(data & 0x80) LCD_DATA3_PORT |= _BV(LCD_DATA3_PIN);
if(data & 0x40) LCD_DATA2_PORT |= _BV(LCD_DATA2_PIN);
if(data & 0x20) LCD_DATA1_PORT |= _BV(LCD_DATA1_PIN);
if(data & 0x10) LCD_DATA0_PORT |= _BV(LCD_DATA0_PIN);
lcd_e_toggle();

/* output low nibble */
LCD_DATA3_PORT & = ~_BV(LCD_DATA3_PIN);
LCD_DATA2_PORT & = ~_BV(LCD_DATA2_PIN);
LCD_DATA1_PORT & = ~_BV(LCD_DATA1_PIN);
LCD_DATA0_PORT & = ~_BV(LCD_DATA0_PIN);
if(data & 0x08) LCD_DATA3_PORT |= _BV(LCD_DATA3_PIN);
if(data & 0x04) LCD_DATA2_PORT |= _BV(LCD_DATA2_PIN);
if(data & 0x02) LCD_DATA1_PORT |= _BV(LCD_DATA1_PIN);
if(data & 0x01) LCD_DATA0_PORT |= _BV(LCD_DATA0_PIN);
lcd_e_toggle();

/* all data pins high (inactive) */
LCD_DATA0_PORT |= _BV(LCD_DATA0_PIN);
LCD_DATA1_PORT |= _BV(LCD_DATA1_PIN);
LCD_DATA2_PORT |= _BV(LCD_DATA2_PIN);
LCD_DATA3_PORT |= _BV(LCD_DATA3_PIN);
}
}
#else
#define lcd_write(d,rs) if (rs) *(volatile uint8_t*)(LCD_IO_DATA) = d; else *(volatile uint8_t*)(LCD_IO_FUNCTION) = d;
/* rs==0 - & gt; write instruction to LCD_IO_FUNCTION */
/* rs==1 - & gt; write data to LCD_IO_DATA */
#endif


/*************************************************************************
Low-level function to read byte from LCD controller
Input: rs 1: read data
0: read busy flag / address counter
Returns: byte read from LCD controller
*************************************************************************/
#if LCD_IO_MODE
static uint8_t lcd_read(uint8_t rs)
{
uint8_t data;


if (rs)
lcd_rs_high(); /* RS=1: read data */
else
lcd_rs_low(); /* RS=0: read busy flag */
lcd_rw_high(); /* RW=1 read mode */

if ( ( & LCD_DATA0_PORT == & LCD_DATA1_PORT) & & ( & LCD_DATA1_PORT == & LCD_DATA2_PORT ) & & ( & LCD_DATA2_PORT == & LCD_DATA3_PORT )
& & ( LCD_DATA0_PIN == 0 ) & & (LCD_DATA1_PIN == 1) & & (LCD_DATA2_PIN == 2) & & (LCD_DATA3_PIN == 3) )
{
DDR(LCD_DATA0_PORT) & = 0xF0; /* configure data pins as input */

lcd_e_high();
lcd_e_delay();
data = PIN(LCD_DATA0_PORT) & lt; & lt; 4; /* read high nibble first */
lcd_e_low();

lcd_e_delay(); /* Enable 500ns low */

lcd_e_high();
lcd_e_delay();
data |= PIN(LCD_DATA0_PORT) & 0x0F; /* read low nibble */
lcd_e_low();
}
else
{
/* configure data pins as input */
DDR(LCD_DATA0_PORT) & = ~_BV(LCD_DATA0_PIN);
DDR(LCD_DATA1_PORT) & = ~_BV(LCD_DATA1_PIN);
DDR(LCD_DATA2_PORT) & = ~_BV(LCD_DATA2_PIN);
DDR(LCD_DATA3_PORT) & = ~_BV(LCD_DATA3_PIN);

/* read high nibble first */
lcd_e_high();
lcd_e_delay();
data = 0;
if ( PIN(LCD_DATA0_PORT) & _BV(LCD_DATA0_PIN) ) data |= 0x10;
if ( PIN(LCD_DATA1_PORT) & _BV(LCD_DATA1_PIN) ) data |= 0x20;
if ( PIN(LCD_DATA2_PORT) & _BV(LCD_DATA2_PIN) ) data |= 0x40;
if ( PIN(LCD_DATA3_PORT) & _BV(LCD_DATA3_PIN) ) data |= 0x80;
lcd_e_low();

lcd_e_delay(); /* Enable 500ns low */

/* read low nibble */
lcd_e_high();
lcd_e_delay();
if ( PIN(LCD_DATA0_PORT) & _BV(LCD_DATA0_PIN) ) data |= 0x01;
if ( PIN(LCD_DATA1_PORT) & _BV(LCD_DATA1_PIN) ) data |= 0x02;
if ( PIN(LCD_DATA2_PORT) & _BV(LCD_DATA2_PIN) ) data |= 0x04;
if ( PIN(LCD_DATA3_PORT) & _BV(LCD_DATA3_PIN) ) data |= 0x08;
lcd_e_low();
}
return data;
}
#else
#define lcd_read(rs) (rs) ? *(volatile uint8_t*)(LCD_IO_DATA+LCD_IO_READ) : *(volatile uint8_t*)(LCD_IO_FUNCTION+LCD_IO_READ)
/* rs==0 - & gt; read instruction from LCD_IO_FUNCTION */
/* rs==1 - & gt; read data from LCD_IO_DATA */
#endif


/*************************************************************************
loops while lcd is busy, returns address counter
*************************************************************************/
static uint8_t lcd_waitbusy(void)

{
register uint8_t c;

/* wait until busy flag is cleared */
while ( (c=lcd_read(0)) & (1 & lt; & lt; LCD_BUSY)) {}

/* the address counter is updated 4us after the busy flag is cleared */
delay(2);

/* now read the address counter */
return (lcd_read(0)); // return address counter

}/* lcd_waitbusy */


/*************************************************************************
Move cursor to the start of next line or to the first line if the cursor
is already on the last line.
*************************************************************************/
static inline void lcd_newline(uint8_t pos)
{
register uint8_t addressCounter;


#if LCD_LINES==1
addressCounter = 0;
#endif
#if LCD_LINES==2
if ( pos & lt; (LCD_START_LINE2) )
addressCounter = LCD_START_LINE2;
else
addressCounter = LCD_START_LINE1;
#endif
#if LCD_LINES==4
#if KS0073_4LINES_MODE
if ( pos & lt; LCD_START_LINE2 )
addressCounter = LCD_START_LINE2;
else if ( (pos & gt; = LCD_START_LINE2) & & (pos & lt; LCD_START_LINE3) )
addressCounter = LCD_START_LINE3;
else if ( (pos & gt; = LCD_START_LINE3) & & (pos & lt; LCD_START_LINE4) )
addressCounter = LCD_START_LINE4;
else
addressCounter = LCD_START_LINE1;
#else
if ( pos & lt; LCD_START_LINE3 )
addressCounter = LCD_START_LINE2;
else if ( (pos & gt; = LCD_START_LINE2) & & (pos & lt; LCD_START_LINE4) )
addressCounter = LCD_START_LINE3;
else if ( (pos & gt; = LCD_START_LINE3) & & (pos & lt; LCD_START_LINE2) )
addressCounter = LCD_START_LINE4;
else
addressCounter = LCD_START_LINE1;
#endif
#endif
lcd_command((1 & lt; & lt; LCD_DDRAM)+addressCounter);

}/* lcd_newline */


/*
** PUBLIC FUNCTIONS
*/

/*************************************************************************
Send LCD controller instruction command
Input: instruction to send to LCD controller, see HD44780 data sheet
Returns: none
*************************************************************************/
void lcd_command(uint8_t cmd)
{
lcd_waitbusy();
lcd_write(cmd,0);
}


/*************************************************************************
Send data byte to LCD controller
Input: data to send to LCD controller, see HD44780 data sheet
Returns: none
*************************************************************************/
void lcd_data(uint8_t data)
{
lcd_waitbusy();
lcd_write(data,1);
}



/*************************************************************************
Set cursor to specified position
Input: x horizontal position (0: left most position)
y vertical position (0: first line)
Returns: none
*************************************************************************/
void lcd_gotoxy(uint8_t x, uint8_t y)
{
#if LCD_LINES==1
lcd_command((1 & lt; & lt; LCD_DDRAM)+LCD_START_LINE1+x);
#endif
#if LCD_LINES==2
if ( y==0 )
lcd_command((1 & lt; & lt; LCD_DDRAM)+LCD_START_LINE1+x);
else
lcd_command((1 & lt; & lt; LCD_DDRAM)+LCD_START_LINE2+x);
#endif
#if LCD_LINES==4
if ( y==0 )
lcd_command((1 & lt; & lt; LCD_DDRAM)+LCD_START_LINE1+x);
else if ( y==1)
lcd_command((1 & lt; & lt; LCD_DDRAM)+LCD_START_LINE2+x);
else if ( y==2)
lcd_command((1 & lt; & lt; LCD_DDRAM)+LCD_START_LINE3+x);
else /* y==3 */
lcd_command((1 & lt; & lt; LCD_DDRAM)+LCD_START_LINE4+x);
#endif

}/* lcd_gotoxy */


/*************************************************************************
*************************************************************************/
int lcd_getxy(void)
{
return lcd_waitbusy();
}


/*************************************************************************
Clear display and set cursor to home position
*************************************************************************/
void lcd_clrscr(void)
{
lcd_command(1 & lt; & lt; LCD_CLR);
}


/*************************************************************************
Set cursor to home position
*************************************************************************/
void lcd_home(void)
{
lcd_command(1 & lt; & lt; LCD_HOME);
}


/*************************************************************************
Display character at current cursor position
Input: character to be displayed
Returns: none
*************************************************************************/
void lcd_putc(char c)
{
uint8_t pos;


pos = lcd_waitbusy(); // read busy-flag and address counter
if (c=='\n')
{
lcd_newline(pos);
}
else
{
#if LCD_WRAP_LINES==1
#if LCD_LINES==1
if ( pos == LCD_START_LINE1+LCD_DISP_LENGTH ) {
lcd_write((1 & lt; & lt; LCD_DDRAM)+LCD_START_LINE1,0);
}
#elif LCD_LINES==2
if ( pos == LCD_START_LINE1+LCD_DISP_LENGTH ) {
lcd_write((1 & lt; & lt; LCD_DDRAM)+LCD_START_LINE2,0);
}else if ( pos == LCD_START_LINE2+LCD_DISP_LENGTH ){
lcd_write((1 & lt; & lt; LCD_DDRAM)+LCD_START_LINE1,0);
}
#elif LCD_LINES==4
if ( pos == LCD_START_LINE1+LCD_DISP_LENGTH ) {
lcd_write((1 & lt; & lt; LCD_DDRAM)+LCD_START_LINE2,0);
}else if ( pos == LCD_START_LINE2+LCD_DISP_LENGTH ) {
lcd_write((1 & lt; & lt; LCD_DDRAM)+LCD_START_LINE3,0);
}else if ( pos == LCD_START_LINE3+LCD_DISP_LENGTH ) {
lcd_write((1 & lt; & lt; LCD_DDRAM)+LCD_START_LINE4,0);
}else if ( pos == LCD_START_LINE4+LCD_DISP_LENGTH ) {
lcd_write((1 & lt; & lt; LCD_DDRAM)+LCD_START_LINE1,0);
}
#endif
lcd_waitbusy();
#endif
lcd_write(c, 1);
}

}/* lcd_putc */


/*************************************************************************
Display string without auto linefeed
Input: string to be displayed
Returns: none
*************************************************************************/
void lcd_puts(const char *s)
/* print string on lcd (no auto linefeed) */
{
register char c;

while ( (c = *s++) ) {
lcd_putc(c);
}

}/* lcd_puts */


/*************************************************************************
Display string from program memory without auto linefeed
Input: string from program memory be be displayed
Returns: none
*************************************************************************/
void lcd_puts_p(const char *progmem_s)
/* print string from program memory on lcd (no auto linefeed) */
{
register char c;

while ( (c = pgm_read_byte(progmem_s++)) ) {
lcd_putc(c);
}

}/* lcd_puts_p */


/*************************************************************************
Initialize display and select type of cursor
Input: dispAttr LCD_DISP_OFF display off
LCD_DISP_ON display on, cursor off
LCD_DISP_ON_CURSOR display on, cursor on
LCD_DISP_CURSOR_BLINK display on, cursor on flashing
Returns: none
*************************************************************************/
void lcd_init(uint8_t dispAttr)
{
#if LCD_IO_MODE
/*
* Initialize LCD to 4 bit I/O mode
*/

if ( ( & LCD_DATA0_PORT == & LCD_DATA1_PORT) & & ( & LCD_DATA1_PORT == & LCD_DATA2_PORT ) & & ( & LCD_DATA2_PORT == & LCD_DATA3_PORT )
& & ( & LCD_RS_PORT == & LCD_DATA0_PORT) & & ( & LCD_RW_PORT == & LCD_DATA0_PORT) & & ( & LCD_E_PORT == & LCD_DATA0_PORT)
& & (LCD_DATA0_PIN == 0 ) & & (LCD_DATA1_PIN == 1) & & (LCD_DATA2_PIN == 2) & & (LCD_DATA3_PIN == 3)
& & (LCD_RS_PIN == 4 ) & & (LCD_RW_PIN == 5) & & (LCD_E_PIN == 6 ) )
{
/* configure all port bits as output (all LCD lines on same port) */
DDR(LCD_DATA0_PORT) |= 0x7F;
}
else if ( ( & LCD_DATA0_PORT == & LCD_DATA1_PORT) & & ( & LCD_DATA1_PORT == & LCD_DATA2_PORT ) & & ( & LCD_DATA2_PORT == & LCD_DATA3_PORT )
& & (LCD_DATA0_PIN == 0 ) & & (LCD_DATA1_PIN == 1) & & (LCD_DATA2_PIN == 2) & & (LCD_DATA3_PIN == 3) )
{
/* configure all port bits as output (all LCD data lines on same port, but control lines on different ports) */
DDR(LCD_DATA0_PORT) |= 0x0F;
DDR(LCD_RS_PORT) |= _BV(LCD_RS_PIN);
DDR(LCD_RW_PORT) |= _BV(LCD_RW_PIN);
DDR(LCD_E_PORT) |= _BV(LCD_E_PIN);
}
else
{
/* configure all port bits as output (LCD data and control lines on different ports */
DDR(LCD_RS_PORT) |= _BV(LCD_RS_PIN);
DDR(LCD_RW_PORT) |= _BV(LCD_RW_PIN);
DDR(LCD_E_PORT) |= _BV(LCD_E_PIN);
DDR(LCD_DATA0_PORT) |= _BV(LCD_DATA0_PIN);
DDR(LCD_DATA1_PORT) |= _BV(LCD_DATA1_PIN);
DDR(LCD_DATA2_PORT) |= _BV(LCD_DATA2_PIN);
DDR(LCD_DATA3_PORT) |= _BV(LCD_DATA3_PIN);
}
delay(20000); /* wait 16ms or more after power-on */

/* initial write to lcd is 8bit */
LCD_DATA1_PORT |= _BV(LCD_DATA1_PIN); // _BV(LCD_FUNCTION) & gt; & gt; 4;
LCD_DATA0_PORT |= _BV(LCD_DATA0_PIN); // _BV(LCD_FUNCTION_8BIT) & gt; & gt; 4;
lcd_e_toggle();
delay(6992); //4 /* delay, busy flag can't be checked here */

/* repeat last command */
lcd_e_toggle();
delay(640); /* delay, busy flag can't be checked here */

/* repeat last command a third time */
lcd_e_toggle();
delay(640); /* delay, busy flag can't be checked here */

/* now configure for 4bit mode */
LCD_DATA0_PORT & = ~_BV(LCD_DATA0_PIN); // LCD_FUNCTION_4BIT_1LINE & gt; & gt; 4
lcd_e_toggle();
delay(640); /* some displays need this additional delay */

/* from now the LCD only accepts 4 bit I/O, we can use lcd_command() */
#else
/*
* Initialize LCD to 8 bit memory mapped mode
*/

/* enable external SRAM (memory mapped lcd) and one wait state */
MCUCR = _BV(SRE) | _BV(SRW);

/* reset LCD */
delay(20000); /* wait 16ms after power-on */
lcd_write(LCD_FUNCTION_8BIT_1LINE,0); /* function set: 8bit interface */
delay(6992); /* wait 5ms */
lcd_write(LCD_FUNCTION_8BIT_1LINE,0); /* function set: 8bit interface */
delay(640); /* wait 640us */
lcd_write(LCD_FUNCTION_8BIT_1LINE,0); /* function set: 8bit interface */
delay(640); /* wait 640us */
#endif

#if KS0073_4LINES_MODE
/* Display with KS0073 controller requires special commands for enabling 4 line mode */
lcd_command(KS0073_EXTENDED_FUNCTION_REGISTER_ON);
lcd_command(KS0073_4LINES_MODE);
lcd_command(KS0073_EXTENDED_FUNCTION_REGISTER_OFF);
#else
lcd_command(LCD_FUNCTION_DEFAULT); /* function set: display lines */
#endif
lcd_command(LCD_DISP_OFF); /* display off */
lcd_clrscr(); /* display clear */
lcd_command(LCD_MODE_DEFAULT); /* set entry mode */
lcd_command(dispAttr); /* display/cursor control */

}/* lcd_init */


stuff.zip > test_lcd.c

//(C)mily20001

/*************************************************************************
Title: testing output to a HD44780 based LCD display.
Author: Peter Fleury & lt; pfleury@gmx.ch & gt; http://jump.to/fleury
File: $Id: test_lcd.c,v 1.6 2004/12/10 13:53:59 peter Exp $
Software: AVR-GCC 3.3
Hardware: HD44780 compatible LCD text display
ATS90S8515/ATmega if memory-mapped LCD interface is used
any AVR with 7 free I/O pins if 4-bit IO port mode is used
**************************************************************************/
#include & lt; stdlib.h & gt;
#include & lt; avr/io.h & gt;
#include & lt; avr/wdt.h & gt;
#include & lt; avr/pgmspace.h & gt;
#include " lcd.h "
#include & lt; stdio.h & gt;
#include & lt; avr/interrupt.h & gt;
#include & lt; util/delay.h & gt;



#define BACKLIGHT_ON PORTC|=(1 & lt; & lt; 5)
#define BACKLIGHT_OFF PORTC & =~(1 & lt; & lt; 5)
#define POWER_LED_ON PORTC|=1
#define POWER_LED_OFF PORTC & =~1
#define HDD_LED_ON PORTC|=(1 & lt; & lt; 2)
#define HDD_LED_OFF PORTC & =~(1 & lt; & lt; 2)
#define BUZZER_ON PORTC & =~(1 & lt; & lt; 4)
#define BUZZER_OFF PORTC|=(1 & lt; & lt; 4)

#define HDD_LED_INPUT (PINC & (1 & lt; & lt; 3))
#define POWER_LED_INPUT (PINC & (1 & lt; & lt; 1))

volatile unsigned char odb_x;
volatile unsigned char odb_flaga=0;
int odebranodate=0, odebranostaty=0;
int sending=0;
volatile unsigned int usart_bufor_ind;
char usart_bufor[21] = {'H', 'e', 'j', 'o', 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
char splashdone[10] = {'S', 'D', 0};
char staty[35];
char data[28];
int donesending=0, odebrano=0;
int pos=0;
int odbieramdate=0;
int cpuwarn=0, hddwarn=0;
unsigned long int timer=0;
int splash_bufor_ind=0;
int sendingbufor=0, sendingsplash=0;
int closing=0;
int ledy=1, pods=1;
void refresh();
void komunikacja(void);

void usart_inicjuj(void)
{
#define BAUD 19200
#include & lt; util/setbaud.h & gt;

UBRRH = UBRRH_VALUE;
UBRRL = UBRRL_VALUE;
#if USE_2X
UCSRA |= (1 & lt; & lt; U2X);
#else
UCSRA & = ~(1 & lt; & lt; U2X);
#endif

UCSRC = (1 & lt; & lt; URSEL) | (1 & lt; & lt; UCSZ1) | (1 & lt; & lt; UCSZ0);

UCSRB = (1 & lt; & lt; TXEN) | (1 & lt; & lt; RXEN) | (1 & lt; & lt; RXCIE);
}


//--------------------------------------------------------------


ISR(USART_RXC_vect)
{
odb_x = UDR;
odb_flaga = 1;
}


//--------------------------------------------------------------

ISR(USART_UDRE_vect)
{
if(sendingbufor)
{
if(usart_bufor[usart_bufor_ind]!= 0)
{
UDR = usart_bufor[usart_bufor_ind++];
}
else
{
UCSRB & = ~(1 & lt; & lt; UDRIE);
sending=0;
donesending=1;
sendingbufor=0;
}
}
}


//--------------------------------------------------------------


void wyslij_wynik(void)
{
unsigned int z;

for(z=0; z & lt; 10; z++)
{
if(usart_bufor[z]==0){
usart_bufor[z]=13;
usart_bufor[z+1]=10;
usart_bufor[z+2]=0;
break;
}
}
sendingbufor=1;
while (!(UCSRA & (1 & lt; & lt; UDRE)));

usart_bufor_ind = 0;

UCSRB |= (1 & lt; & lt; UDRIE);
sending=1;
}

void restart()
{
refresh();
refresh();
_delay_ms(151);
BACKLIGHT_ON;
lcd_gotoxy(0,1);
lcd_puts( " POWER OFF " );
_delay_ms(2000);
POWER_LED_OFF;
BACKLIGHT_OFF;
wdt_enable(WDTO_30MS);
}

void force_restart()
{
refresh();
refresh();
_delay_ms(151);
BACKLIGHT_ON;
lcd_gotoxy(0,1);
lcd_puts( " FORCE RESTART " );
_delay_ms(1000);
POWER_LED_OFF;
BACKLIGHT_OFF;
wdt_enable(WDTO_30MS);
}

static const PROGMEM unsigned char one[] =
{
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10,
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x1C, 0x1C, 0x1C, 0x1C, 0x1C, 0x1C, 0x1C, 0x1C,
0x1E, 0x1E, 0x1E, 0x1E, 0x1E, 0x1E, 0x1E, 0x1E,
0x00, 0x00, 0x0E, 0x01, 0x0F, 0x11, 0x0F, 0x02, //ą
0x02, 0x04, 0x0E, 0x10, 0x0E, 0x01, 0x1E, 0x00, //ś
0x0C, 0x04, 0x05, 0x06, 0x04, 0x04, 0x0E, 0x00 //ł
//0x1B, 0x1B, 0x00, 0x04, 0x04, 0x11, 0x1B, 0x0E //usmiech
};

void wake()
{
refresh();
refresh();
PORTC|=1;
_delay_ms(50);
BACKLIGHT_ON;

lcd_gotoxy(0,1);
lcd_puts( " OBUDZONO " );
_delay_ms(3000);
refresh();
_delay_ms(50);
pos=0;
if(odb_flaga)
{
while(odb_x!=244 & & odb_x!=243 & & odb_x!=242 & & odb_x!=241 & & odb_x!=240 & & odb_x!=239 & & odb_x!=238 & & odb_x!=237 & & odb_x!=236 & & odb_x!=235){int a=0; a++;}
}
komunikacja();
}


void sleeping(void)
{
BACKLIGHT_OFF;
refresh();
int waked=0, curr=87;

char logn[90];
logn[87]=87;
logn[86]=73;
logn[85]=66;
logn[84]=60;
logn[83]=56;
logn[82]=52;
logn[81]=49;
logn[80]=46;
logn[79]=44;
logn[78]=42;
logn[77]=40;
logn[76]=39;
logn[75]=37;
logn[74]=36;
logn[73]=34;
logn[72]=33;
logn[71]=32;
logn[70]=31;
logn[69]=30;
logn[68]=29;
logn[67]=28;
logn[66]=27;
logn[65]=26;
logn[64]=25;
logn[63]=24;
logn[62]=24;
logn[61]=23;
logn[60]=22;
logn[59]=21;
logn[58]=21;
logn[57]=20;
logn[56]=19;
logn[55]=19;
logn[54]=18;
logn[53]=18;
logn[52]=17;
logn[51]=17;
logn[50]=16;
logn[49]=16;
logn[48]=15;
logn[47]=15;
logn[46]=14;
logn[45]=14;
logn[44]=13;
logn[43]=13;
logn[42]=12;
logn[41]=12;
logn[40]=12;
logn[39]=11;
logn[38]=11;
logn[37]=10;
logn[36]=10;
logn[35]=10;
logn[34]=9;
logn[33]=9;
logn[32]=9;
logn[31]=8;
logn[30]=8;
logn[29]=8;
logn[28]=7;
logn[27]=7;
logn[26]=7;
logn[25]=6;
logn[24]=6;
logn[23]=6;
logn[22]=5;
logn[21]=5;
logn[20]=5;
logn[19]=5;
logn[18]=4;
logn[17]=4;
logn[16]=4;
logn[15]=3;
logn[14]=3;
logn[13]=3;
logn[12]=3;
logn[11]=2;
logn[10]=2;
logn[9]=2;
logn[8]=2;
logn[7]=1;
logn[6]=1;
logn[5]=1;
logn[4]=1;
logn[3]=0;
logn[2]=0;
logn[1]=0;
logn[0]=0;

if(closing)
{
restart();
}

while(!waked)
{
while(curr & gt; 58 & & (!POWER_LED_INPUT))
{
int curt=logn[curr];
for(int i=0; i & lt; 354; i++)
{
for(int j=0; j & lt; curt; j++)
{
POWER_LED_ON;
}
for(int j=0; j & lt; (87-curt); j++)
{
POWER_LED_OFF;
}
}
curr--;
}
int timeouter=0;

if(curr==58)
{
int curt=logn[curr];
while((!POWER_LED_INPUT))
{
timeouter++;
for(int i=0; i & lt; 50; i++)
{
for(int j=0; j & lt; curt; j++)
{
POWER_LED_ON;
}
for(int j=0; j & lt; (87-curt); j++)
{
POWER_LED_OFF;
}
}
if(timeouter & gt; 501){restart();}
}
}
while(curr & gt; 29 & & POWER_LED_INPUT)
{
int curt=logn[curr];
for(int i=0; i & lt; 315; i++)
{
for(int j=0; j & lt; curt; j++)
{
POWER_LED_ON;
}
for(int j=0; j & lt; (87-curt); j++)
{
POWER_LED_OFF;
}
}
curr--;
}
int warn=0;
if(curr==29)
{
int curt=logn[curr];
while(POWER_LED_INPUT & & warn & lt; 400)
{
warn++;
for(int i=0; i & lt; 52; i++)
{
for(int j=0; j & lt; curt; j++)
{
POWER_LED_ON;
}
for(int j=0; j & lt; (87-curt); j++)
{
POWER_LED_OFF;
}
}
}
if(warn & gt; =400){waked=1; wake(); return;}
}
while(curr & gt; 0 & & (!POWER_LED_INPUT))
{
int curt=logn[curr];
for(int i=0; i & lt; 354; i++)
{
for(int j=0; j & lt; curt; j++)
{
POWER_LED_ON;
}
for(int j=0; j & lt; (87-curt); j++)
{
POWER_LED_OFF;
}
}
curr--;
}
if(curr==0)
{
int curt=logn[curr];
while(!POWER_LED_INPUT)
{
for(int i=0; i & lt; 50; i++)
{
for(int j=0; j & lt; curt; j++)
{
POWER_LED_ON;
}
for(int j=0; j & lt; (87-curt); j++)
{
POWER_LED_OFF;
}
}
}
}
while(curr & lt; 29 & & POWER_LED_INPUT)
{
int curt=logn[curr];
for(int i=0; i & lt; 315; i++)
{
for(int j=0; j & lt; curt; j++)
{
POWER_LED_ON;
}
for(int j=0; j & lt; (87-curt); j++)
{
POWER_LED_OFF;
}
}
curr++;
}
warn=0;
while(POWER_LED_INPUT & & warn & lt; 200)
{
warn++;
int curt=logn[curr];
for(int i=0; i & lt; 105; i++)
{
for(int j=0; j & lt; curt; j++)
{
POWER_LED_ON;
}
for(int j=0; j & lt; (87-curt); j++)
{
POWER_LED_OFF;
}
}
}
if(warn & gt; =200){waked=1; wake(); return;}
while(curr & lt; 58 & & (!POWER_LED_INPUT))
{
int curt=logn[curr];
for(int i=0; i & lt; 354; i++)
{
for(int j=0; j & lt; curt; j++)
{
POWER_LED_ON;
}
for(int j=0; j & lt; (87-curt); j++)
{
POWER_LED_OFF;
}
}
curr++;
}
if(curr==58)
{
int curt=logn[curr];
while((!POWER_LED_INPUT))
{
for(int i=0; i & lt; 50; i++)
{
for(int j=0; j & lt; curt; j++)
{
POWER_LED_ON;
}
for(int j=0; j & lt; (87-curt); j++)
{
POWER_LED_OFF;
}
}
}
}

while(curr & gt; 87 & & POWER_LED_INPUT)
{
int curt=logn[curr];
for(int i=0; i & lt; 315; i++)
{
for(int j=0; j & lt; curt; j++)
{
POWER_LED_ON;
}
for(int j=0; j & lt; (87-curt); j++)
{
POWER_LED_OFF;
}
}
curr++;
}
warn=0;
while(POWER_LED_INPUT & & warn & lt; 200)
{
int curt=logn[curr];
warn++;
for(int i=0; i & lt; 105; i++)
{
for(int j=0; j & lt; curt; j++)
{
POWER_LED_ON;
}
for(int j=0; j & lt; (87-curt); j++)
{
POWER_LED_OFF;
}
}
}
if(warn & gt; =200){waked=1; wake(); return;}


}
wake();
}

void refresh(void)
{
lcd_gotoxy(0,0);
lcd_puts( " " );

lcd_gotoxy(0,1);
lcd_puts( " " );

lcd_gotoxy(0,2);
lcd_puts( " " );

lcd_gotoxy(0,3);
lcd_puts( " " );
}

void komunikacja(void)
{
if(!POWER_LED_INPUT){sleeping();}
if(ledy)
{
if(HDD_LED_INPUT){HDD_LED_ON;}
else{HDD_LED_OFF;}

if(!POWER_LED_INPUT){POWER_LED_OFF;}
else{POWER_LED_ON;}
}
else
{
POWER_LED_OFF;
HDD_LED_OFF;
}

if(odb_flaga)
{
odebrano=1;
odb_flaga = 0; //zgaś flagę

if((int)odb_x==126) //restart
{
force_restart();
}
else
if((int)odb_x==225) //windows
{
pos=0;
for(int i=0; i & lt; 4; i++)
{
for(int j=0; j & lt; 20; j++)
{
lcd_gotoxy(j, i);
lcd_putc(32);
}
}
_delay_ms(50);
lcd_gotoxy(0,1);
lcd_puts( " WINDOWS " );
lcd_command(_BV(LCD_CGRAM));
for(int i=0; i & lt; 64; i++)
{
lcd_data(pgm_read_byte_near( & one[i]));
}
closing=1;
}

if((int)odb_x==235) //wlaczanie podswietlenia
{
pos=0;
BACKLIGHT_ON;
ledy=1;
pods=1;
if(closing)
{
lcd_command(_BV(LCD_CGRAM));
for(int i=0; i & lt; 64; i++)
{
lcd_data(pgm_read_byte_near( & one[i]));
}
closing=0;
}
}
else
if((int)odb_x==236) //gaszenie podswietlenia
{
pos=0;
ledy=0;
pods=0;
BACKLIGHT_OFF;
if(closing)
{
lcd_command(_BV(LCD_CGRAM));
for(int i=0; i & lt; 64; i++)
{
lcd_data(pgm_read_byte_near( & one[i]));
}
closing=0;
}
}
else
if((int)odb_x==237)
{
pos=0;
for(int i=0; i & lt; 4; i++)
{
for(int j=0; j & lt; 20; j++)
{
lcd_gotoxy(j, i);
lcd_putc(32);
}
}
_delay_ms(50);
lcd_gotoxy(0,1);
lcd_puts( " ZAMYKANIE SYSTEMU " );
lcd_command(_BV(LCD_CGRAM));
for(int i=0; i & lt; 64; i++)
{
lcd_data(pgm_read_byte_near( & one[i]));
}
closing=1;
}
else
if((int)odb_x==238) //posx+10 posy+10 numerliterki
{
lcd_gotoxy(usart_bufor[0]-48, usart_bufor[1]-48);
lcd_putc(usart_bufor[2]);
pos=0;
if(closing)
{
lcd_command(_BV(LCD_CGRAM));
for(int i=0; i & lt; 64; i++)
{
lcd_data(pgm_read_byte_near( & one[i]));
}
closing=0;
}
}
else
if((int)odb_x==239) //buzzer on
{
BUZZER_ON;
pos=0;
if(closing)
{
lcd_command(_BV(LCD_CGRAM));
for(int i=0; i & lt; 64; i++)
{
lcd_data(pgm_read_byte_near( & one[i]));
}
closing=0;
}
}
else
if((int)odb_x==240) //buzzer off
{
BUZZER_OFF;
pos=0;
if(closing)
{
lcd_command(_BV(LCD_CGRAM));
for(int i=0; i & lt; 64; i++)
{
lcd_data(pgm_read_byte_near( & one[i]));
}
closing=0;
}
}
else
if((int)odb_x==126)
{
refresh();
pos=0;
for(int i=0; i & lt; 21; i++)
{
usart_bufor[i]=0;
}
if(closing)
{
lcd_command(_BV(LCD_CGRAM));
for(int i=0; i & lt; 64; i++)
{
lcd_data(pgm_read_byte_near( & one[i]));
}
closing=0;
}
}
else if((int)odb_x==241) // 1 linijka
{
lcd_gotoxy(0,0);
lcd_puts(usart_bufor);
pos=0;
if(closing)
{
lcd_command(_BV(LCD_CGRAM));
for(int i=0; i & lt; 64; i++)
{
lcd_data(pgm_read_byte_near( & one[i]));
}
closing=0;
}
}
else
if((int)odb_x==242) // 2 linijka
{
lcd_gotoxy(0,1);
lcd_puts(usart_bufor);
pos=0;
if(closing)
{
lcd_command(_BV(LCD_CGRAM));
for(int i=0; i & lt; 64; i++)
{
lcd_data(pgm_read_byte_near( & one[i]));
}
closing=0;
}
}
else
if((int)odb_x==243) // 3 linijka
{
lcd_gotoxy(0,2);
lcd_puts(usart_bufor);
pos=0;
if(closing)
{
lcd_command(_BV(LCD_CGRAM));
for(int i=0; i & lt; 64; i++)
{
lcd_data(pgm_read_byte_near( & one[i]));
}
closing=0;
}
}
else
if((int)odb_x==244) // 4 linijka
{
lcd_gotoxy(0,3);
lcd_puts(usart_bufor);
pos=0;
if(closing)
{
lcd_command(_BV(LCD_CGRAM));
for(int i=0; i & lt; 64; i++)
{
lcd_data(pgm_read_byte_near( & one[i]));
}
closing=0;
}

}
else
{
usart_bufor[pos]=odb_x;
pos++;
}
}
}

void wait(void)
{
while(!odebrano)
{
for(int i=6; i & lt; =13 & & !odebrano; i++)
{
if(i & lt; 13)
{
lcd_gotoxy(i-1, 2);
lcd_putc(32);
lcd_gotoxy(i, 2);
lcd_putc(255);
}
else
{
lcd_gotoxy(12, 2);
lcd_putc(32);
}
for(long int j=0; j & lt; 83000 & & !odebrano; j++)
{
komunikacja();
}

}
komunikacja();
}

lcd_command(_BV(LCD_CGRAM));
for(int i=0; i & lt; 64; i++)
{
lcd_data(pgm_read_byte_near( & one[i]));
}

odebrano=0;
}





int main(void)
{

unsigned char i;

DDRC|=(1 & lt; & lt; 5)|(1)|(1 & lt; & lt; 2)|(1 & lt; & lt; 4);

BACKLIGHT_OFF;
POWER_LED_OFF;
HDD_LED_OFF;
BUZZER_OFF;

PORTC & =~(1 & lt; & lt; 1);
PORTC|=(1 & lt; & lt; 3);

char smiec=0;
while(!POWER_LED_INPUT){smiec++; __asm( " nop " );}

BACKLIGHT_ON;
POWER_LED_ON;

usart_inicjuj();
sei();
wyslij_wynik();
lcd_init(LCD_DISP_ON);

lcd_command(_BV(LCD_CGRAM));
for(i=0; i & lt; 64; i++)
{
lcd_data(pgm_read_byte_near( & one[i]));
}

char tmpline[20];

lcd_gotoxy(0,0);
lcd_puts( " Witamy " );
lcd_gotoxy(0,1);
lcd_puts( " " );
lcd_gotoxy(0,2);
sprintf(tmpline, " W%c%cczanie systemu... " ,7, 5);
lcd_puts(tmpline);
lcd_gotoxy(0,3);
lcd_puts( " " );

while(!odebrano){komunikacja();}

while(1)
{
komunikacja();
timer++;
if(odebrano){timer=0; odebrano=0;}
if(timer & gt; 500000 & & !closing)
{
timer=0;
pos=0;

for(int i=0; i & lt; 4; i++)
{
for(int j=0; j & lt; 20; j++)
{
lcd_gotoxy(j, i);
lcd_putc(32);
}
}
_delay_ms(50);
lcd_gotoxy(0,1);
lcd_puts( " UTRACONO POLACZENIE! " );
wait();
}
}
}


stuff.zip > lcd.h

#ifndef LCD_H
#define LCD_H
/*************************************************************************
Title : C include file for the HD44780U LCD library (lcd.c)
Author: Peter Fleury & lt; pfleury@gmx.ch & gt; http://jump.to/fleury
File: $Id: lcd.h,v 1.13.2.2 2006/01/30 19:51:33 peter Exp $
Software: AVR-GCC 3.3
Hardware: any AVR device, memory mapped mode only for AT90S4414/8515/Mega
***************************************************************************/

/**
@defgroup pfleury_lcd LCD library
@code #include & lt; lcd.h & gt; @endcode

@brief Basic routines for interfacing a HD44780U-based text LCD display

Originally based on Volker Oth's LCD library,
changed lcd_init(), added additional constants for lcd_command(),
added 4-bit I/O mode, improved and optimized code.

Library can be operated in memory mapped mode (LCD_IO_MODE=0) or in
4-bit IO port mode (LCD_IO_MODE=1). 8-bit IO port mode not supported.

Memory mapped mode compatible with Kanda STK200, but supports also
generation of R/W signal through A8 address line.

@author Peter Fleury pfleury@gmx.ch http://jump.to/fleury

@see The chapter & lt; a href= " http://homepage.sunrise.ch/mysunrise/peterfleury/avr-lcd44780.html " target= " _blank " & gt; Interfacing a HD44780 Based LCD to an AVR & lt; /a & gt;
on my home page.

*/

/*@{*/

#if (__GNUC__ * 100 + __GNUC_MINOR__) & lt; 303
#error " This library requires AVR-GCC 3.3 or later, update to newer AVR-GCC compiler ! "
#endif

#include & lt; inttypes.h & gt;
#include & lt; avr/pgmspace.h & gt;

/**
* @name Definitions for MCU Clock Frequency
* Adapt the MCU clock frequency in Hz to your target.
*/
#define XTAL 16000000 /** & lt; clock frequency in Hz, used to calculate delay timer */


/**
* @name Definition for LCD controller type
* Use 0 for HD44780 controller, change to 1 for displays with KS0073 controller.
*/
#define LCD_CONTROLLER_KS0073 0 /** & lt; Use 0 for HD44780 controller, 1 for KS0073 controller */

/**
* @name Definitions for Display Size
* Change these definitions to adapt setting to your display
*/
#define LCD_LINES 4 /** & lt; number of visible lines of the display */
#define LCD_DISP_LENGTH 20 /** & lt; visibles characters per line of the display */
#define LCD_LINE_LENGTH 0x40 /** & lt; internal line length of the display */
#define LCD_START_LINE1 0x00 /** & lt; DDRAM address of first char of line 1 */
#define LCD_START_LINE2 0x40 /** & lt; DDRAM address of first char of line 2 */
#define LCD_START_LINE3 0x14 /** & lt; DDRAM address of first char of line 3 */
#define LCD_START_LINE4 0x54 /** & lt; DDRAM address of first char of line 4 */
#define LCD_WRAP_LINES 0 /** & lt; 0: no wrap, 1: wrap at end of visibile line */


#define LCD_IO_MODE 1 /** & lt; 0: memory mapped mode, 1: IO port mode */
#if LCD_IO_MODE
/**
* @name Definitions for 4-bit IO mode
* Change LCD_PORT if you want to use a different port for the LCD pins.
*
* The four LCD data lines and the three control lines RS, RW, E can be on the
* same port or on different ports.
* Change LCD_RS_PORT, LCD_RW_PORT, LCD_E_PORT if you want the control lines on
* different ports.
*
* Normally the four data lines should be mapped to bit 0..3 on one port, but it
* is possible to connect these data lines in different order or even on different
* ports by adapting the LCD_DATAx_PORT and LCD_DATAx_PIN definitions.
*
*/
#define LCD_PORT PORTD /** & lt; port for the LCD lines */
#define LCD_DATA0_PORT LCD_PORT /** & lt; port for 4bit data bit 0 */
#define LCD_DATA1_PORT LCD_PORT /** & lt; port for 4bit data bit 1 */
#define LCD_DATA2_PORT LCD_PORT /** & lt; port for 4bit data bit 2 */
#define LCD_DATA3_PORT PORTB /** & lt; port for 4bit data bit 3 */
#define LCD_DATA0_PIN 5 /** & lt; pin for 4bit data bit 0 */
#define LCD_DATA1_PIN 6 /** & lt; pin for 4bit data bit 1 */
#define LCD_DATA2_PIN 7 /** & lt; pin for 4bit data bit 2 */
#define LCD_DATA3_PIN 0 /** & lt; pin for 4bit data bit 3 */
#define LCD_RS_PORT LCD_PORT /** & lt; port for RS line */
#define LCD_RS_PIN 2 /** & lt; pin for RS line */
#define LCD_RW_PORT LCD_PORT /** & lt; port for RW line */
#define LCD_RW_PIN 3 /** & lt; pin for RW line */
#define LCD_E_PORT LCD_PORT /** & lt; port for Enable line */
#define LCD_E_PIN 4 /** & lt; pin for Enable line */

#elif defined(__AVR_AT90S4414__) || defined(__AVR_AT90S8515__) || defined(__AVR_ATmega64__) || \
defined(__AVR_ATmega8515__)|| defined(__AVR_ATmega103__) || defined(__AVR_ATmega128__) || \
defined(__AVR_ATmega161__) || defined(__AVR_ATmega162__)
/*
* memory mapped mode is only supported when the device has an external data memory interface
*/
#define LCD_IO_DATA 0xC000 /* A15=E=1, A14=RS=1 */
#define LCD_IO_FUNCTION 0x8000 /* A15=E=1, A14=RS=0 */
#define LCD_IO_READ 0x0100 /* A8 =R/W=1 (R/W: 1=Read, 0=Write */
#else
#error " external data memory interface not available for this device, use 4-bit IO port mode "

#endif


/**
* @name Definitions for LCD command instructions
* The constants define the various LCD controller instructions which can be passed to the
* function lcd_command(), see HD44780 data sheet for a complete description.
*/

/* instruction register bit positions, see HD44780U data sheet */
#define LCD_CLR 0 /* DB0: clear display */
#define LCD_HOME 1 /* DB1: return to home position */
#define LCD_ENTRY_MODE 2 /* DB2: set entry mode */
#define LCD_ENTRY_INC 1 /* DB1: 1=increment, 0=decrement */
#define LCD_ENTRY_SHIFT 0 /* DB2: 1=display shift on */
#define LCD_ON 3 /* DB3: turn lcd/cursor on */
#define LCD_ON_DISPLAY 2 /* DB2: turn display on */
#define LCD_ON_CURSOR 1 /* DB1: turn cursor on */
#define LCD_ON_BLINK 0 /* DB0: blinking cursor ? */
#define LCD_MOVE 4 /* DB4: move cursor/display */
#define LCD_MOVE_DISP 3 /* DB3: move display (0- & gt; cursor) ? */
#define LCD_MOVE_RIGHT 2 /* DB2: move right (0- & gt; left) ? */
#define LCD_FUNCTION 5 /* DB5: function set */
#define LCD_FUNCTION_8BIT 4 /* DB4: set 8BIT mode (0- & gt; 4BIT mode) */
#define LCD_FUNCTION_2LINES 3 /* DB3: two lines (0- & gt; one line) */
#define LCD_FUNCTION_10DOTS 2 /* DB2: 5x10 font (0- & gt; 5x7 font) */
#define LCD_CGRAM 6 /* DB6: set CG RAM address */
#define LCD_DDRAM 7 /* DB7: set DD RAM address */
#define LCD_BUSY 7 /* DB7: LCD is busy */

/* set entry mode: display shift on/off, dec/inc cursor move direction */
#define LCD_ENTRY_DEC 0x04 /* display shift off, dec cursor move dir */
#define LCD_ENTRY_DEC_SHIFT 0x05 /* display shift on, dec cursor move dir */
#define LCD_ENTRY_INC_ 0x06 /* display shift off, inc cursor move dir */
#define LCD_ENTRY_INC_SHIFT 0x07 /* display shift on, inc cursor move dir */

/* display on/off, cursor on/off, blinking char at cursor position */
#define LCD_DISP_OFF 0x08 /* display off */
#define LCD_DISP_ON 0x0C /* display on, cursor off */
#define LCD_DISP_ON_BLINK 0x0D /* display on, cursor off, blink char */
#define LCD_DISP_ON_CURSOR 0x0E /* display on, cursor on */
#define LCD_DISP_ON_CURSOR_BLINK 0x0F /* display on, cursor on, blink char */

/* move cursor/shift display */
#define LCD_MOVE_CURSOR_LEFT 0x10 /* move cursor left (decrement) */
#define LCD_MOVE_CURSOR_RIGHT 0x14 /* move cursor right (increment) */
#define LCD_MOVE_DISP_LEFT 0x18 /* shift display left */
#define LCD_MOVE_DISP_RIGHT 0x1C /* shift display right */

/* function set: set interface data length and number of display lines */
#define LCD_FUNCTION_4BIT_1LINE 0x20 /* 4-bit interface, single line, 5x7 dots */
#define LCD_FUNCTION_4BIT_2LINES 0x28 /* 4-bit interface, dual line, 5x7 dots */
#define LCD_FUNCTION_8BIT_1LINE 0x30 /* 8-bit interface, single line, 5x7 dots */
#define LCD_FUNCTION_8BIT_2LINES 0x38 /* 8-bit interface, dual line, 5x7 dots */


#define LCD_MODE_DEFAULT ((1 & lt; & lt; LCD_ENTRY_MODE) | (1 & lt; & lt; LCD_ENTRY_INC) )



/**
* @name Functions
*/


/**
@brief Initialize display and select type of cursor
@param dispAttr \b LCD_DISP_OFF display off\n
\b LCD_DISP_ON display on, cursor off\n
\b LCD_DISP_ON_CURSOR display on, cursor on\n
\b LCD_DISP_ON_CURSOR_BLINK display on, cursor on flashing
@return none
*/
extern void lcd_init(uint8_t dispAttr);


/**
@brief Clear display and set cursor to home position
@param void
@return none
*/
extern void lcd_clrscr(void);


/**
@brief Set cursor to home position
@param void
@return none
*/
extern void lcd_home(void);


/**
@brief Set cursor to specified position

@param x horizontal position\n (0: left most position)
@param y vertical position\n (0: first line)
@return none
*/
extern void lcd_gotoxy(uint8_t x, uint8_t y);


/**
@brief Display character at current cursor position
@param c character to be displayed
@return none
*/
extern void lcd_putc(char c);


/**
@brief Display string without auto linefeed
@param s string to be displayed
@return none
*/
extern void lcd_puts(const char *s);


/**
@brief Display string from program memory without auto linefeed
@param s string from program memory be be displayed
@return none
@see lcd_puts_P
*/
extern void lcd_puts_p(const char *progmem_s);


/**
@brief Send LCD controller instruction command
@param cmd instruction to send to LCD controller, see HD44780 data sheet
@return none
*/
extern void lcd_command(uint8_t cmd);


/**
@brief Send data byte to LCD controller

Similar to lcd_putc(), but without interpreting LF
@param data byte to send to LCD controller, see HD44780 data sheet
@return none
*/
extern void lcd_data(uint8_t data);


/**
@brief macros for automatically storing string constant in program memory
*/
#define lcd_puts_P(__s) lcd_puts_p(PSTR(__s))

/*@}*/
#endif //LCD_H

  Search 5 million + Products